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Abstract. This study is the continuation of our former work [O. Duman and E. Erkuş, Comput.
Math. Appl. 52 (2006) 967-974] in which we obtained a statistical Korovkin-type approximation
theorem for a sequence of positive linear operators defined on the space of all real-valued con-
tinuous and 2� periodic functions on the real m-dimensional space. In this paper, we compute
the statistical rates of this statistical approximation.
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1. INTRODUCTION

The motivation of this work are [3,4]. Letm be a positive integer, and let C �.Rm/
denote the space of all real-valued continuous and 2� periodic functions on the real
m-dimensional space Rm: Here, the 2�-periodicitiy of a function f 2 C �.Rm/ is
given by

f .u1;u2; :::;um/ D f .u1C2k�;u2; ::::;um/

D f .u1;u2C2k�; :::;um/

:::

D f .u1;u2; :::;umC2k�/

for every uD .u1;u2; :::;um/ 2 Rm and kD 0;˙1; :::(see, for instance, [10, p. 126]).
Consider the usual supremum norm on C �.Rm/ defined by

kf k� WD sup
.u1;u2;:::;um/2Rm

jf .u1;u2; :::;um/j ; f 2 C �.Rm/:

Assume that

A WD Œajn� .j;n 2N WD f1;2; :::g/
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is a non-negative summability matrix. Recently, in [4], it has been proved that, for
any sequence fLng of positive linear operators mapping C �.Rm/ into itself,

stA� lim
n
kLn.f /�f k� D 0 for all f 2 C �.Rm/ (1.1)

if and only if

stA� lim
n
kLn.fi /�fik� D 0 for each i D 0;1; :::;2mC1; (1.2)

where

f0.u1; :::;um/ D 1;

fi .u1; :::;um/ D cosui for i D 1;2; :::;m;
fj .u1; :::;um/ D sinuj for j DmC1;mC2; :::;2m:

Notice that by stA�limnxnDLwe mean that the sequence x WD fxng isA-statistically
convergent to L (see [8]), i.e., for every " > 0;

lim
j

X
nWjxn�Lj�"

ajn D 0:

It is well-known that every convergent sequence is A-statistically convergent to the
same value, however the converse is not always true. Also, taking special regular
matrices, one can obtain many convergence methods from the A-statistical conver-
gence. For example, if A D C1; the Cesáro matrix, then it reduces to the concept
of statistical convergence (see [7, 9]), and if A D I; the identity matrix, then it co-
incides with the ordinary convergence. Hence, with such properties, the usage of
A-statistical convergence in approximation theory provides us more powerful results
than the classical theory does. Observe that the above statistical approximation the-
orem in the space C �.Rm/ contains the classical uniform convergence. However, it
is also possible to construct a sequence of positive linear operators satisfying (1.1) or
(1.2) but not the corresponding classical case (see [4]).

In this paper, we mainly discuss the following problem: how can we compute the
statistical rates of the A-statistical convergence to zero of the difference sequence
fkLn.f /�f k�g in (1.1)? Such a problem has recently been investigated for the one
dimensional case by Duman [3]. In order to compute the statistical rates we use the
following two definitions (see, for instance, [5, 6]):

Let fpng be a positive non-increasing sequence of real numbers. For a given se-
quence fxng, we say that

� fxng is A-statistically convergent to the number L with rate o.pn/; denoted
by xn�LD stA�o.pn/ as n!1; if, for every " > 0;

lim
j

1

pj

X
nWjxn�Lj�"

ajn D 0;
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� fxng is A-statistically convergent to the number L with rate om.pn/; denoted
by xn�LD stA�om.pn/ as n!1; if, for every " > 0;

lim
j

X
nWjxn�Lj�"pn

ajn D 0:

Notice that the rate of convergence given by the little o is influenced more strongly
by the summability method then by the terms of the sequence fxng: For instance,
when one takes the identity matrix I; if fpng is any positive non-increasing sequence
satisfying the following inequality:

1

pn
�M .for M > 0 and n 2N),

then we have xn�LD stA�o.pn/ as n!1 for any convergent sequence fxn�Lg
regardless of how slowly it goes to zero. To avoid such an unfortunate situation, one
may borrow the concept of convergence in measure from the measure theory to define
the rate of convergence as in the notion of the little om.

2. STATISTICAL RATES OF THE APPROXIMATION

In this section, we compute the statistical rates of the statistical approximation in
(1.1). To see this we first recall the concept of modulus of continuity in the space
C �.Rm/. The modulus of continuity of a function f belonging to C �.Rm/ is given
by, for any ı > 0;

w.f;ı/D sup
p
.u1�x1/

2
C:::C.um�xm/

2
�ı

jf .u1; :::;um/�f .x1; :::;xm/j : (2.1)

It is well-known that a necessary and sufficient condition for a function f to belong
to C �.Rm/ is limı!0w.f;ı/D 0 (see [1, p. 80]). Furthermore, it follows from (2.1)
that, for every f 2 C �.Rm/ and .u1; :::;um/ ; .x1; :::;xm/ 2 Rm,

jf .u1; :::;um/�f .x1; :::;xm/j � w

�
f;

q
.u1�x1/

2
C :::C .um�xm/

2

�
; (2.2)

and
w.f;cı/� .1C c/w.f;ı/ for any c;ı > 0: (2.3)

Now we are ready to state our main results.

Theorem 1. Let AD Œajn� be a non-negative regular summability matrix and let
fLng be a sequence of positive linear operators mapping C �.Rm/ into itself. For
each .x1; :::;xm/ 2 Rm; define the function 'x1;:::;xm

by

'x1;:::;xm
.u1; :::;um/D sin2

�u1�x1
2

�
C :::C sin2

�um�xm
2

�
: (2.4)

Assume that fpng and fqng are positive non-increasing sequences of real numbers.
If, for every f 2 C �.Rm/, the conditions
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.i/ kLn .f0/�f0k� D stA�o.pn/ as n!1 with f0.u1; :::;um/D 1;

.i i/ w.f;ı/D stA�o.qn/ as n!1 with ın WD
qLn �'x1;:::;xm

�
�

hold, then we have

kLn .f /�f k� D stA�o.rn/ as n!1

with rn WDmaxfpn; qng for each n 2N:

Proof. Let f 2 C �.Rm/ and .x1; :::;xm/ 2 K WD Œ��;��� :::� Œ��;�� be fixed.
Since

jLn .f Ix1; :::;xm/�f .x1; :::;xm/j

� Ln .jf .u1; :::;um/�f .x1; :::;xm/j Ix1; :::;xm/

Cjf .x1; :::;xm/j jLn .f0Ix1; :::;xm/�f0 .x1; :::;xm/j ;

it follows from (2.2) that

jLn .f Ix1; :::;xm/�f .x1; :::;xm/j

� Ln

�
w

�
f;

q
.u1�x1/

2
C :::C .um�xm/

2

�
Ix1; :::;xm

�
CM jLn .f0Ix1; :::;xm/�f0 .x1; :::;xm/j ;

(2.5)

where M WD kf k� : Since, for all t 2 Œ��;��;

jt j � �

ˇ̌̌̌
sin

t

2

ˇ̌̌̌
we have q

.u1�x1/
2
C :::C .um�xm/

2
� �

p
'x1;:::;xm

.u1; :::;um/;

where 'x1;:::;xm
is given by (2.4). Combining this with (2.5), we obtain that

jLn .f Ix1; :::;xm/�f .x1; :::;xm/j � Ln
�
w
�
f;�
p
'x1;:::;xm

�
Ix1; :::;xm

�
CM jLn .f0Ix1; :::;xm/�f0 .x1; :::;xm/j :

Also, using (2.3), we may write that, for any ı > 0;

jLn .f Ix1; :::;xm/�f .x1; :::;xm/j � w.f;ı/Ln

�
1C

�

ı

p
'x1;:::;xm

Ix1; :::;xm

�
CM jLn .f0Ix1; :::;xm/�f0 .x1; :::;xm/j

� w.f;ı/Ln .f0Ix1; :::;xm/

C
�w.f;ı/

ı
Ln
�p
'x1;:::;xm

Ix1; :::;xm
�

CM jLn .f0Ix1; :::;xm/�f0 .x1; :::;xm/j :

From the Cauchy-Schwarz inequality for positive linear operators (see [2]), we have

jLn .f Ix1; :::;xm/�f .x1; :::;xm/j
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� w.f;ı/Cw.f;ı/ jLn .f0Ix1; :::;xm/�f0 .x1; :::;xm/j

C
�w.f;ı/

ı

p
Ln .f0Ix1; :::;xm/

q
Ln
�
'x1;:::;xm

Ix1; :::;xm
�

CM jLn .f0Ix1; :::;xm/�f0 .x1; :::;xm/j :

Now taking supremum over .x1; :::;xm/2K and choosing ı WD ınD
qLn �'x1;:::;xm

�
�

,
we have

kLn .f /�f k� � .1C�/w.f;ın/Cw.f;ın/kLn .f0/�f0k�

C�w.f;ın/
p
kLn .f0/�f0k�

CM kLn .f0/�f0k� :

Letting C WDmaxf1C�; M g ; the last inequality gives that

kLn .f /�f k� � C fw.f;ın/Cw.f;ın/kLn .f0/�f0k�

Cw.f;ın/
p
kLn .f0/�f0k�CkLn .f0/�f0k�

o
:

(2.6)

Now, for a given " > 0; define the following sets:

D W D fn 2N W kLn .f /�f k� � "g ;

D1 W D
n
n 2N W kLn .f0/�f0k� �

"

4C

o
;

D2 W D
n
n 2N W w.f;ın/�

"

4C

o
;

D3 W D
n
n 2N W w.f;ın/kLn .f0/�f0k� �

"

4C

o
;

D4 W D
n
n 2N W w.f;ın/

p
kLn .f0/�f0k� �

"

4C

o
:

By (2.6) it is easy to that D �
4S
iD0

Di : Furthermore, consider the sets

D03 WD

�
n 2N W w.f;ın/�

r
"

4C

�
;

D003 WD

�
n 2N W kLn .f0/�f0k� �

r
"

4C

�
:

Then observe that D3 �D03[D
00
3 and D4 �D1[D003 , so we have

D �D1[D2[D
0
3[D

00
3 :

This inclusion implies, for all j 2N; that

1

rj

X
n2D

ajn �
1

pj

X
n2D1

ajnC
1

qj

X
n2D2

ajnC
1

qj

X
n2D0

3

ajnC
1

pj

X
n2D00

3

ajn: (2.7)
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Now taking limit as j !1 in (2.7) and using the hypotheses .i/ and .i i/, we con-
clude that

lim
j

1

rj

X
n2D

ajn D 0;

which means
kLn .f /�f k� D stA�o.rn/ as n!1;

so the theorem is proved. �

In a similar manner, we get the next result, which involves the statistical rate with
the little om:

Theorem 2. Let AD Œajn�; fLng ; fıng; fpng and fqng be the same as in Theorem
1. Assume that the conditions .i/ and .i i/ of Theorem 1 hold for the little om instead
of the little o: Then, for any f 2 C �.Rm/; we have

kLn .f /�f k� D stA�om.sn/ as n!1

with sn WDmax
˚
pn; qn;

p
pn; pnqn

	
for each n 2N:

Proof. Since sn D max
˚
pn; qn;

p
pn; pnqn

	
; from (2.6), we immediately get

that
1

sn
kLn .f /�f k� � C

�
1

qn
w.f;ın/C

1

pnqn
w.f;ın/kLn .f0/�f0k�

C
1

qn
w.f;ın/

s
1

pn
kLn .f0/�f0k�C

1

pn
kLn .f0/�f0k�

)
:

(2.8)
Then, for a given " > 0; consider the following sets:

E W D fn 2N W kLn .f /�f k� � "sng ;

E1 W D
n
n 2N W kLn .f0/�f0k� �

"pn

4C

o
;

E2 W D
n
n 2N W w.f;ın/�

"qn

4C

o
;

E3 W D

�
n 2N W

w.f;ın/

qn

kLn .f0/�f0k�
pn

�
"

4C

�
;

E4 W D

(
n 2N W

w.f;ın/

qn

s
kLn .f0/�f0k�

pn
�

"

4C

)
:

In this case, it follows from (2.8) that

E �

4[
iD1

Ei :
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Also letting

E 03 W D

�
n 2N W w.f;ın/� qn

r
"

4C

�
;

E 003 W D

�
n 2N W kLn .f0/�f0k� � pn

r
"

4C

�
;

we get E3 �E 03[E
00
3 and E4 �E1[E 003 ; which implies

E �E1[E2[E
0
3[E

00
3 :

Hence, the last inclusion yields that, for every j 2N,X
n2E

ajn �
X
n2E1

ajnC
X
n2E2

ajnC
X
n2E 0

3

ajnC
X
n2E 00

3

ajn:

Now taking limit as j !1 and using the hypotheses, we immediately see that

lim
j

X
n2E

ajn D 0;

whence the result is proved. �

Remark 1. Specializing the sequences fpng and fqng as pn D qn D 1 for each
n 2N, Theorem 2.3 of [4] is a special case of our Theorem 1 or Theorem 2. So, our
results give us the statistical rates of approximation to a function f 2 C �.Rm/ by
positive linear operators mapping C �.Rm/ into itself.
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