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Abstract. Let G D .V;E/ be a connected graph with at least three vertices. For vertices u and
v in G; the distance d.u;v/ is the length of a shortest u� v path in G: A u� v path of length
d.u;v/ is called a u� v geodesic. For subsets A and B of V; the distance d.A;B/; is defined
as d.A;B/Dmin fd.x;y/ W x 2 A;y 2 Bg. A u�v path of length d.A;B/ is called an A�B
geodesic joining the setsA;B � V;where u2A and v 2B:A vertex x is said to lie on anA�B
geodesic if x is a vertex of an A�B geodesic. A set S �E is called an edge-to-vertex geodetic
set if every vertex of G is either incident with an edge of S or lies on a geodesic joining a pair
of edges of S: The edge-to-vertex geodetic number gev.G/ of G is the minimum cardinality of
its edge-to-vertex geodetic sets and any edge-to-vertex geodetic set of cardinality gev.G/ is an
edge-to-vertex geodetic basis of G: Any edge-to-vertex geodetic basis is also called a gev-set of
G: It is shown that if G is a connected graph of size q and diameter d; then gev.G/� q�dC2:

It is proved that, for a tree T with q � 2; gev.T / D q�d C 2 if and only if T is a caterpillar.
For positive integers r;d and l � 2 with r � d � 2r; there exists a connected graph G with rad
G D r; d iam G D d and gev.G/D l: Also graphs G for which gev.G/D q;q�1 or q�2 are
characterized.
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1. INTRODUCTION

By a graphGD .V;E/;we mean a finite undirected connected graph without loops
or multiple edges. The order and size of G are denoted by p and q, respectively.
We consider connected graphs with at least three vertices. For basic definitions and
terminologies we refer to [1, 6]. For vertices u and v in a connected graph G; the
distance d.u;v/ is the length of a shortest u�v path in G: An u�v path of length
d.u;v/ is called an u�v geodesic: A vertex v is said to lie on an x�y geodesic P
if v is a vertex of P including the vertices x and y. A vertex v is an internal vertex
of an x�y path P if v is a vertex of P and v ¤ x;y. An edge e of G is an internal
edge of an x�y path P if e is an edge of P with both its ends internal vertices of
P . An edge e is a pendant edge if one of its ends is of degree 1. For a vertex v of
G; the eccentrici ty e.v/ is the distance between v and a vertex farthest from v:

The minimum eccentricity among the vertices of G is the radius; rad G and the
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maximum eccentricity is its diameter; d iam G of G: A double star is a tree of
diameter 3. The neighborhood of a vertex v is the set N.v/ consisting of all vertices
u which are adjacent with v. A vertex v is an extreme vertex of G if the subgraph
induced by its neighbors is complete.

The closed interval I Œx;y� consists of all vertices lying on some x�y geodesic
of G; while for S � V; I ŒS�D

S
x;y2S

I Œx;y�. A set S of vertices is a geodetic set if

I ŒS�D V; and the minimum cardinality of a geodetic set is the geodetic number
g.G/: A geodetic set of cardinality g.G/ is called a g-set: The geodetic number of
a graph was introduced in [7] and further studied in [2],[3] and [4]. It was shown
in [7] that determining the geodetic number of a graph is an NP-hard problem. The
forcing geodetic number of graph was introduced and studied in [5]. The connected
geodetic number of graph was studied in [11]. The upper connected geodetic number
and forcing connected geodetic number of a graph were studied in [12].

The edge geodetic number of a graph was studied by in [9]. An edge geodetic
set of a connected graph G with at least two vertices is a set S � V such that every
edge of G is contained in a geodesic joining some pair of vertices in S: The edge
geodetic number g1.G/ of G is the minimum order of its edge geodetic sets and
any edge geodetic set of order g1.G/ is an edge geodetic basis of G.

Consider the graphG given in Figure 1. The sets S Dfv3;v5g and S1Dfv1;v2;v4g

are minimum geodetic set and minimum edge geodetic set of G respectively so that
g.G/ D 2 and g1.G/ D 3: These concepts have many applications in location the-

FIGURE 1.

ory and convexity theory. There are interesting applications of these concepts to the
problem of designing the route for a shuttle and communication network design. We
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further extend these concepts to the edge set of G and present several interesting
results in [10].

Throughout the followingG denotes a connected graph with at least three vertices.
For subsets A and B of V; the distance d.A;B/ is defined as d.A;B/ D min

fd.x;y/ W x 2A;y 2Bg: A u�v path of length d.A;B/ is called an A�B geodesic
joining the sets A;B; where u 2 A and v 2 B: A vertex x is said to lie on an A�B
geodesic if x is a vertex of an A�B geodesic. For AD fu;vg and B D f´;wg with
uv and ´w edges, we write an A�B geodesic as uv�´w geodesic and d.A;B/ as
d.uv;´w/:

For the graphG given in Figure 2 withADfv4;v5g andBDfv1;v2;v7g; the paths
P W v5;v6;v7 andQ W v4;v3;v2 are the only twoA�B geodesics so that d.A;B/D 2:
A set S � E is called an edge-to-vertex geodetic set if every vertex of G is either

FIGURE 2.

incident with an edge of S or lies on a geodesic joining a pair of edges of S: The
edge-to-vertex geodetic number gev.G/ of G is the minimum cardinality of its edge-
to-vertex geodetic sets and any edge-to-vertex geodetic set of cardinality gev.G/ is
an edge-to-vertex geodetic basis of G.

For the graphG given in Figure 3, the three v1v6�v3v4 geodesics areP W v1;v2;v3I

Q W v1;v2;v4I and R W v6;v5;v4 with each of length 2 so that d.v1v6;v3v4/ D 2:

Since the vertices v2 and v5 lie on the v1v6�v3v4 geodesics P and R respectively,
S D fv1v6;v3v4g is an edge-to-vertex geodetic basis of G so that gev.G/D 2: For
the graph G given in Figure 2, S1 D fv1v2;v1v7;v4v5g and S2 D fv1v2;v4v5;v6v7g

are two gev-sets of G: Thus there can be more than one gev-set of G:
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FIGURE 3.

For a connected graph G of size q � 2; it is clear that 2 � gev.G/ � q: Further,
these bounds for gev.G/ are sharp. For the star G DK1;q.q � 2/; it is clear that the
set of all edges is the unique edge-to-vertex geodetic set so that gev.G/D q: The set
of two end-edges of a path P of length at least 2 is its unique edge-to-vertex geodetic
basis so that gev.P /D 2: Thus the star K1;q has the largest possible edge-to-vertex
geodetic number q and the paths of length at least 2 have the smallest edge-to-vertex
geodetic number 2.

An edge of a connected graph G is called an extreme edge of G if one of its ends
is an extreme vertex of G. An edge e of a connected graph G is an edge-to-vertex
geodetic edge in G if e belongs to every edge-to-vertex geodetic basis of G: If G has
a unique edge-to-vertex geodetic basis S; then every edge in S is an edge-to-vertex
geodetic edge of G:

For the graph G given in Figure 4, S D fux;´vg is the unique edge-to-vertex
geodetic basis so that both the edges in S are edge-to-vertex geodetic edges ofG: For
the graphG given in Figure 5, S1Dfv1v2;v6v7;v7v8g; S2Dfv1v2;v5v6;v7v8g and
S3 D fv1v2;v5v8;v6v7g are the only gev-sets of G so that every gev-set contains the
edge v1v2: Hence the edge v1v2 is the unique edge-to-vertex geodetic edge of G:
The following theorems from [10] are used in the sequel.

Theorem 1. If v is an extreme vertex of a connected graph G, then every edge-to-
vertex geodetic set contains at least one extreme edge that is incident with v:

Theorem 2. Every pendant edge of a connected graph G belongs to every edge-
to-vertex geodetic set of G.

Theorem 3. For a non-trivial tree T with k end-vertices, gev.T /D k and the set
of all pendant edges of T is the unique edge-to-vertex geodetic basis of T:

Theorem 4. For the complete graph Kp.p � 4/ with p even, gev.Kp/D p=2:

Theorem 5. For the cycle Cp.p � 4/; gev.Cp/D

�
2 if p is even
3 if p is odd.
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FIGURE 4.

FIGURE 5.

2. THE EDGE-TO-VERTEX GEODETIC NUMBER AND DIAMETER OF A GRAPH

If G is a connected graph of size q � 2; then 2� gev.G/� q. An improved upper
bound for the edge-to-vertex geodetic number of a graph can be given in terms of its
size q and diameter d:

Theorem 6. For a connected graph G with q � 2; gev.G/ � q�d C2; where d
is the diameter of G.

Proof. Let u and v be vertices ofG for which d.u;v/D d;where d is the diameter
of G and let P W u D v0;v1;v2; : : : ;vd D v be a u� v path of length d . Let ei D

vi�1vi .1� i � d/: Let S DE.G/�fv1v2;v2v3; : : : ;vd�2vd�1g: Let x be a vertex of
G: If xD vi .1� i � d �1/; then x lies on the e1�ed geodesic P1 W v1;v2; : : : ;vd�1:

If x ¤ vi .1 � i � d � 1/; then x is incident with an edge of S: Therefore, S is an
edge-to-vertex geodetic set of G. Consequently, gev.G/� jS j D q�d C2. �

Remark 1. The bound in Theorem 6 is sharp. For the starG DK1;q.q � 2/; d D 2

and gev.G/D q; by Theorem 3 so that gev.G/D q�d C2:

We give below a characterization theorem for trees.
A caterpil lar is a tree for which the removal of all end-vertices leaves a path.
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Theorem 7. Let q � 2. For any tree T with diameter d , gev.T / D q�d C 2 if
and only if T is a caterpillar.

Proof. Let P W v0;v1; : : : ;vd�1;vd be a diametral path of length d . Let ei D

vi�1vi .1 � i � d/ be the edges of the diametral path P: Let k be the number of
pendant edges of T and l be the number of internal edges of T other than ei .2 �

i � d � 1/: Then d � 2C lCk D q: By Theorem 3, gev.T / D k and so gev.T / D

q�dC2� l:Hence gev.T /D q�dC2 if and only if l D 0; if and only if all internal
vertices of T lie on the diametral path P; if and only if T is a caterpillar. �

The following theorem gives a realization result.

Theorem 8. For each triple d;k;q of integers with 2� k � q�d C2; d � 4 and
q�d CkC1 > 0; there exists a connected graph G of size q with diam G D d and
gev.G/D k:

Proof. Let 2 � k D q�d C 2: Let G be the graph obtained from the path P of
length d by adding q�d new vertices to P and joining them to a cut-vertex of P .
Then G is a tree of size q and diam G D d: By Theorem 3, gev.G/D q�dC2D k.
Now, let 2� k < q�d C2.

Case 1. q�d �kC1 is even. Let .q�d �kC1/ � 2: Let nD q�d�kC1
2

: Then
n� 1: LetPd Wu0;u1; : : : ;ud be a path of length d:Add new vertices v1;v2; : : : ;vk�2

and w1;w2; : : : ;wn and join each vi .1 � i � k � 2/ with u1 and also join each
wi .1� i � n/with u1 and u3 inPd :Now, joinw1 with u2 and we obtain the graphG
in Figure 6. Then G has size q and diameter d: By Theorem 2, all the pendant edges
u1vi .1 � i � k� 2/; u0u1 and ud�1ud lie in every edge-to-vertex geodetic set of
G: Let S D fu1v1;u1v2; : : : ;u1vk�2;u1u0;ud�1ud g be the set of all pendant edges
ofG: Then it is clear that S is an edge-to-vertex geodetic set ofG and so gev.G/D k:

Case 2. q�d �kC1 is odd. Let q�d �kC1� 5: LetmD q�d�k
2

: Thenm� 2:
Let Pd W u0;u1; : : : ;ud be a path of length d: Add new vertices v1;v2; : : : ;vk�2 and
w1;w2; : : : ;wm and join each vi .1 � i � k� 2/ with u1 and also join each wi .1 �

i � m/ with u1 and u3 in Pd : Now join w1 and w2 with u2 and we obtain the
graph G in Figure 7. Then G has size q and diameter d: Now, as in Case 1, S D
fu1v1;u1v2; : : : ;u1vk�2;u0u1;ud�1ud g is an edge-to-vertex geodetic set of G so
that gev.G/ D k. Let q � d � kC 1 D 1: Let Pd W u0;u1; : : : ;ud be a path of
length d: Add new vertices v1;v2; : : : ;vk�2 and w1 and join each vi .1 � i � k�2/

with u1 and also join w1 with u1 and u3 in Pd ; there by obtaining the graph G
in Figure 8. Then the graph is of size q and diameter d: Now, as in Case 1, S D
fu1v1;u1v2; : : : ;u1vk�2;u0u1;ud�1ud g is an edge-to-vertex geodetic set of G so
that gev.G/D k:

Now, let q�d �kC1D 3: Let Pd W u0;u1; : : : ;ud be a path of length d: Add new
vertices v1;v2;v3; : : : ;vk�2;w1 and w2 and join each vi .1 � i � k�2/ with u1 and
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FIGURE 6.

FIGURE 7.

also join w1 and w2 with u1 and u3 and obtain the graph G in Figure 9. Then G
has size q and diameter d: Now, as in Case 1, S D fu1v1;u1v2; : : : ;u1vk�2;u0u1;

ud�1ud g is an edge-to-vertex geodetic set of G so that gev.G/D k: �

For every connected graph, rad G � diam G � 2 rad G: Ostrand [8] showed
that every two positive integers a and b with a � b � 2a are realizable as the radius
and diameter, respectively, of some connected graph. Now, Ostrand’s theorem can be
extended so that the edge-to-vertex geodetic number can also be prescribed.



114 A. P. SANTHAKUMARAN AND J. JOHN

FIGURE 8.

FIGURE 9.

Theorem 9. For positive integers r; d and l � 2 with r � d � 2r; there exists a
connected graph G with rad G D r; diam G D d and gev.G/D l:

Proof. When r D 1; we let G D K2l or G D K1;l according to whether d D
1 or d D 2 respectively. Then the result follows from Theorem 4 and Theorem 3
respectively. Let r � 2: If r D d and l D 2; let G D C2r : Then by Theorem 5,
gev.G/D 2D l: Let l � 3: Let C2r W u1;u2; : : : ;u2r ;u1 be the cycle of order 2r: Let
G be the graph obtained by adding the new vertices x1;x2; : : : ;xl�1 and joining each
xi .1 � i � l � 1/ with u1 and u2 of C2r : The graph G is shown in Figure 10. It is
easily verified that the eccentricity of each vertex of G is r so that rad G D diam
G D r: Let S D fu1x1;u1x2; : : : ;u1xl�2;u2xl�1g: It is clear that S is not an edge-
to-vertex geodetic set of G: However, S [furC1urC2g is an edge-to-vertex geodetic
set of G: Since x1;x2; : : : ;xl�1 are the only extreme vertices of G; it follows from
Theorem 1 that gev.G/D l:

Let r < d: If l D 2; then take G to be any path on at least three vertices. Let l � 3:
Let C2r W v1;v2; : : : ;v2r ;v1 be a cycle of order 2r and let Pd�rC1 W u0;u1;u2; : : : ;

ud�r be a path of order d � rC1: Let H be the graph obtained from C2r and u0 in
Pd�rC1 by identifying v1 in C2r and u0 in Pd�rC1: Now, add .l �3/ new vertices
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FIGURE 10.

w1;w2; : : : ;wl�3 to H and join each vertex wi .1 � i � l � 3/ to the vertex ud�r�1

and obtain the graph G of Figure 11. Then rad G D r and diam G D d: Let S D
fud�r�1w1;ud�r�1w2; : : : ;ud�r�1wl�3;ud�r�1ud�rg be the set of pendant edges
of G: By Theorem 2, S is contained in every edge-to-vertex geodetic set of G: It is
clear that S is not an edge-to-vertex geodetic set of G: It is also seen that S [feg;
where e 2E.G/�S is not an edge-to-vertex geodetic set ofG:However, the set S1D

S [ fvrvrC1;vrC1vrC2g is an edge-to-vertex geodetic set of G so that gev.G/ D

l �2C2D l: �

FIGURE 11.

3. GRAPHS G WITH gev.G/D q;q�1 AND q�2

In the following we characterize graphs G for which gev.G/D q; q�1 or q�2:
Let G be a graph. A subset M � E.G/ is called a matching of G if no pair of edges
in M are incident. The maximum size of such M is called the matching number of
G and is denoted by ˛0.G/. An edge covering of G is subset K � E.G/ such that
each vertex of G is an end of some edge in K. The number of edges in a minimum
edge covering of G, denoted by ˇ0.G/, is the edge covering number of G. The well-
known Gallai’s theorem states that if q � 1, then ˛0.G/Cˇ0.G/ D p. Since every
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edge covering for G is an edge-to-vertex geodetic set, we have the following.

Lemma A. For any graph G, gev.G/� ˇ
0.G/D p�˛0.G/.

We will make use of this lemma in the sequel. The proofs of the next two theorems
are straightforward.

Theorem 10. If G is a connected graph such that it is not a star, then gev.G/ �

q�1:

Theorem 11. For any connected graph G; gev.G/D q if and only if G is a star.

Theorem 12. LetG be a connected graph which is not a tree. Then gev.G/� q�2

.q � 4/:

Proof. Since G ¤ C3 and it has atleast one cycle, ˛0.G/� 2. Thus, by Lemma A,
gev.G/� p�˛

0.G/� q�˛0.G/� q�2. �

Theorem 13. For any connected graph G with q � 3; gev.G/D q�1 if and only
if G is either C3 or a double star.

Proof. IfG is C3; then gev.G/D 2D q�1: IfG is a double star, then by Theorem
3, gev.G/D q�1: Conversely, let gev.G/D q�1. If G is a tree, then from Lemma
A it follows that ˛0.G/ � 2. If ˛0.G/D 1, then G is a star, which is impossible due
to Theorem 11. So ˛0.G/ D 2, which implies that G is a double star. If G is not a
tree, then gev.G/D q�1� p�1. Again by Lemma A, ˛0.G/D 1, which is the case
only when G D C3. Thus the proof is complete. �

Theorem 14. LetG be a connected graph with q � 4; which is not a cycle and not
a tree and let C.G/ be the length of a smallest cycle. Then gev.G/ � q�C.G/C1

if C.G/ is odd, and gev.G/� q�C.G/C2 if C.G/ is even.

Proof. Let C.G/ denote the length of a smallest cycle in G and let C be a cycle
of length C.G/: We consider two cases.

Case 1. C.G/ is odd. First suppose that C.G/D 3: Let C W v1;v2;v3;v1 be a cycle
of length 3. Since G is not a cycle, there exists a vertex v in G such that v is not on
C and v is adjacent to v1; say. Let S D E.G/�fv1v2;v1v3g: Then every vertex of
G lies on an edge of S and so S is an edge-to-vertex geodetic set of G set of G: Thus
gev.G/� q�2D q�C.G/C1:

Next suppose that C.G/ � 5: Let C W v1;v2; : : : ;vk;vkC1;vkC2; : : : ;v2kC1;v1 be
a cycle of least length C.G/ D 2kC 1: Since G is not a cycle, there exists a ver-
tex v in G such that v is not on C and v is adjacent to v1; say. We claim that
d.vv1;vkC1vkC2/D k: Since P W v1;v2;v3; : : : ;vkC1 is a path of length k on C; it
follows that d.vv1;vkC1vkC2/ � k: If d.vv1;vkC1vkC2/ � k�1; then at least one
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of d.v1;vi / and d.v;vi / for i D kC1;kC2 is less than or equal to k�1: First sup-
pose that d.v1;vkC1/ � k�1: Let Q be a v1�vkC1 shortest path of length at most
k� 1 different from P: Hence there exists at least one vertex of Q that is not on P
and since the length of Q is at most k� 1; it follows that a cycle of length at most
2k�1 is formed. This is a contradiction to C.G/D 2kC1: Thus d.v1;vkC1/D k:

Similarly we can prove that d.v1;vkC2/D k:

Next, suppose that d.v;vkC1/ � k�1: Since P 0 W v;v1;v2;v3; : : : ;vkC1 is a path
of length kC1; it follows that d.v;vkC1/� kC1: Then, as above, a cycle of length
at most 2k is formed and this is a contradiction. Hence d.v;vkC1/D k or kC1: Sim-
ilarly we can prove that d.v;vkC2/D k or kC1: Since d.v1;vkC1/D d.v1;vkC2/D

k; it follows that d.vv1;vkC1vkC2/D k:

Now, let S D .E.G/�E.C//
S
fvkC1vkC2g: It is clear that the vertices v2;v3; : : : ;

vk;vkC3; vkC4; : : : ;v2kC1 on the cycle C lie on the vv1�vkC1vkC2 geodesic on the
cycle and all the other vertices ofG are incident with an edge of S: Thus S is an edge-
to-vertex geodetic set of G and so gev.G/� q�C.G/C1.

Case 2. C.G/ is even. First suppose that C.G/D 4: Let C W v1;v2;v3;v4;v1 be
a cycle of length 4. Since G is not a cycle, there exists a vertex v in G such that v
is not on C and v is adjacent to v1; say. Let S D E.G/�fv1v2;v1v4g: Then every
vertex ofG lies on an edge of S and so S is an edge-to-vertex geodetic set ofG: Thus
gev.G/� q�2D q�C.G/C2:

Next suppose that C.G/ � 6: Let C W v1;v2; : : : :vk;vkC1;vkC2; : : : ;v2k;v1 be a
cycle of least length C.G/D 2k: Since G is not a cycle, there exists a vertex v in G
such that v is not on C and v is adjacent to v1; say. We claim that d.vv1;vkvkC1/D

d.vv1;vkC1vkC2/D k� 1: Since Q W v1;v2;v3; : : : ;vk and Q0 W v1;v2k;v2k�1; : : : ;

vkC3;vkC2 are paths of length k � 1 on C; it follows that
d.vv1;vkvkC1/ D d.vv1;vkC1vkC2/ � k � 1: If d.vv1;vkvkC1/ � k � 2 or
d.vv1;vkC1vkC2/ � k� 2; then proceeding as in Case 1, a cycle of length at most
2k� 3 or 2k� 2 or 2k� 1 is formed as the case may be, contradicting that the least
length of a cycle is 2k: Thus d.vv1;vkvkC1/D d.vv1;vkC1vkC2/D k�1.

Now, if we let S D .E.G/�E.C//
S
fvkvkC1;vkC1vkC2g; then the vertices

v2;v3; : : : ;vk�1 lie on the vv1�vkvkC1 geodesic on C; the vertices vkC3;vkC4; : : : ;

v2k lie on the vv1 � vkC1vkC2 geodesic on C and all the other vertices of G are
incident with an edge of S: Thus S is an edge-to-vertex geodetic set of G and so
gev.G/� q�C.G/C2: �

Theorem 15. If G is a connected graph of size q � 4 and not a tree such that
gev.G/D q�2; then G is unicyclic.

Proof. Let G have more than one cycle. Then q � pC1 and so p�1 � q�2D
gev.G/� p�˛

0.G/, by Lemma A. Hence ˛0.G/D 1 and so G must be either a star
or the cycle C3, a contradiction. �
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Denote by = the two classes of graphs given in Figure 12.

FIGURE 12.

Theorem 16. For a connected graph G; gev.G/D q�2 .q � 4/ if and only if G
is C4 or C5 or K1;q�1C e or caterpillar with d D 4 or the class of graphs given in
family = of Figure 12.

Proof. For G D C4 or C5; the result follows from Theorem 5. For a caterpillar of
diameter 4, the result follows from Theorem 3. For G DK1;q�1Ce; it follows from
Theorem 1 that the set of all end edges of G together with e forms an edge-to-vertex
geodetic basis so that gev.G/D q�2: Further, it is easily verified that gev.G/D q�2

for the graphs given in family = of Figure 12.
Now, let G be a connected graph such that gev.G/D q�2: By Theorem 15, G is

either a tree or unicyclic. IfG is a tree, then from Lemma A it follows that ˛0.G/� 3.
By Theorems 12 and 13, ˛0 > 2. So ˛0 D 3, which implies that G is a Caterpillar of
diameter 4. If G is unicyclic, by Lemma A, ˛0.G/ � 2. Let Ck be the unique cycle
of G. We have k � 5 since otherwise ˛0.G/ � ˛0.Ck/ � 3. Therefore, we have the
following three cases:
Case 1. k D 5. Then G cannot have any other vertices since otherwise ˛0.G/ � 3.
Therefore G D C5.
Case 2. k D 4. If G D C4, we are done. So, let G ¤ C4. Because ˛0.G/ � 2, only
one of the vertices of C4, say v, is of degree more than 2 and moreover all the neigh-
bors of v are of degree 1. Thus G should be a graph like Figure 12(b).

Case 3. k D 3. Since gev.C3/ D 2 D q � 1, we have G ¤ C3. Let V.C3/ D

fv1;v2;v3g. We note that if u 2 V.G/�V.C3/, then deg u D 1. Otherwise, there
are u1;u2 2 V.G/�V.C3/ such that u1 is adjacent to both u2 and v1, say. Then it
is easily seen that E.G/�fu1v1;v1v2;v1v3g is a edge-to-vertex geodetic set, which
implies gev.G/ � q�3. Further, at least one of the vi s should be of degree 2. Oth-
erwise, E.G/�E.C3/ is a edge-to-vertex geodetic set, which is impossible. Thus G
should be either K1;qC e or a graph like Figure 12(a). �
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