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1. INTRODUCTION

In 1836 Sturm introduced the concept of oscillation when he studied the problem
of the heat transmission, oscillation theory has been an important area of research in
the qualitative theory of ordinary differential equations. Usually a qualitative appro-
ach is concerned with the behavior of solutions of a given differential equation and
does not seek explicit solutions. Since then, oscillation behavior of solutions to diffe-
rent classes of linear and nonlinear ordinary differential equations have attracted the
attention of many researchers.

In this paper we are concerned with the oscillatory behavior of the nonlinear se-
cond order differential equation with damping term�

r.t/k1.x;x
0/
�0
Cp.t/k2.x;x

0/x0Cq.t/f .x/D 0; t � t0; (1.1)

where t0 � 0 is a fixed real number, p;q 2 C .Œt0;1/;R/, r 2 C 1 .Œt0;1/, .0;1//,
f 2C .R;R/, k1 2C 1

�
R2;R

�
and k2 2C

�
R2;R

�
. As usual, a function x W Œt0; t1/!

.�1;1/ ; t1 > t0, is called a solution of Eq. (1.1) if x.t/ satisfies Eq. (1.1) for all
t 2 Œt0; t1/. In what follows, we always assume that solutions of this equation are con-
tinuable, that is, they exist for all t � t0. A nonconstant continuable solution x.t/ of
Eq.(1.1) is called proper if supfjx.t/j W t � t0g > 0. A proper solution x.t/ is called
oscillatory if it does not have the largest zero, otherwise it is called nonoscillatory.
The equation (1.1) is called oscillatory if all its proper solutions are oscillatory.
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The oscillation problem for Eq. (1.1) and its various particular cases has been
the subject of intensive studies in recent years (see, for example ([1–42]) and the
references cited therein).

In 2005, Tiryaki and Zafer [30] established several new interval oscillation criteria
for Eq. (1.1) by making use of a generalized Riccati substitutions

w.t/D �.t/

�
r.t/k1.x.t/;x

0.t//

x.t/
Cg.t/

�
(1.2)

and

w.t/D �.t/

�
r.t/k1.x.t/;x

0.t//

f .x.t//
Cg.t/

�
(1.3)

where � 2 C 1.Œt0;1/; .0;1// and g 2 C 1 .Œt0;1/;R/. The results in [30] extend,
improve, and generalize some known oscillation criteria in the literature. As pointed
out earlier Tiryaki and Zafer [29], equation (1.1) deserves attention simply because
it includes (as special case) quite a large class of equations in the literature, and the-
refore more research is necessary to enlarge the families of the functions k1 and k2.
Motivated by the works of Tiryaki and Zafer ([29], [30]), we establish some sufficient
conditions which guarantee the oscillatory of all the solutions of Eq. (1.1). We also
want to emphasize that the results in this work neither include, nor are included by
the results in [30] and are interesting in their own right. At the end, examples are
given to illustrate the theoretical analysis of this work.

LetDD f.t; s/ W t � s � t0g : A functionH 2C .D;R/ is said to belong to a func-
tion class F if

(i) H.t; t/D 0 for t � t0 and H.t;s/ > 0 for t > s � t0;
(ii) H has continuous partial derivatives @H=@t and @H=@s satisfying

@H

@t
.t; s/D h1.t; s/

p
H.t;s/ and

@H

@s
.t; s/D�h2.t; s/

p
H.t;s/ ,

where h1;h2 2 Lloc.D;R/:

2. OSCILLATION RESULTS FOR f .x/ WITHOUT MONOTONOCITY

In this section we consider the oscillation of Eq. (1.1) when the function f .x/
is not monotone. In this case we shall assume that the following conditions are
satisfied:

(A1) f .x/
x
�K for some constant K > 0 and all x 2Rnf0g I

(A2) k21.u;v/� ˛1vk1.u;v/ for some constant ˛1 > 0 and all .u;v/ 2R2I
(A3) uvk2.u;v/� ˛2uk1.u;v/ for some constant ˛2 > 0 and all .u;v/ 2R2:

Theorem 1. Let (A1)-(A3) hold. Suppose that there exists an interval .a;b/ �
Œt0;1/ such that p.t/� 0 and q.t/� 0 for all t 2 .a;b/, and that there exist c 2 .a;b/,
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H 2 F and � 2 C 1.Œt0;1/; .0;1// such that

1

H.c;a/

cZ
a

H .s;a/K�.s/q.s/dsC
1

H.b;c/

bZ
c

H .b;s/K�.s/q.s/ds

>
˛1

4H.c;a/

cZ
a

�.s/r.s/
h
h1.s;a/CQ1.s/

p
H.s;a/

i2
ds (2.1)

C
˛1

4H.b;c/

bZ
c

�.s/r.s/
h
h2.b;s/�Q1.s/

p
H.b;s/

i2
ds;

where

Q1.s/D

�
�0.s/

�.s/
�
˛2p.s/

r.s/

�
: (2.2)

Then every solution of Eq. (1.1) has a zero in .a;b/ :

Proof. For the sake of contradiction, assume that there exits a solution x.t/ of Eq.
(1.1) such that x.t/¤ 0 for all t 2 .a;b/. Introduce a new function w by

w.t/D �.t/
r.t/k1.x.t/;x

0.t//

x.t/
, t 2 .a;b/: (2.3)

Note that w is well-defined because x.t/¤ 0 for all t 2 .a;b/. Differentiating (2.3),
we obtain

w0.t/D
�0.t/

�.t/
w.t/��.t/p.t/

k2.x.t/;x
0.t//x0.t/

x.t/
��.t/q.t/

f .x.t//

x.t/

��.t/
r.t/k1.x.t/;x

0.t//x0.t/

x2.t/
: (2.4)

Using (A1)-(A3) in (2.4), one has

w0.t/� �K�.t/q.t/C

�
�0.t/

�.t/
�
˛2p.t/

r.t/

�
w.t/�

1

˛1�.t/r.t/
w2.t/: (2.5)

Multiplying (2.5) byH .t;s/, integrating it with respect to s from c to t for t 2 Œc;b/,
and using (i) and (ii), we easily obtain

tZ
c

H .t;s/K�.s/q.s/ds

� �

tZ
c

H .t;s/w0.s/dsC

tZ
c

H .t;s/Q1.s/w.s/ds�

tZ
c

H .t;s/w2.s/

˛1�.s/r.s/
ds

DH.t;c/w.c/
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�

tZ
c

�
H .t;s/

w2.s/

˛1�.s/r.s/
C

h
h2.t; s/

p
H .t;s/�Q1.s/H .t; s/

i
w.s/

�
ds

DH.t;c/w.c/

�

tZ
c

"s
H .t;s/

˛1�.s/r.s/
w.s/C

1

2

p
˛1�.s/r.s/

�
h2.t; s/�Q1.s/

p
H .t;s/

�#2
ds

C
˛1

4

tZ
c

�.s/r.s/
h
h2.t; s/�Q1.s/

p
H .t;s/

i2
ds

�H.t;c/w.c/C
˛1

4

tZ
c

�.s/r.s/
h
h2.t; s/�Q1.s/

p
H .t;s/

i2
ds: (2.6)

Similarly, multiplying (2.5) by H .s; t/ and integrating from t to c for t 2 .a;c�, one
obtains

cZ
t

H .s; t/K�.s/q.s/ds

� �H.c; t/w.c/C
˛1

4

cZ
t

�.s/r.s/
h
h1.s; t/CQ1.s/

p
H .s; t/

i2
ds: (2.7)

Letting t! aC in (2.7) and t! b� in (2.6), dividing (2.6) and (2.7) byH.b;c/ and
H.c;a/, respectively, and then adding them, we have that

1

H.c;a/

cZ
a

H .s;a/K�.s/q.s/dsC
1

H.b;c/

bZ
c

H .b;s/K�.s/q.s/ds

�
˛1

4H.c;a/

cZ
a

�.s/r.s/
h
h1.s;a/CQ1.s/

p
H.s;a/

i2
ds

C
˛1

4H.b;c/

bZ
c

�.s/r.s/
h
h2.b;s/�Q1.s/

p
H.b;s/

i2
ds;

which contradicts the assumption (2.1). The proof is complete. �

Thus by Theorem 1, we have the following oscillation result:

Theorem 2. Let (A1)-(A3) hold. Suppose that there exists an interval .a;b/ �
Œt0;1/ such that p.t/ � 0 and q.t/ � 0 for all t 2 .a;b/. If, for every T � t0, there
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exist H 2 F , � 2 C 1.Œt0;1/; .0;1//, and a;b;c 2 R such that T � a < c < b and
(2.1) holds, then every solution of Eq. (1.1) is oscillatory.

Theorem 3. Let (A1)-(A3) hold, and p.t/� 0 and q.t/� 0 for all t 2 Œt0;1/. If

limsup
t!1

tZ
l

�
H .s; l/K�.s/q.s/�

˛1�.s/r.s/

4

h
h1.s; l/CQ1.s/

p
H.s; l/

i2�
ds > 0

(2.8)
and

limsup
t!1

tZ
l

�
H .t;s/K�.s/q.s/�

˛1�.s/r.s/

4

h
h2.t; s/�Q1.s/

p
H.t;s/

i2�
ds > 0;

(2.9)
for some H 2 F , � 2 C 1.Œt0;1/; .0;1// and for each l � t0, where Q1.s/ is as in
(2.2), then every solution of Eq. (1.1) is oscillatory.

Proof. For any T � t0, let a D T: In (2.8), we choose l D a. Then there exists
c > a such that

cZ
a

�
H .s;a/K�.s/q.s/�

˛1�.s/r.s/

4

h
h1.s;a/CQ1.s/

p
H.s;a/

i2�
ds > 0:

(2.10)
In (2.9), we choose l D c. Then there exists b > c such that

bZ
c

�
H .b;s/K�.s/q.s/�

˛1�.s/r.s/

4

h
h2.b;s/�Q1.s/

p
H.b;s/

i2�
ds > 0:

(2.11)
Combining (2.10) and (2.11), we obtain (2.1). The required conclusion thus follows
from Theorem 2. The proof is complete. �

Corollary 1. If the inequality in (A3) is actually an equality, we can eliminate the
sign condition on p.t/ in the above theorems.

Remark 1. If (A3) hold with equality (˛2 D 1), then Theorem 1, 2 and 3 reduce to
Theorem 3.3, 3.4 and Corollary 3.2, respectively, obtained by Tiryaki and Zafer [30]
with g.t/D 0 in the substitution (1.2).

Remark 2. If we use the substitution (1.2) instead of (2.3) and the condition (A3)
is replaced with

uvk2.u;v/� ˛2k
2
1.u;v/;˛2 > 0; (C1)

then Theorem 1, 2 and 3 becomes Theorem 3.1, Corollary 3.1 and Theorem 3.2 of
Tiryaki and Zafer [30], respectively.
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Remark 3. We note that the case p.t/ � 0 can be handled in a similar manner by
reversing the inequality sign in (A3).

Remark 4. If k1.u;v/ D v;p.t/ � 0, �.t/ D 1 and f .x/ D x, we also recover
Corollary 2.2, Theorem 2.1 and Corollary 2.4 of Kong [12], from Theorem 1, 2 and
3, respectively.

It is easy to see that when H.t;s/ DH.t � s/ 2 F , h1.t � s/ � h2.t � s/. From
now on, we denote them by h.t � s/. Furthermore, the subclass of F containing such
H.t � s/ will be denoted by F0. Applying Theorem 2 to F0 we have the following
result:

Theorem 4. Suppose that (A1)-(A3) hold, and p.t/ � 0 and q.t/ � 0 for all t 2
.a;b/. If for each T � t0, there exist � 2 C 1.Œt0;1/; .0;1//, H 2 F0, and real
numbers a;c such that T � a < c and

cZ
a

H .s�a/K Œ�.s/q.s/C�.2c� s/q.2c� s/�ds

>
˛1

4

cZ
a

Œ�.s/r.s/C�.2c� s/r.2c� s/�h2.s�a/ds

C
˛1

2

cZ
a

Œ�.s/r.s/Q1.s/��.2c� s/r.2c� s/Q2.s/�h.s�a/
p
H.s�a/ds

C
˛1

4

cZ
a

�
�.s/r.s/Q21.s/C�.2c� s/r.2c� s/Q

2
2.s/

�
H.s�a/ds; (2.12)

where Q2.s/ D
�
�0.2c�s/
�.2c�s/

�
˛2p.2c�s/
r.2c�s/

�
, then every solution of Eq. (1.1) is oscilla-

tory.

Proof. Let c D aCb
2

. Then

H.b� c/DH.c�a/DH

�
b�a

2

�
;

and for any w 2 LŒa;b�, one has

bZ
c

w.s/ds D

cZ
a

w.2c� s/ds:
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Therefore,

bZ
c

H .b� s/K�.s/q.s/ds D

cZ
a

H.s�a/K�.2c� s/q.2c� s/ds

and
bZ
c

�.s/r.s/h2.b� s/ds D

cZ
a

�.2c� s/r.2c� s/h2.s�a/ds

Thus, (2.12) yields (2.1), and Eq. (1.1) is oscillatory by Theorem 2. �

For different choices of H.t;s/, we will obtain different sufficient conditions for
oscillatory behavior of solutions of Eq. (1.1). Let H.t;s/ D .t � s/� ; t � s � t0,
where � > 1 is a constant. Then, we obtain the following useful oscillation criterion.

Corollary 2. Assume that (A1)-(A3) hold, and p.t/ � 0 and q.t/ � 0 for all t 2
Œt0;1/. Then every solution of Eq. (1.1) is oscillatory provided that for each l � t0
and for some � > 1, there exists a function � 2 C 1.Œt0;1/; .0;1// such that the
following two inequalities hold:

limsup
t!1

1

t��1

tZ
l

.s� l/�

(
K�.s/q.s/�

˛1�.s/r.s/

4

�
�

.s� l/
CQ1.s/

�2)
ds > 0

(2.13)
and

limsup
t!1

1

t��1

tZ
l

.t � s/�

(
K�.s/q.s/�

˛1�.s/r.s/

4

�
�

.t � s/
�Q1.s/

�2)
ds > 0:

(2.14)

Define

R.t/D

tZ
l

1

r.s/
ds; t � l � t0;

and set
H.t;s/D ŒR.t/�R.s/�� ; t � t0

where � > 1 is a constant.
If we choose �.t/D 1, by Theorem 3, we have the following oscillatory criterion.

Theorem 5. Let (A1)-(A3) hold, p.t/ � 0 and q.t/ � 0 for all t 2 Œt0;1/, and
limt!1R.t/D1. Then every solution of Eq. (1.1) is oscillatory provided that for
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each l � t0 and for some � > 1, the following two inequalities hold:

limsup
t!1

1

R��1.t/

tZ
l

( 
Kq.s/�

˛1˛
2
2p

2.s/

4r.s/

!
ŒR.s/�R.l/��

C
˛1˛2�p.s/

2r.s/
ŒR.s/�R.l/���1

�
ds >

˛1�
2

4.��1/
(2.15)

and

limsup
t!1

1

R��1.t/

tZ
l

( 
Kq.s/�

˛1˛
2
2p

2.s/

4r.s/

!
ŒR.t/�R.s/��

�
˛1˛2�p.s/

2r.s/
ŒR.t/�R.s/���1

�
ds >

˛1�
2

4.��1/
(2.16)

Proof. Since H.t;s/D ŒR.t/�R.s/��, it is easy to see that

h1.t; s/D �ŒR.t/�R.s/�
.��2/=2 1

r.t/
;

and

h2.t; s/D �ŒR.t/�R.s/�
.��2/=2 1

r.s/
:

Noting that
tZ
l

r.s/h21.s; l/ds D

tZ
l

r.s/�2 ŒR.s/�R.l/���2
1

r2.s/
ds

D
�2

��1
ŒR.t/�R.l/���1

and
tZ
l

r.s/h22.t; s/ds D

tZ
l

r.s/�2 ŒR.t/�R.s/���2
1

r2.s/
ds

D
�2

��1
ŒR.t/�R.l/���1 ;

In view of lim
t!1

R.t/D1, it follows that

lim
t!1

˛1

4R��1.t/

tZ
l

r.s/h21.s; l/ds D
˛1�

2

4.��1/
(2.17)
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and

lim
t!1

˛1

4R��1.t/

tZ
l

r.s/h22.t; s/ds D
˛1�

2

4.��1/
: (2.18)

From (2.15) and (2.17) we have that

limsup
t!1

1

R��1.t/

tZ
l

(
H .s; l/Kq.s/�

˛1r.s/

4

�
h1.s; l/�

˛2p.s/

r.s/

p
H.s; l/

�2)
ds

D limsup
t!1

1

R��1.t/

tZ
l

�
ŒR.s/�R.l/��Kq.s/C

˛1˛2�p.s/

2r.s/
ŒR.s/�R.l/���1

�
˛1˛

2
2p

2.s/

4r.s/
ŒR.s/�R.l/��

)
ds� lim

t!1

1

R��1.t/

tZ
l

˛1

4
r.s/h21.s; l/ds

D limsup
t!1

1

R��1.t/

tZ
l

( 
Kq.s/�

˛1˛
2
2p

2.s/

4r.s/

!
ŒR.s/�R.l/��

C
˛1˛2�p.s/

2r.s/
ŒR.s/�R.l/���1

�
ds�

˛1�
2

4.��1/
> 0;

i.e., (2.8) holds. Similarly, (2.16) implies that (2.9) holds. By Theorem 3, Eq. (1.1)
is oscillatory. The proof is complete. �

Remark 5. If k1.u;v/D v;p.t/� 0, �.t/D 1 and f .x/D x, we recover Theorem
2.2 and Theorem 2.3 of Kong [12], from Theorem 4 and 5, respectively.

3. OSCILLATION RESULTS FOR f .x/ WITH MONOTONOCITY

We shall assume that the following conditions are satisfied:

(A4) f .x/ is differentiable, xf .x/ ¤ 0 and f 0.x/ � L for some constant L > 0
and all x 2Rnf0g;

(A5) vf .u/k2.u;v/� ˛3f .u/k1.u;v/ for some ˛3 > 0 and for all .u;v/ 2R2:

Theorem 6. Let (A2), (A4) and (A5) hold. Suppose that there exists an interval
.a;b/ � Œt0;1/ such that p.t/ � 0 for all t 2 .a;b/, and that there exist c 2 .a;b/,
H 2 F and � 2 C 1.Œt0;1/; .0;1// such that

1

H.c;a/

cZ
a

H .s;a/�.s/q.s/dsC
1

H.b;c/

bZ
c

H .b;s/�.s/q.s/ds
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>
˛1

4LH.c;a/

cZ
a

�.s/r.s/
h
h1.s;a/CQ3.s/

p
H.s;a/

i2
ds

C
˛1

4LH.b;c/

bZ
c

�.s/r.s/
h
h2.b;s/�Q3.s/

p
H.b;s/

i2
ds; (3.1)

where

Q3.s/D

�
�0.s/

�.s/
�
˛3p.s/

r.s/

�
: (3.2)

Then every solution of (1.1) has a zero in .a;b/ :

Proof. For the sake of contradiction, assume that there exits a solution x.t/ of
(1.1) such that x.t/¤ 0 for all t 2 .a;b/. Introduce a new function w by

w.t/D �.t/
r.t/k1.x.t/;x

0.t//

f .x.t//
, t 2 .a;b/: (3.3)

In view of Eq. (1.1), it follows from (3.3) that

w0.t/D
�0.t/

�.t/
w.t/��.t/p.t/

k2.x.t/;x
0.t//x0.t/

f .x.t//
��.t/q.t/

��.t/
r.t/k1.x.t/;x

0.t//f 0.x.t//x0.t/

f 2 .x.t//
: (3.4)

Using (A2), (A4) and (A5) in (3.4), we easily obtain

w0.t/� ��.t/q.t/C

�
�0.t/

�.t/
�
˛3p.t/

r.t/

�
w.t/�

L

˛1�.t/r.t/
w2.t/: (3.5)

The rest of the proof is similar to that of Theorem 1. �

Theorem 7. Suppose that (A2), (A4) and (A5) hold, and p.t/� 0 for all t 2 .a;b/.
If, for every T � t0, there exist H 2 F , � 2 C 1.Œt0;1/; .0;1//, and a;b;c 2R such
that T � a < c < b and (3.1) holds, then every solution of Eq. (1.1) is oscillatory.

Theorem 8. Let (A2), (A4) and (A5) hold, and p.t/� 0 for all t 2 Œt0;1/. If

limsup
t!1

tZ
l

�
H .s; l/�.s/q.s/�

˛1�.s/r.s/

4L

h
h1.s; l/CQ3.s/

p
H.s; l/

i2�
ds > 0

and

limsup
t!1

tZ
l

�
H .t;s/�.s/q.s/�

˛1�.s/r.s/

4L

h
h2.t; s/�Q3.s/

p
H.t;s/

i2�
ds > 0;

for some H 2 F , � 2 C 1.Œt0;1/; .0;1// and for each l � t0, then every solution of
Eq. (1.1) is oscillatory.
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Corollary 3. If the inequality in (A5) is actually an equality, we can eliminate the
sign condition on p.t/ in the above theorems.

Remark 6. If (A5) hold with equality (˛3 D 1), then Theorem 6, 7 and 8 reduce to
Theorem 2.3, 2.4 and Corollary 2.2, respectively, obtained by Tiryaki and Zafer [30]
with g.t/D 0 in the substitution (1.3).

Remark 7. If we use the substitution (1.3) instead of (3.3) and the condition (A5)
is replaced with

vf .u/k2.u;v/� ˛3k
2
1.u;v/;˛3 > 0; (C2)

then Theorem 6, 7 and 8 becomes Theorem 2.1, Corollary 2.1 and Theorem 2.2 of
Tiryaki and Zafer [30], respectively.

Remark 8. We note that the case p.t/ � 0 can be handled in a similar manner by
reversing the inequality sign in (A5).

Theorem 9. Suppose that (A2), (A4) and (A5) hold, and p.t/� 0 for all t 2 .a;b/.
If for each T � t0, there exist � 2C 1.Œt0;1/; .0;1//,H 2F0, and real numbers a;c
such that T � a < c and

cZ
a

H .s�a/ Œ�.s/q.s/C�.2c� s/q.2c� s/�ds

>
˛1

4L

cZ
a

Œ�.s/r.s/C�.2c� s/r.2c� s/�h2.s�a/ds

C
˛1

2L

cZ
a

Œ�.s/r.s/Q3.s/��.2c� s/r.2c� s/Q4.s/�h.s�a/
p
H.s�a/ds

C
˛1

4L

cZ
a

�
�.s/r.s/Q23.s/C�.2c� s/r.2c� s/Q

2
4.s/

�
H.s�a/ds;

where Q4.s/D
�
�0.2c�s/
�.2c�s/

�
˛3p.2c�s/
r.2c�s/

�
; then every solution of Eq. (1.1) is oscilla-

tory.

Corollary 4. Assume that (A2), (A4) and (A5) hold, and p.t/ � 0 for all t 2
Œt0;1/. Then every solution of Eq. (1.1) is oscillatory provided that for each l � t0
and for some � > 1, there exists a function � 2 C 1.Œt0;1/; .0;1// such that the
following two inequalities hold:

limsup
t!1

1

t��1

tZ
l

.s� l/�

(
�.s/q.s/�

˛1�.s/r.s/

4L

�
�

.s� l/
CQ3.s/

�2)
ds > 0
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and

limsup
t!1

1

t��1

tZ
l

.t � s/�

(
�.s/q.s/�

˛1�.s/r.s/

4L

�
�

.t � s/
�Q3.s/

�2)
ds > 0:

Remark 9. If k1.u;v/ D v;p.t/ � 0, �.t/ D 1 and f .x/ D x, we also recover
Corollary 2.2, Theorem 2.1 and Corollary 2.4, Theorem 2.2, Theorem 2.3 of Kong
[12], from Theorem 6, 7 , 8 and 9, Corollary 3, respectively.

Example 1. Consider the equation��
1C cos2 t

� x0

1Cx2

�0
C

1

1Cx2
x0Cq.t/f .x/D 0 (3.6)

where

k1.u;v/D
v

1Cu2
, k2.u;v/D

1

1Cu2
, f .x/D x.1Cx4/, .˛1 D ˛2 D ˛3 D 1/;

q.t/D

8<: 7.t �3n/; 3n� t � 3nC1

7.�tC3nC2/; 3nC1 < t � 3nC2

g.t/; 3nC2 < t � 3nC3;

g.t/ D �n.3nC 3� t /.t � 3n� 2/ and n 2 N0 D f0;1; :::g. For any T � 0, there
exists n 2 N0 such that 3n � T . Let a D 3n;c D 3nC 1, b D 2c�a, �.t/D 1 and
H.t � s/D .t � s/2 : Since f 0.x/D 1C5x4 � 1D L and h.t � s/D 2, we get

cZ
a

H .s�a/ Œq.s/Cq.2c� s/�ds

D

3nC1Z
3n

.s�3n/2 Œ7.s�3n/C7.3nC2� s/�ds

D 14

3nC1Z
3n

.s�3n/2ds D 14=3

and

˛1

4L

cZ
a

Œr.s/C r.2c� s/�h2.s�a/ds

C
˛1

2L

cZ
a

Œ�p.s/Cp.2c� s/�h.s�a/
p
H.s�a/ds
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C
˛1

4L

cZ
a

�
p2.s/

r.s/
C
p2.2c� s/

r.2c� s/

�
H.s�a/ds

D

3nC1Z
3n

�
2C cos2 sC cos2 .6nC2� s/

�
ds

C
1

4

3nC1Z
3n

�
1

1C cos2 s
C

1

1C cos2 .6nC2� s/

�
.s�3n/2ds

�

3nC1Z
3n

4dsC
1

2

3nC1Z
3n

.s�3n/2ds D 4C
1

6
D 25=6 < 14=3:

Hence, (3.6) is oscillatory by Theorem 9. The condition (C2) in Remark 7 is not
satisfied. Therefore, the results of [30] can not be used to Eq. (3.6).

If we take f .x/D x.3C2cosx/ in Eq. (3.6), we find that every solution of (3.6)
is oscillatory by Theorem 4. Since the condition (C1) in Remark 2 is not satisfied,
the results of [30] can not be used to Eq. (3.6) with f .x/D x.3C2cosx/.

Example 2. Consider the equation�
.2C sin t /

x0

1Cx2

�0
�
4C2sin t
1Cx2

x0C .2C sin t /x.7Cx4/D 0 (3.7)

where

k1.u;v/D
v

1Cu2
, k2.u;v/D

1

1Cu2
, .˛1 D ˛2 D 1/;

f .x/D x.7Cx4/, .K D 7/ :

Let H.t;s/ D .t � s/2 ;�.t/ D 1. Since p.t/ D �4� 2sin t < 0 and ˛1˛2p.t/C
r.t/ < 0, we see that Eq. (3.7) is oscillatory by Theorem 3 and Remark 3.
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