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1. Preliminaries

Consider the impulsive differential system

dx

dt
= f(t, x), t 6= ti(x),

∆x |t=ti(x)= Ii(x),
(1.1)

where x ∈ Rn, t ∈ R+, f(t, x), Ii(x), i = 1, 2, . . . are continuous vector-functions,
functions ti(x) are continuous and such that 0 < t1(x) < t2(x) < · · · , x ∈ Rn,
ti(x) → ∞ as i → ∞ uniformly on x ∈ Rn. We assume that for any point (t0, x0) ∈
R+ × Rn there exists unique solution x(t) = x(t, t0, x0) of (1.1) on [t0,∞) satisfying
x(t0) = x0, and that the integral curve of each solution meets each of the hypersurfaces
t = ti(x) only once, i.e., the phenomenon of “beating” is not observed. Sufficient
conditions for the absence of the phenomenon of “beating” are pointed out in [1,2].

We shall recall [1,2] that any solution x(t, t0, x0) of (1.1) is a piecewise continuous
function with points of discontinuity

θx
i , θx

i = ti(x(θx
i )) i = 1, 2, . . . ;

x(θx
i , t0, x0) = x(θx

i − 0, t0, x0),
x(θx

i + 0, t0, x0) = x(θx
i , t0, x0) + Ii(x(θx

i , t0, x0)) .

We shall say that set M ⊂ R+ × Rn is an integral set of the system (1.1), if for any
point (t0, x0) ∈ M it follows that (t, x(t, t0, x0)) ∈ M for t ≥ t0. Note that together
with point (t0, x0) ∈ M belonging to the surface of discontinuity (t0 = ti(x0)) the set
M contains also point (t0, x0 + Ii(x0)).



50 N. A. Perestyuk, O. S. Chernikova

For each i = 1, 2, . . . denote by Λi the set of time moments when the integral curves
belonging to M meet hypersurface t = ti(x), i.e., the set of solutions of equation
τ = ti(x(τ)), (τ, x(τ)) ∈ M . If, for instance, the integral set is the integral curve
{(t, x) : t ∈ R+, x = x(t, 0, x0)}, then Λi consists of one point: Λi = {θx

i }. In the
case when ti(x) = τi, i = 1, 2, . . ., each set Λi also consists of one element : Λi = {τi}.

Let M(t) = {x ∈ Rn : (t, x) ∈ M}. If t = θi ∈ Λi, (θi, x) ∈ M and θi = ti(x),
then, as it was noted above, the set M contains both points: (θi, x) and (θi, x+Ii(x)),
therefore, the section M(θi) contains both points x and x + Ii(x)).

For θi ∈ Λi we make a difference between the two subsets of the section: Mi(θi) and
Mi+1(θi). The one belonging to Mi(θi) or Mi+1(θi) for point x ∈ Rn will be defined
the following way. Let Ωi = {(t, x) ∈ R+ × Rn : ti−1(x) < t ≤ ti(x)}, i = 1, 2, . . .,
t0(x) ≡ 0. If (θi, x) ∈ M ∩ Ωi, then x ∈ Mi(θi); if (θi, x) ∈ M ∩ Ωi+1 or (θi, x)
is a boundary point for M ∩ Ωi+1, then x ∈ Mi+1(θi); M(θi) = Mi(θi) ∪ Mi+1(θi)
(θi ∈ Λi). It is possible that Mi(θi) ∩Mi+1(θi) 6= ∅.

Assume that M(t) 6= ∅, M(t) ⊆ Q ⊂ Rn, t ∈ R+, where Q is a compact set.
Furthermore we shall suppose that Qε0 ⊂ Bh, where Qε0 = {x ∈ Rn : ρ(x,Q) < ε0},
Bh = {x ∈ Rn : ‖x‖ ≤ h}, for some ε0 > 0, h > 0.

In the case when an impulsive system (1.1) is a system with impulses at fixed
times, i.e., ti(x) = τi, i = 1, 2, . . ., we make a difference between the two subsets of
the section of integral set M only for points τi: if (τi, x) ∈ M ∩ Ωi, then x ∈ Mi(τi);
if (τi, x) ∈ M and (τi, x) is a boundary point of Ωi+1 ∩M , then x ∈ Mi+1(τi).

We shall say that the solution y(t) of (1.1) belongs to ε - neighbourhood of the
integral set M for t ≥ t0 if there exists a sequence {θi}, i = 1, 2, · · · , θi ∈ Λi, such

that |θy
i − θi| < ε and ρ(y(t, t0, y0),M(t)) < ε for t ≥ t0, t 6∈

∞⋃
i=1

(θi − ε, θi + ε) (here

θy
i , i = 1, 2, . . . , are points of discontinuity of the solution y(t) and ρ(y, M(t)) is a

distance between y and the set M(t)).

With every point (t0, y0) ∈ R+ ×Rn we connect a set My0(t0) as follows:

My0(t0) =





M(to), if t0 /∈
∞⋃

i=1

Λi,

Mi(to), if t0 ∈ Λi, (t0, y0) ∈ Ωi,
Mi+1(to), if t0 ∈ Λi, (t0, y0) ∈ Ωi+1.

We shall give the following definitions of stability and asymptotic stability of an
integral set.

The integral set M of system (1.1) is stable if for any ε > 0 and t0 ∈ R+ there
exists such a number δ = δ(ε, t0) > 0 that for any solution y(t) = y(t, t0, y0) of system
(1.1) , ρ(y0,My0(t0)) < δ implies that y(t, t0, y0) belongs to ε - neighbourhood of the
integral set M for t ≥ t0 (it is assumed that t0 6= θy

i ).

The stable integral set M of system (1.1) is asymptotically stable if there exists
such a number δ0 > 0 that for any solution y(t) = y(t, t0, y0) of (1.1) that satisfies
the inequality ρ(y0,My0(t0)) < δ0, the following holds: lim

t→∞
ρ(y(t),M(t)) = 0.
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2. Reduction to a system with impulses at fixed times

Suppose that in (1.1) functions f(t, x) and Ii(x) satisfy the conditions:

‖f(t, x)− f(t, y)‖+ ‖Ii(x)− Ii(y)‖ ≤ K‖x− y‖ (2.1)

uniformly with respect to t ∈ R+, I = 1, 2, . . . for all x, y ∈ Rn, and

sup
t≥0

‖f(t, 0)‖+ sup
t≥1

‖Ii(0)‖ = N < +∞. (2.2)

Suppose that for x ∈ Bh the equations of surfaces of discontinuity of solutions can be
written in the form:

t = ti(x) = τi + τi(x), i = 1, 2, . . . , (2.3)

and the following conditions are satisfied

τi+1 − τi ≥ d > 0, 0 ≤ τi(x) ≤ l < d, i = 1, 2, . . . ,
|τi(x)− τi(y)| ≤ l‖x− y‖, (2.4)

where l is a sufficiently small number.

Under such assumptions investigation of the stability of an integral set of impulsive
differential system (1.1) can be reduced to an investigation of the stability of an
integral set of some differential system with impulses at fixed times.

Let M be an integral set of the system (1.1). Consider set M̂ which differs from
set M in points (t, x) disposed between surfaces t = τi and t = ti(x), i = 1, 2, . . .,
as follows. Each point (t∗, x∗) ∈ M , such that τi < t∗ ≤ ti(x∗), is replaced by point
(t∗, x̃(t∗, θx

i , x(θx
i + 0)), where x̃(t) is a solution of system dx̃

dt = f(t, x̃) with initial
condition x̃(θx

i ) = x(θx
i + 0) = x(θx

i + 0, t∗, x∗) (θx
i denotes the moment at which the

integral curve {t, x(t, t∗, x∗)}, t ≥ t∗, of (1.1) meets a surface t = ti(x)).

Let x(t) be a solution of (1.1) with initial condition x(τi) = x. Consider function

Gi(x) =

τi∫

θx
i

f(τ, x̃(τ))dτ + Ii(x(θx
i )) +

θx
i∫

τi

f(τ, x(τ))dτ .

Proceeding from the construction of set M̂ one can easily make sure that the following
statement is true.

Lemma 1. If M is an integral set of system (1.1), then M̂ is an integral set of
the differential system with impulses at fixed times

dx

dt
= f(t, x), t 6= τi,

∆x |t=τi= Gi(x).
(2.5)

Applying the Gronwall-Bellman inequality and taking into consideration conditions
(2.1)-(2.4) we set the following statement .
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Lemma 2. Let x ∈ Bh. Then the solution x(t) satisfies the inequality

‖x(t)‖ ≤ H, t ∈ [τi, τi + l] ,

where H = {(1 + K)(h + Nl)eKl + N(1 + l)}eKl.

Lemma 3. [3]. Let θx
i and θy

i be the points of discontinuity of solutions x(t) and
y(t) of (1.1) with initial conditions x(τi) = x, y(τi) = y (x, y ∈ Bh). Then

| θx
i − θy

i |≤
leKl

1− l(N + KH)
‖x− y‖

(l < (N + KH)−1).

Theorem 1. The integral set M of the differential impulsive system (1.1) is stable
if the integral set M̂ of differential system (2.5) with impulses at fixed times is stable.

Proof. Let integral set M̂ of system (2.5) be stable. Choose and fix t0 ∈ R+.

Consider at first a case when t0 /∈
∞⋃

i=1

[τi, Ti), where Ti = sup Λi, i = 1, 2, . . ..

According to the definition of the stability of an integral set for a differential system
with impulses at fixed times, for arbitrary number ε > 0 (ε < ε0) there exists such
a number δ > 0 that for any solution ŷ(t, t0, y0) of (2.5) inequality ρ(y0, M̂(t0)) < δ
implies

ρ(ŷ(t, t0, y0), M̂(t)) < ε (2.6)

for t ≥ t0 (t 6= τi) and ρ(ŷ(τi, t0, y0), M̂i(τi)) < ε (τI ≥ t0). The last means that
for each i such that τi ≥ t0, there exists xi ∈ M̂i(τi) which satisfies inequality
‖ŷ(τi, t0, y0)− xi‖ < ε. Because solution ŷ(t) = y(τi, t0, y0) of system (2.5) coincides
with solution y(t) = y(t, t0, y0) of system (1.1) in all of points except points from

⋃
i: τi≥t0

(τi, θ
y
i ) and sets M and M̂ differ from one another only for t ∈

∞⋃
i=1

(τi, Ti),

where Ti = supΛi, i = 1, 2, . . ., then ρ(y(t), M(t)) < ε for t 6∈ ⋃
i:τi≥t0

(τi, γi),

γi = max(θy
i , Ti). Estimate distance ρ(y(t),M(t)) for t ∈ (τi, γi), supposing, for

example, that γi = Ti. Let x(t), t ≥ τi, be a solution of system (1.1) with initial
condition x(τi) = xi. In obedience to lemma 3 for time moments θx

i , θy
i (θx

i ∈ Λi) we
have the following

| θx
i − θy

i |≤
leKL

1− l(N + KH)
ε . (2.7)

Without loss of generality, we may suppose that θy
i < θx

i . It is easy to verify that for
τi < t ≤ θy

i the following inequality is fulfilled

‖y(t)− x(t)‖ ≤ ‖y(τi)− x(τi)‖eK(t−τi) < εeK(θy
i −τi) (2.8)

and also for θx
i < t ≤ Ti - inequality

‖y(t)− x(t)‖ ≤
[
(1 + K)εeKl + (2 + K)(KH + N)(θx

i − θy
i )

]
eK(i−θx

i ) (2.9)
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Let ε1 be an arbitrary sufficiently small number (ε1, ε0) and ε < ε1
A , where

A = max
{

e2Kl

[
1 + K +

(2 + K)(N + KH)l
1− l(N + KH)

]
,

leKl

1− l(N + KH)

}
.

From the stability of integral set M̂ for system (2.5) and inequalities (2.6) – (2.9) it
follows that for any solution y(t, t0, y0) of system (1.1), which satisfies inequality
ρ(y0, M(t0)) < δ, inequality ρ(y(t, t0, y0),M(t)) < ε1 holds for

t ≥ t0, t 6∈
∞⋃

i=1

(θi − ε1, θi + ε1),

where θi is some point of set Λi, i = 1, 2, . . ., i.e., it follows that integral set M of
system (1.1) is stable.

It is not difficult to show that if t0 ∈
∞⋃

i=1

[τi, Ti), then from ρ(y0,My0(t0)) < δ1

where δ1 < δ
A , follows the inequality ρ(y(i, i0, y0),M(t)) < δ on [i0, τi + l], except,

perhaps, of points of some interval (αy0
i , βy0

i ), the length of which does not exceed
δ. Taking into account this fact and the stability of the set M̂ for system (2.5), we
conclude that the integral set M of system (1.1) is stable.

The next assertion is also true:

Theorem 2. The integral set M of differential impulsive system (1.1) is asymp-
totically stable if the integral set M̂ of differential system (2.5) with impulses at fixed
times is asymptotically stable.

3. Stability of the integral set for a system with impulses at fixed times

We shall give sufficient conditions for the stability (asymptotic stability) of an integral
set of an impulsive differential system with fixed time moments sequence of impulse
action

dx

dt
= F (t, x) , t 6= τi,

∆x |t=ti= Ji(x),
(3.1)

where x ∈ Rn, t ∈ R+, i = 1, 2, .., 0 = τ0 < τ1 < τ2 < ..., τi →∞ as i →∞.

For the establishment of the stability conditions of integral sets of an impulsive
differential system (3.1) we will employ a method of auxiliary functions (the second
Lyapunov method), which, as it is known, is effectively applicable for the study of sta-
bility of sets in the theory of usual differential equations, in particular, the stability of
invariant sets of dynamic systems [4-8], and also for research of various stability ques-
tions in the theory of impulse differential equations . We will apply means analogous
to those which were applied in [1, 2, 9-15].

As above, assume that system (3.1) satisfies the conditions of existence and unique-
ness of solutions, and that any solution of the system (3.1) is defined on [t0,+∞).
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Let M be an integral set of system (3.1). As above, suppose, that for each t ∈ R+

section M (t) is not empty and is contained in compact set Q ⊂ Rn ; Qε0 ⊆ Bh.

Consider continuously differentiable function V (t, x) defined in domain Z =
{(t, x) : t ∈ R+, x ∈ Qε0}, which satisfies such properties:

V (t, x) = 0, (t, x) ∈ M ; V (t, x) > 0, (t, x) /∈ M ; (3.2)
V (t, x) ≥ a (ρ(x,M(t))) , (3.3)

where a (s) (s ≥ 0) is a continuous increasing function, a (0) = 0.

Assume that there exists such µ > 0 (0 < µ < ε0) , that for x ∈ Qµ will be
x + Ji(x) ∈ Qε0 , i = 1, 2, . . .

Theorem 3. If for system (3.1) there exists a continuously differentiable function
V (t, x) satisfying in domain Z the conditions (3.2), (3.3) and conditions

∂V (t, x)
∂t

+ 〈gradxV (t, x) , F (t, x)〉 ≤ 0, (3.4)

V (τi, x + Ji(x)) ≤ V (τi, x), i = 1, 2, . . . , (3.5)

then the set M is stable with respect to system (3.1).

Proof. Let t0 ∈ R+ and ε > 0 be a sufficiently small number. Taking into
consideration properties of the function V (t, x) we can indicate such δ > 0, that
V (t0, x) < a (ε) if ρ (x,M (t0)) < δ . Let ρ (x0,M (t0)) < δ and x(t) = x(t, t0, x0)
be a solution of the system (3.1). Evidently, that function v(t) = V (t, x(t)) under
conditions (3.4), (3.5) is unincreasing; v (t) ≤ v (t0) , t ≥ t0. The assumption that
at some time moment t∗ > t0 we shall have ρ (x (t∗) , M (t∗)) ≥ ε , leads to the
contradictory inequalities:

a(ε) ≤ a (ρ(x(t∗),M(t∗)) ≤ v(t∗) ≤ v(t0) < a(ε).

This contradiction proves Theorem 3.

Theorem 4. Assume that for system (3.1) there exists a continuously differen-
tiable function V (t, x) satisfying in domain Z the conditions (3.2), (3.3) and conditions

∂V (t, x)
∂t

+ 〈gradxV (t, x), F (t, x)〉 ≤ −α(t)ϕ(V (t, x)) (3.6)

V (τi, x + Ji(x)) ≤ ψi(V (τi, x)), i = 1, 2, ..., (3.7)

where α(t), (t ∈ R+) is continuous nonnegative function, ϕ(s), ψi(s) are continuous
functions, ϕ(s) > 0, ψi(s) > 0 for s > 0 and ϕ(0) = ψi(0) = 0.

If there exists a positive number a0 such, that for all a ∈ (0, a0] the inequalities

ψi(a)∫

a

ds

ϕ(s)
≤

τi∫

τi−1

α(t)dt i = 1, 2, ... (3.8)
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hold, then the set M is stable with respect to system (3.1).

Proof. Let ε > 0 be an arbitrary number such that ε < µ, a (ε) < a0 , and let
t0 ∈ (τj , τj+1]. For arbitrary δ > 0, denote by mδ = sup

ρ(x, M(t0))<δ

V (t0, x). Choose

δ > 0 so small that inequalities mδ < a (ε) , sup
0≤s≤mδ

ψj+1 (s) < a (ε) hold.

Let x (t) = x (t, t0, x0) be an arbitrary solution of system (3.1), such that
ρ (x0,M (t0)) < δ. Prove that ρ (x (t) ,M (t)) < ε for t ≥ t0. Suppose the contrary:
in some time moment t∗ > t0 will be ρ (x (t∗) ,M (t∗)) ≥ ε . First such a time
moment can be only a moment of impulse action. Assume that τk is such time
moment. Evidently, k ≥ j + 2. Consider function v (t) = V (t, x (t)) . In obedience
to our supposition as for behaviour of solution x(t) the next inequalities hold v (t) <
a (ε) , t0 ≤ t ≤ τk, and v (τk + 0) ≥ a (ε) . In view of the conditions of theorem

v(τi+0)∫

v(τi)

ds

ϕ (s)
≤

ψi(v(τi))∫

v(τi)

ds

ϕ (s)
≤

τi∫

τi−1

α (t) dt, i = j + 2, . . . , k

and
v(τi)∫

v(τi−1+0)

ds

ϕ (s)
≤ −

τi∫

τi−1

α (t) dt i = j + 2, . . . , k.

So,

v(τk+0)∫

v(τj+1+0)

ds

ϕ (s)
=

k∑

j+2

v(τi)∫

v(τi−1+0)

ds

ϕ (s)
+

k∑

j+2

v(τi+0)∫

v(τi)

ds

ϕ (s)
≤

τk∫

τj+1

α (t) dt−
τk∫

τj+1

α (t) dt = 0

or v (τk + 0) ≤ v (τj+1 + 0) and v (τk + 0) < a (ε) . The contradiction obtained
proves the theorem.

Consider a case when sequence {τi} , i = 1, 2, ..., satisfies a condition

τi+1 − τi ≥ θ, θ > 0 . (3.9)

Theorem 5. Let for system (3.1) there exist a continuously differentiable function
V (t, x) satisfying in domain Z the conditions (3.2), (3.3) and condition

∂V (t, x)
∂t

+ 〈gradxV (t, x) , F (t, x)〉 ≤ −ϕ(V (t, x)), (3.10)

V (τi, x + Ji (x)) ≤ ψ (V (τi, x)) , i = 1, 2, ..., (3.11)

where ϕ (s) , ψ (s) are continuous functions, ϕ(s) > 0, ψ(s) > 0 for s > 0 i
ϕ(0) = ψ(0) = 0.

If sequence {τi}, i = 1, 2, ..., satisfies condition (3.9) and there exists a positive
number a0 such that for arbitrary a ∈ (0, a0]



56 N. A. Perestyuk, O. S. Chernikova

ψ(a)∫

a

ds

ϕ (s)
≤θ,

then the set M is stable with respect to system (3.1).

Assertion of Theorem 5, which extends the results [10] about the stability of a
trivial solution of an impulsive differential system to the case of stability of integral
sets, immediately follows from Theorem 4.

Theorem 6. Let for system (3.1) there exist a continuously differentiable function
V (t, x) satisfying in domain Z the conditions (3.2), (3.3) and conditions

∂V (t, x)
∂t

+ 〈gradxV (t, x) , F (t, x)〉 ≤ −α(t)ϕ(V (t, x)) (3.12)

V (τi, x + Ji (x)) ≤ ψi (V (τi, x)) , i = 1, 2, ..., (3.13)

where α(t) (t ∈ R+) is a continuous nonnegative function, ϕ(s), ψi(s), i = 1, 2, ...,
are continuous functions, ϕ(s) > 0, ψi(s) > 0 for s > 0 and ϕ(0) = ψi(0) = 0.

If there exists a positive number a0 such that for all a ∈ (0, a0] the following
inequalities

a∫

ψi(a)

ds

ϕ(s)
≥

τi+1∫

τi

α(t)dt, i = 1, 2, ..., (3.14)

hold, then the set M is stable with respect to system (3.1).

Proof. Let ε > 0 be an arbitrary sufficiently small number (ε < µ, a(ε) < a0),
and let t0 ∈ (τj , τj+1], j ≥ 1. For arbitrary δ > 0 note mδ = sup

ρ(x, M(t0))<δ

V (t0, x).

Choose δ > 0 so small that inequality mδ < min{a(ε), ψj(a(ε))} holds. Let
x(t) = x(t, t0, x0) be an arbitrary solution of system (3.1) such that ρ(x0,M(t0)) < δ.
Prove that ρ(x(t),M(t)) < ε for t ≥ t0. Suppose the contrary, i.e., that there exists
t∗ > t0, t∗ ∈ (τk, τk+1], k ≥ j, such that ρ(x(t∗),M(t∗)) ≥ ε. Suppose at first that
k = j and t∗ ∈ (t0, τj+1]. In view of (3.12) for function v(t) = V (t, x(t)) have:

v(t∗)∫

v(t0)

ds

ϕ(s)
≤

t∗∫

t0

α(s) ds ≤
τj+1∫

τj

α(s)ds.

On the other hand, v(t∗) ≥ a(ε), and

v(t∗)∫

v(t0)

ds

ϕ(s)
>

a(ε)∫

ψj(a(ε))

ds

ϕ(s)
,

so,
a(ε)∫

ψj(a(ε))

ds

ϕ(s)
<

τj+1∫

τj

α(s) ds,
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that contradicts condition (3.14). Thus v(t) < a(ε), t ∈ [t0, τj+1] (in particular,
v(τj+1) < a(ε)).

Assume now that t∗ ∈ (τk, τk+1], k ≥ j + 1 , ρ(x(t), M(t)) < ε for t0 ≥ t ≥ τk,
and that v(τk) < a(ε). Evidently, one can think that ε ≤ ρ(x(t∗),M(t∗)) < ε0; also
ρ(x(t),M(t)) < ε0 for t ∈ [t0, t∗].

In view of conditions of theorem the next correlations hold for t ∈ (τk, τk+1]:

v(t∗)∫

v(τk)

ds

ϕ(s)
=

v(τk+0)∫

v(τk)

ds

ϕ(s)
+

v(t∗)∫

v(τk+0)

ds

ϕ(s)
≤

≤
ψk(v(τk))∫

v(τk)

ds

ϕ(s)
+

v(t∗)∫

v(τk+0)

ds

ϕ(s)
≤ −

τk+1∫

τk

α(s)ds +

τk+1∫

τk

α(s)ds = 0,

so v(t∗) ≤ v(τk), t ∈ (τk, τk+1]. Supposing that ρ(x(t∗), M(t∗)) ≥ ε we obtain
a contradiction: a(ε) ≤ v(t∗) ≤ v(τk) < a(ε). Thus ρ(x(t),M(t)) < ε for t ∈
(τk, τk+1]. From the reasoning above we conclude that v(t) ≤ v(t0) on [t0,∞) and
also ρ(x(t),M(t)) < ε, t ≥ t0. The theorem is proved.

Suppose now that the time moments of impulsive action satisfy condition

τi+1 − τi ≤ θ1, θ1 > 0, i = 1, 2, ... (3.15)

Theorem 7. Let for system (3.1) there exists a continuously differentiable func-
tion V (t, x) satisfying in domain Z conditions (3.2), (3.3) and conditions

∂V (t, x)
∂t

+ 〈gradxV (t, x) , F (t, x)〉 ≤ ϕ(V (t, x)), (3.16)

V (τi, x + Ji(x)) ≤ ψ(V (τi, x)), i = 1, 2, ..., (3.17)

where ϕ(s), ψi(s), i = 1, 2, ..., are continuous functions, ϕ(s) > 0, ψi(s) > 0 for s > 0
and ϕ(0) = ψi(0) = 0.

If there exists a positive number a0 such that for all a ∈ (0, a0] the following
inequality

a∫

ψ(a)

ds

ϕ(s)
≥ θ1

holds, then the set is M stable with respect to system (3.1).

Verification of the assertion of Theorem 7 evidently follows from Theorem 6.

The next assertion also follows from Theorems 4 and 6.

Theorem 8. Let for system (3.1) there exist a continuously differentiable function
V (t, x) satisfying in domain Z conditions (3.2), (3.3), (3.10), (3.11).
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Assume that sequence {τi}, i = 1, 2, ... is such that for sufficiently large t ( t >
T0 ≥ t0)

i(t, t0)
t− t0

≤ p, p = const,

where by i(t, t0), t ≥ t0, a number of impulses are denoted on [t0, t].

Then if there exists such a0 > 0 that for all a ∈ (0, a0]

ψ(a)∫

a

ds

ϕ(s)
≤ 1

p
,

then the set M is stable with respect to system (3.1).

Theorem 9. Let for system (3.1) there exist a continuously differentiable function
V (t, x) satisfying in domain Z conditions (3.2), (3.3), (3.16), (3.17).

Assume that sequence {τi}, i = 1, 2, ... is such that for sufficiently large t (t >
T0 ≥ t0)

i(t, t0)
t− t0

≥ p, p > 0, p = const.

Then if there exists such a0 > 0 that for all a ∈ (0, a0]

a∫

ψ(a)

ds

ϕ(s)
≥ 1

p
,

then the set M is stable with respect to system (3.1).

We shall present the sufficient conditions for the asymptotic stability of an integral
set.

Theorem 10. Let for system (3.1) there exist a continuously differentiable func-
tion V (t, x) satisfying in domain Z conditions (3.2), (3.3), (3.6), (3.7).

Then if there exists such a0 > 0 that for all a ∈ (0, a0]

ψi(a)∫

(a)

ds

ϕ(s)
≤

τi∫

τi−1

α(t)dt− γi i = 1, 2, . . .

where γi ≥ 0,
∞∑

i=1

γi = ∞, then the set M is asymptotically stable with respect to

system (3.1).

Proof. Since the conditions of Theorem 4 are fulfilled, then the integral set of
system (3.1) is stable. So for given t0 (let t0 ∈ (τj , τj+1]) and arbitrary sufficiently
small ε > 0) there exists such δ > 0 that for arbitrary solution x(t) = x(t, t0, x0) of
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(3.1) which satisfies ρ(x0, M(t0)) < δ the inequality ρ(x(t),M(t)) < ε, t ≥ t0, holds.
Reasoning as well as proof of Theorem 4, brings us to inequalities

ν(τi+1+0)∫

ν(τi+0)

ds

ϕ(s)
≤ −γi+1, i = j + 1, j + 2, ..., (3.18)

which implies that sequence {v(τj+k + 0)}, k = 1, 2, ..., is nonincreasing. Let β =
lim

k→∞
v(τj+k + 0). Assume that β > 0. Under such assumption from (3.18) we obtain:

v(τj+n + 0) ≤ v(τj+1 + 0)− c

n∑

i=j+2

γi, (3.19)

where c = min
β≤s≤a(ε)

ϕ(s). Since v(τj+1 + 0) − c
n∑

i=j+2

γi → −∞ as n → ∞, then

inequality (3.19) is contradictory. The reason for the contradiction obtained is the
assumption that β > 0. So, β = 0. In view of conditions of the theorem (v(t),
decreases on each interval of continuousity (τi, τi+1], i = j + 1, j + 2, ..., so v(t) → 0
as t →∞, and, simultaneously, lim

t→∞
ρ(x(t)),M(t)) = 0. The theorem is proved.

Theorem 11. Let for system (3.1) there exist a continuously differentiable func-
tion V (t, x) satisfying in domain Z conditions (3.2), (3.3), (3.10), (3.11).

If the sequence {τi}, i = 1, 2, ... satisfies inequality (3.9) and if there exist such
positive numbers a0 and γ that for all a ∈ (0, a0]

ψ(a)∫

a

ds

ϕ(s)
≤θ − γ,

then the set M is asymptotically stable with respect to system (3.1). Theorem 11 is
a corollary of Theorem 10.

Theorem 12. Let for system (3.1) there exist a continuously differentiable func-
tion V (t, x) satisfying in domain Z conditions (3.2), (3.3), (3.12), (3.13).

If there exists a positive number a0 such that for all a ∈ (0, a0] for some γi >
0, i = 1, 2, ..., inequalities

a∫

ψi(a)

ds

ϕ(s)
≥

τi∫

τi−1

α(t)dt+γi, i = 1, 2, ...,

hold, where
∞∑

i=1

γi = ∞, then the set M is asymptotically stable with respect to

system (3.1).

The proof of Theorem 12 resembles the proof of Theorem 10.
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Theorem 13. Let for system (3.1) there exist a continuously differentiable func-
tion V (t, x) satisfying in domain Z conditions (3.2), (3.3), (3.16), (3.17). If sequence
{τi}, i = 1, 2, ..., satisfies (3.15) and there exist positive numbers a0 and γ such that
for arbitrary a ∈ (0, a0] inequality

a∫

ψ(a)

ds

ϕ(s)
≥ θ1 + γ,

holds, then the set M is asymptotically stable with respect to system (3.1).

The assertion of Theorem 13 follows from Theorem 12.
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