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Abstract. In this paper we investigate a family of second order differential equations which can
be considered as the continuous versions of the Fletcher-Reeves iteration for minimization ap-
plied to a regularized and penalized convex programming problem. We show that synchronizing
the parameter functions of the differential equation the stationary limit point of the trajectories is
the minimal norm solution of the given convex programming problem.

2000 Mathematics Subject Classification: Primary 34D05; Secondary 90C25; 65K05

Keywords: second order differential equation, minimizer trajectory, stationary point in limit,
Lyapunov-type methods, convex programming, Fletcher-Reeves iteration

1. INTRODUCTION

Several types of ordinary differential equation (shortly ODE) systems are known
whose trajectories minimize a given function. Some of them arise from physics and
technology, others are motivated by iterative numerical methods.

The asymptotic behaviour of their trajectories is studied by lot of mathematicians,
physicists and engineers. Some of them deal with either the gradient or the Newton
method and model the given method by a system of first order differential equa-
tions (shortly FO-ODE) system (e.g. Antipin [3], Attouch and Cominetti [4], Bot-
saris [7], Brown and Bartholomew-Biggs [9], Cominetti et al. [13], Evtushenko and
Zhadan [14], Flam [ 16], Hauser and Nedi¢ [2 1], Branin and Hoo [8], Kovacs [22,23],
(Vasil’ev and Kovdcs [28]), Venec and Rybashov [31], Zhang et al [32] etc.).

There are some ODE models in connection with the optimization that arise from
physical problems such as e.g. the heavy ball with friction, the problem of a nonlinear
oscillator with dumping, evolution equations with linear dumping and convex poten-
tial. These problems generally lead to a second order differential equations (shortly
SO-ODE) system. Results concerning such type of SO-ODE models can be found
e.g. in the papers Alvarez [1]; Attouch [2], Attouch et al. [6], Cabot et al. [11, 12]),
Goudou and Munier [17], Vasil’ev et al. [27], Vasil’ev and Nedich [29]. There are
some papers discussing higher order methods (e.g. Vasiljev and Nedi¢ [30], Vasil’ev
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and Nedi¢ [29], Nedi¢ [24]), too. However, the mentioned papers, except Vasil’ev et
al. [27], deal with such SO-ODE systems that are linear in x.

From the mentioned methods only a few deal with the solution of constrained
optimization problem. The authors of the papers Antipin [3], Nedi¢ [24], Vasil’ev
and Nedich [29], Vasiljev and Nedi¢ [30] use the projection gradient for handing
the constraints, but this technique makes it possible to use only relatively simple
constraints. In Kovdacs [22] the penalty function technique is used and in Vasiljev and
Nedi¢ [30], Vasil’ev and Nedich [29] and Vasil’ev et al. [27] the two techniques are
used together.

In the cases when the minimum point is not unique, a suitable regularization ap-
pears in the ODE systems to control the trajectories to the direction of a well-defined
solution (see e.g. in Attouch and Czarnecki [5], Cabot [10], Cominetti et al. [13],
Kovacs [22], Vasil’ev et al [27] etc.)

It can be seen, that the higher the order of the optimizer ODE system is and more
optimization and control parameters are built into the ODE system, the more com-
plicated the synchronization of the conditions between the parameter functions.

In this paper we deal with a SO-ODE system of four parameter functions, two of
them define the structure of the SODE system, one is the penalty parameter and one
is the control parameter of the regularization.

2. MATHEMATICAL PRELIMINARIES

In this section we formulate our convex programming problem (shortly CP prob-
lem) for that we try to associate SO-ODE systems whose trajectories’ limit points
give the solution of the CP problem. We describe those known techniques, methods
and lemmas that will be used in our investigation.

2.1. CP problem

Let f:R" > Rand g; : R" > R, i =1,...,m be convex continuously differ-
entiable functions and let g; : R® — R, i = m + 1,...,s be linear ones, and let us
consider the following CP problem:

f(x) — min 2.1
xeX
where
X={xeR":gix)<0, i=1,....m, gi(x)=0, i=m+1,...,s.} (2.2)

We assume that the problem (2.1)-(2.2) satisfies the following conditions:

Al): it is Slater-regular, i.e. there exists a Slater-point X such that g; (X) < 0,
i=1,....m,

A2): the minimum is finite, i.e. fi =inf f(X) > —o0, and the given CP problem
has at least one solution, i.e. Xx ={x€ X : f(X) = fx} # D.
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The constrained optimization problem may be solved by solving a sequence of
unconstrained minimization problems

O (x) = f(X)+ A P(x) — m[iRn, k=1,2,..., 2.3)
XE n

where the penalty function P (x) is defined by

P(x) = lstlg*(x)v” lgt (x)| = max(0,g;(x)), i=1,....m
p ’ ’ ! gi ()], i=m+1,....s

2.4)
and p > 1, moreover 4y — oo if k — oo. If x; is a minimum point of the k-th
problem &y (x) — m%an then there is a subsequence {xg; } of {x;} which converges

xeR”

i=1

to one of the minimum point of the original problem (2.1)-(2.2) (see Fiacco and
McCormick [15]).

However from the convexity of the objective and constraints functions it does not
follow that the minimum point of the CP problem is unique, and hence it can not be
expected that any subsequence tends to the same minimum point. Our aim is to find
the so called minimal norm solution, i.e. we seek the point x € X, such that

|[x«|| = inf [|x]]. (2.5)
XE€EXx
Therefore we use the regularization technique of A. N. Tichonov (see Tichonov [26],
Tikhonov and Vasilev [25]).

The regularization of the convex programming means that the penalized minimiz-
ing function will be approximated with a bundle of strong convex functions depend-
ing on a parameter of the regularization. By harmonizing the chosen regularization
parameter with the coefficient of the penalty function, one can expect that the se-
quence of the unique minimum points of the auxiliary functions tends to one of the
well defined minimum point of the original minimizing function independently of
the starting point. The possibility of this type of regularization is based on Lemma 1.
It simplifies the Theorem of (Vasil’ev and Kov 4cs [28]) in the following sense: the
used topological space is R” with the norm-topology, all constraints are handled by
penalty function of type (2.4), £2(x) = ||x||?. Moreover, it is also assumed that the
objective and constraints functions values as well as the unconstrained minimum can
be computed exactly.

Lemma 1. Let the CP-problem (2.1)-(2.2) satisfy the conditions A1-A2 and let
X« denote the minimal norm solution of this problem. Let us introduce the bundle of
functions

1
Ti(x) = f(x)+ Ax P(x) + Ekk||x||2, k=1.2,..., (2.6)

where P(X) is defined by (2.4), { Ay, -k =0,1,2,...} is an infinite monotone increasing
and {Ay : k =0,1,2,...} is an infinite monotone decreasing sequence satisfying the
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conditions

lim Az = oo, lim A =0, lim A%V = oo,
k—o0 k—o00 k—00
If x;: denotes the unique solution of the unconstrained minimization problem Ty (x) —

m%{n with fixed k, then the sequence {||x;||,k = 0,1,...} is bounded and
xeR”

lim f(x;) = fi: lim AgP(xp) =0; lim ||X;: —Xx|| = 0.
k—>o00 k—o00 k—o00

This lemma remains valid if the parameter sequences are changed for continuous
functions of time ¢ and everywhere in the lemma the convergence is considered as
[ — 0.

In our investigation the continuous version of this lemma will be used.

2.2. ODE systems associated to CP problems

The most frequently used methods of unconstrained optimization are iterative
methods, e.g. the gradient and Newton methods, the Fletcher-Reeves iteration etc.
Any iterative method can be considered as Euler-discretization of an ODE system
with stepsize 1. This ODE system is called the continuous version of the given
method. So, with different numerical methods one can associate several types of
differential equations with the same CP problem and one can define those conditions,
under which the trajectories of these ODE systems converge to a minimum point.
The associated ODE system may be first or higher order.

To speak about the limit point of the trajectories if # — oo it is necessary that the
right maximal interval will be the whole [z, 00). To guarantee this property we will
use the idea of local Lipschitz continuity.

We will say that the vector function @ : W — RF defined on the open subset
W C R" is local Lipschitz continuous if it is Lipschitz continuous on every compact
subset of W. If Iy C R is open, then the function ®(x,7) : W x Iy — R is local
Lipschitz continuous if it is Lipschitz continuous in X on any compact subset V' C W,
and continuous in ¢ on any closed interval I C [j.

If an ODE system associated with an iterative method of minimization has a unique
solution on [zg, 00) then we say that

e it is a minimizing model if along its trajectories tl_l)nolo f(x()) = fi;
e it is convergent if any trajectory of it converges in norm to some Xx € Xy, i.e.
[|x(2) —x«|| = O.
The trajectories of a convergent minimizing model are called minimizing trajectories.

The ODE systems associated with an unconstrained optimization problem f(x) —
m%an f(x) by gradient and Newton methods can be written in the forms
xeR”?

x=—V f(x), x=-Hx) "'V f(x)

x(fo) = Xo x(f0) = Xo,
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respectively, where H(x) is the Hessian of f(x). In these cases if x4 denotes a min-
imum point of the function f(x) then X is a stationary point of both FO-ODE system.

In general, X is a stationary point for a FO-ODE system if its right hand side turns
into a null-vector in this point for all # > #y. If the minimum point is a stationary
point of the associated ODE system then the convergence of the trajectories to X« is
equivalent with the asymptotic stability of x., therefore the well known Lyapunov
function methods are useful to prove the convergence with an appropriately chosen
Lyapunov function (see e.g. Evtushenko and Zhadan [14], Flam [16], Venec and
Rybashov [31]).

In contrary, in a FO-ODE system associated with a regularized unconstrained or a
regularized convex programming problem given by (2.1)-(2.2) where the constraints
are handled by penalty function of type (2.4) the minimum point X, is not necessary
stationary point (e.g. in the case of regularized continuous gradient method).

As it was pointed out in Kovdacs [23], the minimization models modelled by FO-
ODE systems can be divided into two classes. Those models described by a FO-ODE
system for which the point x4 is a stationary point of the system belong to the first
class. To the second class of the models belong those continuous first order models,
for which the minimum point is not stationary, but the trajectories exist on the whole
[to, 00) and along the trajectories the right hand side vector of the differential equation
system tends to the null-vector if ¢ — oo. Following Kovdacs [23] we say in this case,
that X is stationary in limit.

The definition of stationary and stationary in limit points can be extended for
higher order ODE systems, too. We will say, that a point is stationary point or sta-
tionary in limit point of a second or higher order ODE system if it is stationary or
stationary in limit point respectively for the equivalent FO-ODE system.

As it was shown in Kovdcs [22,23] the Lyapunov-type methods are also applicable
to prove the convergence of the trajectories to a point stationary in limit.

The following lemma will be useful in proving the existence of the trajectories of
the examined SO-SODE system on ¢y, 00).

Lemma 2. Suppose that there exist 0 < Ty < Tiax < 00 such that

(1) the parametric scalar functions g(t,t),t € (To, Tmax| are defined and non-
negative for all t € [Ty, T), they are continuously differentiable with respect
tot;

(2) g(Ty,7) < K uniformly in t;

(3) for every fixed T € (Ty, Tmax] the function g(t,t) satisfies the differential in-
equality

d
80 ==t D) +y (-0 @7

on the interval [Ty, T), where k is a nonnegative integer, the functions ¢(t) >
0 and Y (t) are defined and continuous on [Ty, o0) and integrable on any
finite interval of [Ty, 00).



28 T. HAJBA AND M. KOVACS

Then for every fixed © € (Ty, Tmax] the function g(t,t) is bounded on [Ty, t) and
g(r,7) = tlirn g(t,t) < oo.
—T

Proof. Let
fT p(v)dv k fTo e(v)dv
u(t.7) = g(To.)e f ¥ (6)(x —6)Fe o 238
be the solution of the linear ODE
i =—pOu+yO)(c—-0F  u(To,1)=g(To, 7). (2.9)

Since ¢(¢) and ¥ (¢) are continuous on [Tp,00), u(z,7) is the unique solution on
[Ty, 00), consequently u(z,7) is bounded on every closed finite interval of [T, c0).
Using the Gronwall lemma we have that for every t € (Tp, Tiax]

gt,t)<u(t,t) forall To <t <,

from this fact and from the continuity of g(¢, t) the boundedness of g(z,t) on [Ty, ]
immediately follows. O

To examine the limit points of the trajectories when the maximal right hand interval
of existence is [tg, 00), the following lemma taken from Kovacs [23] will be useful.
However, we have to remark that detailed proof of this statement can only be found
in the proof of the Theorem of Kovacs [22], and only for the special case k = 1.
Therefore, here we sketch its proof, too.

Lemma 3. Let the conditions 1-3 of the Lemma 2 be satisfied when Ty,x = 00.
Moreover assume that the functions ¢(t) and ¥ (t) are endowed with the following
properties:

o0 _ V(1)
@) [g, p(t)dt =00, lim ———— ) = |
t
(5) in the case k > 1 the function ¢(t) is differentiable and lim <P2( ) =0,
t=00 (1)

then Tll)n;o g(r,7) =0.

Proof. 1t is enough to prove that u(t,7) — oo if t — co where u(¢, ) is defined
by (2.8). Under the condition 3. the convergence of the first term of (2.8) to zero is
trivial. By induction on k it can be proved that for all nonnegative integer k the limit

7y #()dv
ll>m e E ¢* (1) = 0o holds true and hence we can estimate the second term by
T
applying (k + 1) times the L’Hospital rule and finally by the additional conditions 4
and 5 of this lemma. O]

The function g(¢, t) plays the role of a Lyapunov-like function in stability theory
or the energy function in the theory of dissipative systems.
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3. MINIMIZING PROPERTY OF THE REGULARIZED FR-TYPE SO-ODE
(R-FR-TYPE SO-ODE) SYSTEM ASSOCIATED WITH THE CP PROBLEM

3.1. Construction of the R-FR-type SO-ODE system associated with the CP prob-
lem

Let us now examine an ODE system associated with the CP problem (2.1)-(2.2)
by the Fletcher-Reeves iteration applied to the minimization of the penalized and
regularized unconstrained function (2.6). This iteration can be formulated as follows:
Let be given two vectors, namely x; € R” and d; € R” which are called the k-th state
vector and k-th searching direction, respectively. Let the sequence (xi,d;) € R” x R”
be defined by

Xp+1 = X + o dg, (3.1
dk+1 =—VXF()Ck+1)+,3kdk, k =0,1,2,..., (32)
starting with xg € R”,dg = —Vx Fj(xo). To obtain a convergent process we have to

use well defined (we do not present here the details) changing rules for the sequences
i, Br, A and A.

It is easy to see that this iteration can be considered as the Euler discretization of
the non-autonomous FO-ODE system of 2x variables

x=a()d (3.3)
d=—-ViF(x+a()d, )+ BE)—1d (3.4)

were
F(o0) = f9+ AW P + 330 (5

corresponds to (2.6) and the rules of change of all parameters are described by con-
tinuous functions.

(3.3)-(3.4) can be transformed by the substitution p(¢) = «(¢)d(¢) into the follow-
ing ones:

X=p (3.6)
p=—a(@)VxFx+p,1)—y(@)p (3.7)
with the initial values
_ x(to) = X0, P(f0) = Po. (3.8)
where y(t) = _¢® —B(t)+ 1.
a(t)

It is clear, that the FO-ODE system (3.6)-(3.7) with the initial values (3.8) is equi-
valent to the SO-ODE system

X+ y(t)x+a(t)VyF(x+x,t) =0 (3.9)

with initial values
x(to) = Xo. X(fo) = Po. (3.10)
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The ODE systems given by (3.6),(3.7) and (3.8) or by (3.9) and (3.10) will be
called regularized FR-type SO-ODE (shortly R-FR type SO-ODE) system associated
with the CP problem.

Since the Fletcher-Reeves iteration uses the new state point in the construction of
the new direction, our SO-ODE system usually will not be linear in the first derivative
vector X in contrary to the examined SO-ODE systems mentioned in the Introduction.
In connection with optimization, such type of SO-ODE systems has been investigated
in Hajba [18] for the unconstrained minimization of a strong convex function. The
asymptotic behaviour of the regularized FR-type SO-ODE system associated with
the unconstrained minimization of convex but not necessary strong convex function
has been analyzed in Hajba [20]. A similar problem for constrained optimization has
been examined in Vasil’ev et al. [27], but their result is obtained under other (and
more complicated) assumptions than the ones used here.

It is worth looking at the special case of the CP problem when the objective func-
tion is quadratic and the constraints are given with a linear equality system, i.e. a
hyperspace. Namely, let Q be a symmetric positive semidefinite 7 X n matrix and
¢ € R". Moreover, let be given an m x n matrix B, and a vector by € R™. Consider
the CP problem

1 .

§<X,QX) + (c,x) subjectto Bx =by.
To define the function F(x,?) we use the penalty function

P() = 5 |IBx—bol "

Then the SO-ODE system (3.9) takes the following shape

X+ (y()E+H(r))x+H(t)x+h(t) =0,
with matrix functions

H(t) = a(t)(Q+ A(BTB+A(DE),  h(t) = a(t)(c+ A()B by),

where E denotes the unit matrix and the upper index 7" denotes transposition.

Although in this special case the SO-ODE system is linear in X, too, but its coeffi-
cient is a time dependent matrix function. So, our SO-ODE system for this relatively
simple problem also essentially differs from the SO-ODE systems analized in papers
mentioned in the Introduction, and it has not been examined yet.

3.2. Asymptotic behaviour of the trajectories of the R-FR-type SO-ODE systems

The following proposition characterizes the R-FR-type SO-ODE systems associ-
ated with the CP problem given by (2.1)-(2.2).



SOLUTION OF CP PROBLEM VIA SO-ODE SYSTEM 31

Proposition 1. Let us assume that

(1) the CP-problem defined by (2.1)-(2.2) satisfies the conditions A1 and A2 and
the functions f(x) and g;(x), i = 1,...,m are continuously differentiable
convex functions on R" and the gradients V f(x) and Vg;i(x), i =1,...,m
are local Lipschitz continuous;

(2) the penalty function P(X) in the construction of F(X,t) is defined by (2.4);

(3) the parameter functions a(t) and y(t) of the systems (3.6)-(3.7) and (3.9)
Sfulfill the following conditions:

a) «(t) is a positive, monotone decreasing and continuously differentiable
function on [ty, 00),

b) y(¢) is a monotone nonincreasing, continuously differentiable function
on [tg,00) and y(t) > Yoo > 1 forall t > ty;

(4) the coefficient A(t) of the penalty function in the construction of F(X,t) is a
positive continuously differentiable concave function and satisfies the condi-
tions tl_i)rgoA(t) =ooand a(t)A(t) < Ag < oo,

(5) for the regularization parameter A(t) the following assumptions hold.:

a) A(t) is a positive continuously differentiable monotone decreasing con-
vex function on [tg,o0) for all t >ty and lim A(t) = lim ).L(l‘) =0
0o t—>00 1—>00
b) a(to)A(to) =1, while [ a(t)A(1) = oo;
to
S 1 Y ! () B (O R
PR OM0 T a0 | a0
d) lim A@N)YP=DA(1) = co.

Then

(1) the trajectories of (3.6)-(3.7), respectively of (3.9) exist and unique on the
whole half-line [tog, 00) with any initial point (3.8) resp. (3.10);
(2) the trajectories converge to the minimal norm solution, i.e. if Xy satisfies the
condition inf ||X|| = ||x«]||, then lim ||x(¢) —x«|| = 0;
xeX t—o00

*

3) tl_l)n;o f(x()) = f(xx) = Xlél)i; f(x), i.e. the SO-ODE system given by (3.6)-

(3.7) or (3.9) is a minimizing model and its trajectories are minimizing tra-
jectories;

(4) lim [|p(1)]| = lim [[x(2)[| =0;
—>00 —>00
(5) tlim ||X(¢)]| = 0, i.e. the minimal norm solution X« is a stationary in limit
—00
minimum point.
Proof. The continuity in ¢ of the right hand side of (3.6)-(3.7), resp. (3.9) im-

mediately follows from the continuity conditions given for the parameter functions.
From the convexity and continuity of g;(x), i = 1,...,m follows the local Lipschitz
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continuity of these functions which together with the assumed local Lipschitz con-
tinuity of Vg;(x),i = 1,...,m calls forth the local Lipschitz continuity of V P(x).
Consequently the right hand side of (3.6)-(3.7) is also local Lipschitz continuous in
x. This property guaranties the existence and uniqueness of the trajectories on a right
maximal interval [tg, fmax) With fg < fmax < 00. In order to prove that 7,,x = 00, let
us show that |x(¢)| and |X(z)| = |p(¢)| are bounded.

For every fixed f9p < 7 < oo the function F(x, 7) defined by (3.5) is a strong convex
function, therefore it has a unique minimum point x;. Let X4 be the minimal norm
solution of the CP-problem. Under the assumption 4, 5.a) and 5.d) of the proposition
the conditions of the Lemma 1 are satisfied, so there exists a constant K such that
[|xF|| < K forall tp <.

Let us introduce the parametric function

1
g(t.7) =§|IX(I)—X? +p()|*+
1 k * (12 1 * (12
+ e OAO]XE) =x |17+ 5 (v (1) = DIx() — x|
for fixed fyax > T > fo.
It follows from the conditions 3.a), 3.b) and 5.a) that g(¢,7) > Oforall 9 <¢ < 7,

and Lemma 1 guaranties the uniformly boundedness of g (o, 7) in 7.
For the derivative of g(¢,7) we have

d
g (t.7) == () VxF(x(0) +P(1).1).%(0) =X} + (D)) +
d
5 @OLONXO =X + 30 OA0(x0) X p(0))+
1
FA=yO)IPOIP + 37010 ~x 12

for all zp <t < 7. (Here and in the following (-,-) denotes the scalar product.)
Omitting the non-positive terms we have that

8.0 == VF(x(0) +p(0). 0. xX(0) X +p(O))+
+ 3 OMO(x0) ~x7.p0)) =
= — () VxF (1) 4 P(1).1) = VaF (x5.0).X(0) =X} +p(0)) -
—a(t)(Vo F(xE,0) = VF (<3, 7), X(0) = X3 +p(0) )+

+ %a(l)k(t)<x(t) —x:,p(t)>. 3.11)
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For every fixed ¢ the convexity modulus of the strong convex function F(x,?) is

1
3 A(t), therefore

()| VaF (x(1) 4+ P(0),1) = VxF (x}.1). X(1) =X} +P(1)) <
< —aMAOIxO-x;+pOIP. (G2

To estimate the term —o (t)<VXF(X:,t) — Vg F(x},7),x(t) — X + p(t)> we apply
the inequality

)
~{ab) < A()n all?+ =2 Ib].
Namely,

—a(O(VaF(3.0) = Ve F(x2,0) () = X2 +p(0)) =
= —a(0{(40) = ANV P).X(0) = x] +p(0)) -
a0 = MEDXEX(0) =X +p(0)) <

a(?)

< T (AO = A@PIVPEOIP + 0 =A@ IxI7) +

a(t))t(t)

[Ix(1) = x5 +p(O)II?

Since the sequence ||xr|| is bounded due to the Lemma 1 and ||V P(x)|| is con-
tinuous, therefore there exists a constant K > 0 do not depending on the parameter ©

such that max{||V P (x}).||x]||} < K 2, Using this fact and Conditions 4. and 5.a we
have that

_oe(t)<V F(x*.1) = Ve F(x*,7).x(t) —x* + p(t)> <

< K5O (420 +220) =07+ S 0 -5t w0 =
“(’)W)n () =x7 +pO)I>+ ¥ (@) (-1, (3.13)

where (1) = /\E ; (Az(t) + )Lz(t))

Substituting the inequalities (3.12) and (3.13) into (3.11) and taking into consider-
ation that y(¢) is non-increasing we have that

61 == JaOAO IO ¢ +pO)IP + 3 OAO(x0) —xtp0))+

+y(O)(—1)® =
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1 1
== 7¢OAO]x(1) —x +p(0)]* - 1¢OAOIx(1) —x¢ +p0)|*+

FSaOMO(x(0) X3 D))+ ¥ () 1) =

2
1
E—%Q(I)A(Z)HX(I)+P(l)—X:||2—ga(f)k(l)HX—X:Hz—
1 y()—1 *(12 2 _
—ga(l)/\(f)'mﬂ"—er +y@)(r—1)" =

1 1
=—a(®)5|x@) +p@) =x¢|* = b1 JaOADOlIx x|~
1
—eO5(O=DIx=X[* +y D) =17,

1 1 1
where a(t) = Ea([)k(t), b(t) = > c(t) = ma(r)k(t) = Cra(t)y(t).

Since a(t)A(t) <1, so a(t) < % for all t > 9. Otherwise, ¢(t) = 2C1a(t), con-
sequently, there exists K1 = min{1,2C} > 0, depending only on y(#¢) such that

4.0 = —KiaOA0g(. 0+ (O~ 1)

foralltg <t <.

The functions g(z,7), ¢(t) = Kia(t)A(¢) and v (¢) satisfy the conditions 1 and
2 of the Lemma 2, so there exists a constant K such that g(z,tmax) < Kg for all
fo =1 <Imax.

Let us assume, that the right maximal interval of existence is finite, i.e. fjax < 00.
Then g(f,tmax) < Kg forall ¢ € [to,fmax). From the definition of g(¢, r) immediately
follows that

Ix(t)—xz +pOIl<S, |x@)—x; [[<S
with some constant S for all 7 € [fg, #max). Using the triangle inequality, the mono-
tonity of the parameter functions «(¢) and A(¢) and the boundedness of X} obtained
from the Lemma 1, one can easily derive constant R such that for

IxOI = [1x() —x [ +11x7 [ < R, (3.14)
and
XA = [IpOI] < 1x(@) —x;, +pOI| +]x()—x; || <R. (3.15)
for all # € [tg, tmax). Let
B ={(x,p.7) : [[x|]| = R, [I[p]| = R, |t = 10| = tmax}-

Using the continuity of the vector-function VxF(x,f) and the upper estimate
sup ||VxF(x+p,t)||, together with the continuity of «(z), A(t),A(t) we have

(x,p,0)€B

[IX(#)]| = |Ip]] < R if R is chosen large enough.
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Since B is a compact set and (x(¢),p(¢),max) € B, applying again the local ex-
istence theorem with the initial value (X(#max), P(fmax)), We can extend the maximal
solution to a strictly larger interval, which is a clear contradiction.

Consequently, the solution (x(¢),p(¢)) of (3.6)-(3.7) exists on the whole halfline
[t0,00), so we can speak about the limit points of the trajectories when ¢ — 0o .

Conditions 5.a), 5.b) and 5.c) ensure that g(z,7) satisfies the conditions 4 and 5
of the Lemma 3 and hence rll)ngo g(z,t) = 0. From here and from the continuity of

the function f(x) and by using the triangle inequality as in the previous part of the
proof, we immediately obtain all statements of the proposition. U

3.3. Admissible parameter functions of the minimizing R-FR-type SO-ODE system

Studying the unconstrained minimization problem without regularization we have
found several classes of parameter functions (see Hajba [19]) of the SO-ODE sys-
tem, which satisfy the conditions given in Hajba [18] for the convergence. Since
our problem examined in this paper is more complicated, here we give only two
parameter classes which satisfy the conditions of the Proposition 1 assuming that

m
PX = 3 [gf WP
1=

It can be seen that we have the widest freedom in the choice of the function y(¢),
since it does not depend on the other parameters, only Condition 3.b) must be satis-
fied.

Let

at) =ag(l+6)™,  and  A(t) =Ao(1+1)~ .
Substituting these functions into the limit conditions of the Proposition 1. we can
look for A(¢) in different forms. Namely,

Case 1. Let A(t) = Ao(1 +1)A. In this case the conditions of the Proposition 1. are
satisfied if and only if

0<A0, 0<Olo, 0<A() (X())L()Il,
0<A<A<aq, a+i<l, A<l—a—-2A.
In general the obtained system of inequalities has lots of solutions, e.g. an appropriate
choice of the parameters is
Aog=ap=XLo=1, A=a= ! A= !
O_QO_ o— 1 _a_4s _8

Case 2. Let A(t) = Ao(1+1)41n(1+41¢). In this case the following inequality system
must be satisfied:

0<A0, O<Ot(), 0</\0 Ot()k()zl,

1
0<A<A<a, a+A <1, A<§, A< l—a—-2A.
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This system also has solution, e.g.

A():()loz/\():l, A=

satisfies it.
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