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Abstract. Our main theorem is an extension of the well–known Mizoguchi–Takahaashi fixed
point theorem [N. Mizogochi and W. Takahashi, Fixed point theorems for multi–valued mappings
on complete metric spaces, J. Math. Anal. Appl. 141 (1989) 177–188].
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1. INTRODUCTION AND STATEMENT OF RESULTS

Let .X;d/ be a metric space. CB.X/ denotes the collection of all nonempty closed
bounded subsets of X . For A;B 2 CB.X/ and x 2X , define

D.x;A/ WD inffd.x;a/Ia 2 Ag

and
H.A;B/ WDmaxfsup

a2A

D.a;B/; sup
b2B

D.b;A/g:

Notice thatH is a metric on CB.X/. H is called the Hausdorff metric induced by d .

Definition 1. An element x 2 X is said to be a fixed point of a multi–valued
mapping T WX ! CB.X/, if it is such that x 2 T .x/.

One can show that .CB.X/;H/ is a complete metric space, whenever .X;d/ is a
complete metric space (see for example Lemma 8:1:4, of [11]).

In 1969, Nadler [6] extended the Banach contraction principle [1] to set–valued
mappings as follows.

Theorem 1. Let .X;d/ be a complete metric space and let T be a mapping from
X into CB.X/. Assume that there exists r 2 Œ0;1/ such that H.T x;Ty/ � rd.x;y/
for all x;y 2X . Then there exists ´ 2X such that ´ 2 T .´/:

Many fixed point theorems have been proved by various authors as generalizations
to the Nadler’s theorem. One such generalization is due to Kaneko in [4] and Nicolae
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in [7]. Another generalization was proved by Mizoguchi and Takahashi [5] which is
also well known as a positive proof of a conjecture posed by Simeon Reich [10].

Nadler’s theorem was generalized by Mizoguchi and Takahaashi [5] in the follow-
ing way.

Theorem 2. Let .X;d/ be a complete metric space and let T be a mapping from
.X;d/ into .CB.X/;H/ satisfies

H.T x;Ty/� ˛.d.x;y//d.x;y/

for all x;y 2X , where ˛ be a function from Œ0;1/ into Œ0;1/ such that
limsups!tC ˛.s/ < 1 for all t 2 Œ0;1/. Then T has a fixed point.

Recently Suzuki [12] proved the Mizoguchi–Takahashi’s fixed point theorem by
an interesting and short proof.

On the other hand, the Banach contraction principle was generalized by Reich
[8, 9] as follows.

Theorem 3. Let .X;d/ be a complete metric space and let T be a mapping from
.X;d/ into .CB.X/;H/ satisfies

H.T x;Ty/� ˇŒD.x;T x/CD.y;Ty/�

for all x;y 2X , where ˇ 2 Œ0; 1
2
/. Then T has a fixed point.

In 1973, Hardy and Rogers [3] extended the Reich’s theorem by the following way.

Theorem 4. Let .X;d/ be a complete metric space and let T be a mapping from
X into X such that

d.T x;Ty/� ˛d.x;y/CˇŒd.x;T x/Cd.y;Ty/�CŒd.x;Ty/Cd.y;T x/�

for all x;y 2X , where ˛;ˇ; � 0 and ˛C2ˇC2 < 1. Then T has a fixed point.

Recently, the authors of the present paper [2] extended Theorems 1 and 4, as fol-
lows.

Theorem 5. Let .X;d/ be a complete metric space and let T be a mapping from
X into CB.X/ such that

H.T x;Ty/� ˛d.x;y/CˇŒD.x;T x/CD.y;Ty/�CŒD.x;Ty/CD.y;T x/�

for all x;y 2X , where ˛;ˇ; � 0 and ˛C2ˇC2 < 1. Then T has a fixed point.

In this paper, we shall generalize the above results. More precisely, we prove the
following theorem, which can be regarded as an extension of all Theorems 1, 2, 3, 4
and 5.

Theorem 6. Let .X;d/ be a complete metric space and let T be mapping from X

into CB.X/ such that
H.T x;Ty/� ˛.d.x;y//d.x;y/Cˇ.d.x;y//ŒD.x;T x/CD.y;Ty/�

C.d.x;y//ŒD.x;Ty/CD.y;T x/�
(1.1)
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for all x;y 2 X , where ˛;ˇ; are mappings from Œ0;1/ into Œ0;1/ such that ˛.t/C
2ˇ.t/C2.t/ < 1 and

limsup
s!tC

˛.s/Cˇ.s/C.s/

1� .ˇ.s/C.s//
< 1

for all t 2 Œ0;1/. Then T has a fixed point.

Moreover, we conclude the following results by using Theorem 6.

Corollary 1. Let .X;d/ be a complete metric space and let T be a mapping from
.X;d/ into .CB.X/;H/ satisfies

H.T x;Ty/� ˇ.d.x;y//ŒD.x;T x/CD.y;Ty/�

for all x;y 2X , where ˇ be a function from Œ0;1/ into Œ0; 1
2
/ and

limsups!tC ˇ.s/ <
1
2

for all t 2 Œ0;1/. Then T has a fixed point.

Corollary 2. Let .X;d/ be a complete metric space and let T be a mapping from
.X;d/ into .CB.X/;H/ satisfies

H.T x;Ty/� ˛.d.x;y//d.x;y/Cˇ.d.x;y//ŒD.x;T x/CD.y;Ty/�

for all x;y 2 X , where ˛;ˇ are function from Œ0;1/ into Œ0;1/ such that ˛.t/C
2ˇ.t/ < 1 and limsups!tC

�
˛.s/Cˇ.s/
1�ˇ.s/

�
< 1 for all t 2 Œ0;1/. Then T has a fixed

point.

2. PROOF OF THE MAIN THEOREM

Proof. Define the function � from Œ0;1/ into Œ0;1/ by �.t/D ˛.t/C1�2ˇ.t/�2.t/
2

for t 2 Œ0;1/. Then we have the following assertions:
1/ ˛.t/ < �.t/ for all t 2 Œ0;1/.

2/ limsups!tC
�.s/Cˇ.s/C.s/
1�.ˇ.s/C.s//

< 1 for all t 2 Œ0;1/.

3/ For x;y 2X and u 2 T x, there exists � 2 Ty such that

d.�;u/� �.d.x;y//d.x;y/Cˇ.d.x;y//ŒD.x;T x/CD.y;Ty/�

C.d.x;y//ŒD.x;Ty/CD.y;T x/�:

Putting uD y in (3), we obtain that:
4/ For x 2X and y 2 T x there exists � 2 Ty such that

d.�;y/� �.d.x;y//d.x;y/Cˇ.d.x;y//ŒD.x;T x/CD.y;Ty/�

C.d.x;y//ŒD.x;Ty/CD.y;T x/�:

Hence, we can define a sequence fxng such that xnC1 2 T xn, xnC1 ¤ xn and

d.xnC2;xnC1/� �.d.xnC1;xn//d.xnC1;xn/Cˇ.d.xnC1;xn//ŒD.xn;T xn/
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CD.xnC1;T xnC1/�C.d.xnC1;xn/ŒD.xn;T xnC1/

CD.xnC1;T xn/�

for all n 2N. It follows that

d.xnC2;xnC1/�
�.d.xnC1;xn//Cˇ.d.xnC1;xn//C.d.xnC1;xn//

1� .ˇ.d.xnC1;xn//C.d.xnC1;xn///
d.xnC1;xn/

for all n 2N. On the other hand, we have
�.t/Cˇ.t/C.t/

1� .ˇ.t/C.t//
< 1

for all t 2 Œ0;1/, so fd.xnC1;xn/g is a non-increasing sequence in R. Hence,
fd.xnC1;xn/g converges to some nonnegative integer � . By assumption,

limsup
s!�C

�.s/Cˇ.s/C.s/

1� .ˇ.s/C.s//
< 1;

so we have
�.�/Cˇ.�/C.�/

1� .ˇ.�/C.�//
< 1;

and then there exists r 2 Œ0;1/ and � > 0 such that
�.s/Cˇ.s/C.s/

1�ˇ.s/C.s/
< r

for all s 2 Œ�;�C ��. We can take � 2N such that

� � d.xnC1;xn/� �C �

for all n 2N with n� �. It follows that

d.xnC2;xnC1/

�
�.d.xnC1;xn//Cˇ.d.xnC1;xn//C.d.xnC1;xn//

1� .ˇ.d.xnC1;xn//C.d.xnC1;xn///
d.xnC1;xn/

� rd.xnC1;xn/

for all n 2N with n� �. This implies that
1X
nD1

d.xnC2;xnC1/�

�X
nD1

d.xnC1;xn/C

1X
nD1

rnd.x�C1;x�/ <1:

Hence, fxng is a Cauchy sequence. Since X is a complete metric space, fxng con-
verges to some point x� 2X . Now, we have

D.x�;T x�/� d.x�;xnC1/CD.xnC1;T x
�/

� d.x�;xnC1/CH.T xn;T x
�/

� d.x�;xnC1/C˛.d.xn;x
�//d.xn;x

�/

Cˇ.d.xn;x
�//ŒD.xn;T xn/CD.x

�;T x�/�
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C.d.xn;x
�//ŒD.xn;T x

�/CD.x�;T xn/�

for all n 2N. Therefore

D.x�;T x�/� d.x�;xnC1/C˛.d.xn;x
�//d.xn;x

�/

Cˇ.d.xn;x
�//Œd.xnC1;xn/CD.x

�;T x�/�

C.d.xn;x
�//ŒD.xn;T x

�/Cd.xnC1;x
�/�

for all n 2N. It follows that

D.x�;T x�/

� limsup
n!1

.ˇ.d.xn;x
�//C.d.xn;x

�///D.x�;T x�/

� limsup
n!1

.
˛.d.xn;x

�//Cˇ.d.xn;x
�//C.d.xn;x

�//

1� .ˇ.d.xn;x�//C.d.xn;x�///
/D.x�;T x�/:

On the other hand, we have

limsup
s!0C

.
˛.s/Cˇ.s/C.s/

1� .ˇ.s/C.s//
/ < 1

so D.x�;T x�/D 0. Since T x� is closed, x� 2 T x�. �

3. AN EXAMPLE

Recently, Suzuki, in [12], has given an example to prove that the Mizoguchi condi-
tion is not a contraction. Using the same idea, we give an example in a more general
setting.

Example 1. Let l1 be the Banach space consisting of all bounded real sequence
with supremum norm and let feng be the canonical basis of l1. Let f�ng be a strictly
decreasing sequence of positive real numbers that convergent to � . Put xn D �n en
and Xn D fxn;xnC1;xnC2; : : :g for n 2N and X D X1. It is easy to see that X is a
bounded and closed subset of l1. Define a mapping T from X into CB.X/ by

T xn D
1

2
XnC1 D f

1

2
xnC1;

1

2
xnC2; : : :g

for n 2N and functions ˛;ˇ; from Œ0;1/ into Œ0;1/ by

˛.t/D ˇ.t/D .t/D

8̂<̂
:
�nC1

6�n
; t D �n for some n 2N;

0; otherwise:

Then the following conditions hold:
.a/ T satisfies .1:1/ for all x;y 2X .
.b/ ˛.t/C2ˇ.t/C2.t/ < 1 for all t 2 Œ0;1/.
.c/ limsups!tC

˛.s/Cˇ.s/C.s/
1�ˇ.s/�.s/

< 1 for all t 2 Œ0;1/.
In fact, one can show that:
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.i/

H.T xm;T xn/D
1

2
�nC1;

for all m> n.
.i i/

D.xn;T xn/DD.xn;
1

2
XnC1/D �n;

D.xn;T xm/DD.xn;
1

2
XmC1/D �n;

for all m;n 2N with m> n.
.i i i/

limsup
t!sC

˛.t/Cˇ.t/C.t/

1�ˇ.t/�.t/
D 0 < 1;

for all s 2 Œ0;1/ with s 6D � , also,

limsup
t!�C

˛.t/Cˇ.t/C.t/

1�ˇ.t/�.t/
D limsup

n!1

1
2
�nC1

�n

1� 1
3
�nC1

�n

D
3

4
< 1:

Hence, we have .c/. Now, let m;n 2N with m> n. Then we have

H.T xm;T xn/D
1

2
�nC1 �

1

2
�nC1C

�nC1

6�n
�m

D
1

2

�nC1

�n
�nC

�nC1

6�n
�m

D .˛.�n/Cˇ.�n/C.�n/ / �nCˇ.�n/ �m

D ˛.�n/ �nCˇ.�n/ .�nC �m/C.�n/ �n

� ˛.d.xm;xn// d.xm;xn/

Cˇ.d.xm;xn//.D.xn;T xn/CD.xm;T xm//

C.d.xm;xn//.D.xn;T xm/CD.xm;T xn//:

This means that .a/ holds.
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