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Abstract. The present paper deals with algebraic models and methods sufficient to solve
effectively problems of investigation of two basic classes of control systems, namely, finite
automata and boolean functions. Suggested models for finite automata are based on finite
groups and result in establishing basic algebraic characteristics, developing a general scheme
for estimating exponential lower bounds and in the design of nonstationary secret locks of
arbitrary high complexity. It is also shown that the problem of the identification of boolean
vector-functions may be effectively solved via the methods of the Theory of Vector Spaces
over GF (2).
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1. Introduction

It is well known that solving of the majority of problems of investigation of finite
automata and boolean functions is based on exhaustive searching. The main disad-
vantage of these methods is their high complexity. Besides, many important prop-
erties of the structure of investigated objects are not taken into account at all since
the applied tools are very limited. On the other hand, many problems of analysis,
description, classification, estimation and effective algorithm design may be solved by
powerful methods of Modern Algebra. Thus it is natural to present finite automata
and boolean functions via basic algebraic structures. This gives the possibility to ex-
plore effectively algebraic characteristics of these structures in solving the investigated
problems. Three basic problems are solved in what follows.

The first one is the presentation of mappings performed by finite automata via
finite groups. This results in an exhaustive investigation of algebraic characteristics
and the extraction of a special subclass of permutation automata. This subclass is
basic for the design of nonstationary secret locks of arbitrary high complexity.

The second one is the elaboration of a general scheme for establishing the expo-
nential lower bounds. The suggested scheme is based on the selection of permutation
with special characteristics. This directly results in establishing the lower bounds
for Shennon’s functions estimating the maximum of the minimal lengths of distin-
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guishing and synchronizing sequences for weakly initialized automata as well as of
the complexity of the secret locks designed.

The third one is the identification of boolean vector-functions via the methods of
the Theory of Vector Spaces over GF (2). The suggested scheme is based on present-
ing the graph of any boolean vector-function via the union of special subspaces of
GFm+n(2). This results in the design of a characteristic function in the form of a set
of special matrices over the field GF (2).

All notions that are not determined are the same as in [1-7].

2. Automata and groups

An automaton is a quintuple A = (Q,X, Y, δ, λ) (Q is a set of states, X and Y are input
and output alphabets, δ : Q ×X → Q and λ : Q ×X → Y are transition and output
mappings). It is suggested that Q, X and Y are finite sets. Usually an automaton
is interpreted as a model of a discrete device or as an algorithm. It is also evident
that an automaton is a Heterogeneous Algebra. Thus algebraic methods are directly
applied in the Automata Theory. Indeed, the investigation of congruences of the
free semigroup X∗ leads to the Krohn-Rhodes Decomposition Theory. Similarly, the
investigation under conditions that δ and λ are presented via linear transformations
of vector spaces leads to a restricted but very important class of Linear Sequential
Machines. It is natural to present δ and λ via operations in arbitrary finite groups
since the last ones are one of the best examined algebraic systems. Basic properties
of this presentation were investigated in [1,2].

LetAmnk (m,n, k ∈ N, k ≥ 2) be the set of all automata A = (Qk, Xm, Yn, δA, λA),
where Qk = {q1, . . . , qk}, Xm = {x1, . . . , xm}, Yn = {y1, . . . , yn} and G1 = (G1, ◦)
and G2 = (G2, ?) be finite groups. Fmnk(G1,G2) denotes the set of all 6-tuples
F = (f1, f2, f3, f4, f5, f6) of mappings, where f1 : Qk → G1, f2 : Xm → G1,
f3 : G1 → Qk, f4 : Qk → G2, f5 : Xm → G2, f6 : G2 → Yn. An automaton
BF = (Qk, Xm, Yn, δF , λF ) (F ∈ Fmnk(G1,G2)) is determined by the identities

δF (q, x) = f3(f1(q) ◦ f2(x)), λF (q, x) = f6(f4(q) ? f5(x)) (q ∈ Qk, x ∈ Xm).

Let Amnk(G1,G2) = {AF |F ∈ Fmnk(G1,G2)}. It is evident that ∅ 6= Amnk(G1,G2) ⊆
Amnk for any finite groups G1 and G2. Moreover, the following characteristics are
established.

Theorem 1 [1]. If sequences of finite groups {G(j)
1 |j ∈ N} and {G(j)

2 |j ∈ N} are
under the conditions G(1)

i ≤ G(2)
i ≤ . . .G(j)

i ≤ . . . (i = 1, 2), then

∅ 6= Amnk(G(1)
1 ,G(1)

2 ) ⊆ Amnk(G(2)
1 ,G(2)

2 ) ⊆ · · · ⊆ Amnk(G(j)
1 ,G(j)

2 ) ⊆ · · · ⊆ Amnk.

Theorem 2 [1]. If there exist cyclic groups Zl1 = (Zl1 ,⊕mod l1) and Zl2 =
(Zl2 ,⊕mod l2) such that Zli ≤ Gi (i = 1, 2) and min{l1, l2} ≥ mk then Amnk(G1,G2) =
Amnk.
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It is worth noting that Theorem 2 justifies ROM-realizations of finite automata
and extracts a sufficiently wide class of these realizations in an explicit form.

If A = BF (A ∈ Amnk, BF ∈ Amnk(G1,G2)) then BF is (G1,G2)-presentation of
A. At every instant of time computations performed by an automaton BF realize the
scheme

coding → operations in groups → decoding.

This scheme is inconvenient if for an automaton A = (Qk, Xm, Yn, δA, λA) transition
and output mappings’ extensions on the set Qk×X∗

m are determined by the identities

δA(q, Λ) = q, λA(q, Λ) = Λ, δA(q, px) = δA(δA(q, p), x), λA(q, px) =
= λA(q, p)λA(δA(q, p), x),

where q ∈ Qk, p ∈ X∗
m, x ∈ Xm and Λ is the empty string. It is more preferable

to code a state in the initial instant of time and to decode an element of a group
into a state in the final instant of time only. Thus it is natural to extend a mapping
f2 : Xm → G1 onto the set X∗

m and extract the following subset Fc
mnk(G1,G2) of the

set Fmnk(G1,G2): F = (f1, . . . , f6) ∈ Fc
mnk(G1,G2) if δF (q, p) = f3(f1(q) ◦ f2(p)) for

all q ∈ Qk and p ∈ X∗
m. The subset Fc

mnk(G1,G2) is determined by the following
criteria.

Theorem 3 [2]. F = (f1, . . . , f6) ∈ Fc
mnk(G1,G2) if and only if there exists an

extension of the mapping f2 onto the set X∗
m such that the identities

f3(f1(q) ◦ f2(Λ)) = q, f3(f1(q) ◦ f2(px)) = f3(f1(f3(f1(q) ◦ f2(p))) ◦ f2(x))

hold for all q ∈ Qk, p ∈ X∗
m, x ∈ Xm.

The following basic characteristics of the subset Fc
mnk(G1,G2) are established.

Theorem 4 [2]. Fc
mnk(G1,G2) = ∅ for any group G1 = (G1, ◦) such that |G1| < k.

Theorem 5 [2]. There exists a group G1 = (G1, ◦) such that |G1| = k and
Fc

mnk(G1,G2) 6= ∅.

Theorem 6 [2]. Let G1 = (G1, ◦) be any group such that |G1| = k and
Fc

mnk(G1,G2) 6= ∅. Let F = (f1, . . . , f6) ∈ Fc
mnk(G1,G2) and f2 be extended onto

the set X∗
m. Then BF is a permutation automaton consisting of k/|V al f2| strongly

connected components, each of |V al f2| states.

Theorem 7 [2]. Let F = (f1, . . . , f6) ∈ Fc
mnk(G1,G2) and f2 be extended onto the

set X∗
m. If f2(Λ) is the identity element of the group G1 and V al f1 ◦V al f2 = V al f1,

then f2 is a homeomorphism of the free semigroup X∗
m into the group G1.

Theorem 6 extracts permutation automata with strongly connected components
consisting of the same number of states. It is natural to present these automata via
well examined groups. For autonomous automata this problem was investigated in
[2,3].
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Let Ai = (Zki , {x}, δi) (i = 1, . . . , n) be a sequence of counters, i.e., δi(z, x) = z+1
(mod ki) for all z ∈ Zki

and χ(A1, . . . , An) = (A1 × · · · ×An, {x}, δ), where

δ(z1, . . . , zn) = (δ1(z1, x), . . . , δn(zn, x))

for all (z1, . . . , zn) ∈ A1 × · · · ×An.

Theorem 8 [2,3]. The automaton χ(A1, . . . , An) consists of GCD(k1, . . . , kn)
strongly connected components, each of LCM(k1, . . . , kn) states.

Theorem 8 implies that an autonomous automaton B with k states consisting of
u strongly connected components, each of v states, is isomorphic to an automaton
χ(A1, . . . , Al) if and only if canonical forms k = pγ1

1 . . . pγr
r , u = pα1

1 . . . pαr
r , v =

pβ1
1 . . . pβr

r , ki = pµi1
1 . . . pµir

r (i = 1, . . . , l) satisfy the conditions

αj + βj = γj (j = 1, . . . , r),

µ1j + · · ·+ µlj = γj (j = 1, . . . , r),

min{µ1j , . . . , µlj} = αj (j = 1, . . . , r),

max{µ1j , . . . , µlj} = βj (j = 1, . . . , r).

3. Exponential lower bounds

The estimation of Shennon functions’ lower bounds is one of the fundamental prob-
lems of Discrete Mathematics. Indeed, it is an integral part of algorithms’ complexity
analysis. The complexity of this problem is justified by the fact that the unique
method for solving it is to design an object on which this estimation is accessible
explicitly, as a rule. Moreover, the higher the lower bound is, the more difficult is
to design the corresponding object. Thus a natural way to reduce the complexity
of lower bounds’ estimation is to elaborate abstract mathematical schemes with pre-
scribed values of parameters and to give an interpretation in terms of specific discrete
problems. In the case when lower bounds are exponents this problem was solved in
[4].

Let a permutation g ∈ Sn be presented as the product of cycles, i.e., g =
Dr1 . . . Drl

, where Dh (h = r1, . . . , rl) is h-cycle. Then order(g) = LCM(r1, . . . , rl).
Thus if f = Dr+1, . . . , D2r ∈ Sn, then order(f) = LCM(r + 1, . . . , 2r) =
= LCM(1, . . . , 2r). Since [5] ec1x < LCM(1, . . . , x) < ec1x (x ≥ 2), where c1, c2

(0 < c1 < c2) are constants, then order(f) = eO(r) (r →∞).

Theorem 9. [4]. If f = Dr+1 . . . D2r ∈ Sn (r = b 1
6

√
(24n + 1)− 1c), then

order(f) = eO(
√

n) (n →∞).
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This scheme was applied in [6] for estimating the lengths of minimal distinguishing
and synchronizing sequences for weakly initialized automata and in [3] for the design
of recursive locks of arbitrary high complexity.

A weakly initialized automaton (via) is a pair (A, Qin), where A ∈ Amnk and
Qin ⊆ Qk (|Qin| ≥ 2). For a via (A,Qin) a sequence p ∈ X∗

m is:

1) distinguishing, if δA(q, p) = δA(q′, p) =⇒ λA(q, p) = λA(q′, p) for all q, q′ ∈ Qin;

2) synchronizing, if |δA(Qin, p)| = 1.

Let there be selected pair-wise disjoint subsets W1, . . . , Wr−1 of the set Qk\{q1},
where

Wi = {qα(i)+j |j = 0, 1, . . . , l + i− 1} (i = 1, . . . , r − 1)

and α(i) = 2+l(i−1)+0.5i(i−1). These subsets exist for all r ∈ {2, . . . , b0.5(
√

8k − 7+
1)c} and l ∈ {0, 1, . . . , b 1

2(r−1) (2(k − 1)− r(r − 1))c}. Let (A,Qin) be the via, where
A ∈ A2nk, Qin = {q1, qα(1), . . . , qα(r−1)} and

δA(qu, xv) =

qu+1, if v = 1 and qu ∈ Wi\{qα(i+1)−1} (i = 1, . . . , r − 1),
qα(i), if v = 1 and u = α(i + 1)− 1 (i = 1, . . . , r − 1),
q1, if v = 2 and qu ∈ W1 ∪ · · · ∪Wr−1,
q1, if v = 1, 2 and u = 1 ,

λA(qu, xv) =

y1, if v = 1 and qu ∈ W1 ∪ · · · ∪Wr−1,
y1, if v = 2 and qu ∈ Wi\{qα(i+1)−1} (i = 1, . . . , r − 1),
yi+1, if v = 2 and u = α(i + 1)− 1 (i = 1, . . . , r − 1),
y1, if v = 1, 2 and u = 1 .

Similarly, let there be selected pair-wise disjoint subsets U1, . . . , Ur−1 of the set
Qk\{q1, q2}, where Ui = {qβ(i)+j |j = 0, 1, . . . , l + i− 1} (i = 1, . . . , r − 1) and β(i) =
α(i) + 1. These subsets exist for all r ∈ {2, . . . , b0.5(

√
8k − 15 + 1)c}. Let (B, Qin)

be the via, where B ∈ A2nk, Qin = {q1, qβ(1), . . . , qβ(r−1)} and

δB(qu, xv) =

qu+1, if v = 1 and qu ∈ Ui\{qβ(i+1)−1} (i = 1, . . . , r − 1),
qβ(i), if v = 1 and u = β(i + 1)− 1 (i = 1, . . . , r − 1),
q2, if v = 2 and qu ∈ Ui\{qβ(i+1)−1},
q1, if v = 2 and u = β(i + 1)− 1 (i = 1, . . . , r − 1),
qu, if v = 1, 2 and u = 1, 2 .

δA|W1∪···∪Wr−1 and δB |U1∪···∪Ur−1 are permutations of the sets W1 ∪ · · · ∪Wr−1 and
U1∪· · ·∪Ur−1, correspondingly, and consist of the cycles of the lengths l+1, . . . , l+r−1.
Thus the sequence xµ

1x2, where µ = LCM(l, l + 1, . . . , l + r− 2) is the single minimal
distinguishing one for the via (A, Qin) and the single minimal synchronizing one
for the via (B, Qin). To establish that the lower bound for the maximal lengths
of minimal distinguishing and synchronizing sequences for automata A ∈ A2nk is
eO(

√
k) (k →∞), it is sufficient to set l = r − 2 and r = O(

√
k) (k →∞).

A recursive secret lock [3] is designed in the following way. Let Ai = (Zki , {x}, δi)
(i = 1, . . . , l) be fixed sequence of counters, where k1 . . . kl = k. The key is an
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automaton χ(A1, . . . , Al) which states are identified with the states of its isomorphic
image B ∈ A1nk, such that

δB(qrν+j , x) = qrν+j+1, if j = 1, . . . , ν − 1
qrν+1, if j = ν

(r = 0, 1, . . . , µ− 1)

where µ = GCD(k1, . . . , kl) and ν = LCM(k1, . . . , kl). It is suggested that the
key may be installed instantly at any of the states qrν+1 (r = 0, 1, . . . , µ − 1). Let
ϕ : N → {ν, 2ν, . . . , µν} be any recursive piecewise constant function with the length
of any step (i.e. interval of permanent values) higher than ν. A recursive secret lock
is a predicate Pϕ : N×Qk ×N → {0, 1}, where

Pϕ(t, q, h) = 1 ⇐⇒ (q = qrν+1)&(δB(qrν+1, x
h) = qϕ(t+h)).

Thus to open the lock it is necessary to install the key correctly and to apply the
sequence xh, where h is multiple of ν − 1. Let ki = l + i (i = 1, . . . , l). The minimal
admissible value of h is under the condition h = eO(l) (l → ∞). This implies that
the suggested method gives the possibility to design nonstationary secret locks of
arbitrary high level of complexity.

4. Identification of boolean functions

On-line control of discrete devices is often reduced to real-time analysis of correspond-
ing input-output pairs. If the analyzed device is a combinational circuit it realizes the
prescribed boolean vector-function f : {0, 1}m → {0, 1}n. Thus the Problem is for-
mulated as follows: for the given boolean vector-function f and a set Ω ⊂ {0, 1}m+n

it is necessary to check if the inclusion Ω ⊆ graph(f) holds. This Problem may be
easily reduced to the classic Problem of boolean functions’ identification. Thus clas-
sic methods based on searching are directly applied. The main disadvantage of these
methods is their high complexity. To reduce the complexity it is natural to replace
searching by algebraic operations wherever it is possible. This problem was solved in
[7]. The main idea of the suggested approach is to explore the fact that {0, 1}m+n is
the vector space GFm+n(2).

Let Pm,n be the set of all boolean vector-functions f : {0, 1}m → {0, 1}n. Any
function f ∈ Pm,n may be presented in the form f = (f1, . . . , fn), where fi ∈ Pm,1

(i = 1, . . . , n). Thus Pm,n = (Pm,1)n. Let T0(m) = {f ∈ Pm,1|f(0, . . . , 0) = 0} and
L(m) be the set of all linear functions f ∈ Pm,1.

A set χf = {Mi|i = 1, . . . , l} of matrices over the field GF (2) is called a charac-
teristic function for the set graph(f) (f ∈ Pm,n) if it satisfies the condition

(∀a ∈ {0, 1}m+n)(∃Mi ∈ χf )(aMi = 0) ⇐⇒ a ∈ graph(f).

Thus a ∈ graph(f) ⇐⇒ 0 ∈ χf (a), where χf (a) = {aMi|i = 1, . . . , l}.
The basic characteristics of the structure of the set graph(f) (f ∈ Pm,n) are the

following.
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Theorem 10 [7]. The set graph(f) (f ∈ Pm,n) is a subspace of the space
GFm+n(2) if and only if f ∈ (T0(m) ∩ L(m))n.

Since V = {0,a} is a subspace of GFm+n(2) for any {a} ∈ {0, 1}m+n\{0}, the
notion of lin graph(f) (f ∈ Pm,n) as the set of all maximal (relatively to the inclusion
relation) subspaces of GFm+n(2) which are subsets of graph(f) is justified.

Theorem 11 [7]. lin graph(f) 6= ∅ (f ∈ Pm,n) if and only if f ∈ T
(m)
0 (m).

The significance of Theorem 11 is justified by the fact that g = f + f(0, . . . , 0) ∈
T

(m)
0 (m) for any f ∈ Pm,n.

Theorem 12 [7]. For any f ∈ T
(m)
0 (m) there holds the identity

graph(f) =
⋃

V ∈lin graph(f)

V.

Theorem 12 suggests an effective method for the design of a characteristic function χf

∈ T
(m)
0 (m). Indeed, let V be a subspace of GFm+n(2) and {e1, . . . , em+n−Dim(V )} be

any basis of its orthogonal complement V ⊥. MV denotes the (m+n)×(m+nDim(V ))-
matrix whose columns are e1, . . . , em+n−Dim(V ).

Theorem 13 [7]. For any f ∈ T
(m)
0 (m) the set χf = {MV |V ∈ lin graph(f) is a

characteristic function for the set graph(f).

Theorem 13 implies that the investigated problem may be solved via applying the
following algorithm

Step 1. If f 6∈ T
(m)
0 (m), then f := f + f(0, . . . , 0), Ω := Ω + f(0, . . . , 0).

Step 2. Design the characteristic function χf = {MV |V ∈ lin graph(f).

Step 3. Compute χf (a) for all a ∈ Ω.

Step 4. If 0 ∈ χf (a) for all a ∈ Ω, then Ω ⊆ graph(f), else Ω 6⊆ graph(f).

The space and time complexities of the suggested algorithm are equal to

V = O((m + n)((m + n)|lin graph(f)|+ |Ω| −
∑

V ∈lin graph(f)

Dim(V )) (m,n →∞),

T = O(|Ω|(m + n)((m + n)|lin graph(f)| −
∑

V ∈lin graph(f)

Dim(V )) (m,n →∞).

5. Conclusions

The presented results illustrate the significance of joining algebraic models and meth-
ods with searching for solutions of basic problems of the investigation of fundamental
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classes of discrete control systems, namely, finite automata and boolean functions.
Further investigation of the properties of the suggested presentation of finite automata
via detalization of the structure of finite groups gives the possibility to establish subtle
relations between The Automata Theory and The Theory of Groups, one of the best
examined branch of Modern Algebra. The suggested approach for the identification
of boolean vector-functions may be naturally generalized for the case of arbitrary dis-
crete functions. The subtle difference is that Theorem 12 does not hold in the general
case.
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