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Abstract. A general solution of a coupled system of second-order ordinary differential
equations is obtained. The solution is represented by modified Bessel functions of the first
and second kind. The corresponding boundary conditions are also given. The boundary value
problem describes the motion of a micropolar suspension between two coaxial cylinders, and
the two unknown functions are, respectively, the velocity and the velocity of microrotation
of the micropolar theory.
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1. Introduction

Classical continuum mechanics is not sufficient to describe the behaviour of certain
materials (granular materials, fluid suspensions, liquid crystals, blood flow, polymeric
substances, composite materials, etc.). For this reason the continuum with microstruc-
ture was intruduced [1]. The new model is called the micropolar continuum, and it
possesses two independent kinematic quantities: the velocity vector v (macromotion)
and the spin, or microrotation vector ν.

Since 1965, the micropolar theory has attracted a great deal of attention.

Paper [2] considers the stationary motion of a suspension between two coaxial
cylinders. The inner cylinder with the radius R1 is immobile, while the outer one
with the radius R2 (R2 > R1) rotates with angular velocity Ω. The axis of rotation
is horizontal.

Applying the basic relations and balance laws of micropolar theory, the following
result was obtained: The behaviour of the micropolar suspension between the two
coaxial cylinders is described by the system of the following two coupled differential
equations [2]:

(µ+ k)[r2v00 + rv0 − v]− kr2ν0 = 0, (1)
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γ [rν00 + ν0] + k (vr)0 − 2krν = 0, R1 ≤ r ≤ R2 . (2)

Hence, v(r) represents the velocity of the suspension (macromotion); ν(r) is the mi-
crorotational velocity r is one of the coordinates of the cylindrical system; γ, µ, and k
denote viscosity coefficients of the micropolar continuum (they are positive constants).

We treat this kind of motion of suspension when the suspension flows down the
walls of the cylinders, so that the boundary conditions for the velocity v(r) and the
microrotation velocity ν(r) are

v(R1) = 0, v(R2) = ΩR2 and ν(R1) = 0, ν(R2) = 0 . (3)

In this paper, the general solution v(r) and ν(r) of the differential equations (1) and
(2) are determined. The arbitrary constants of this solution are calculated on the
basis of the boundary conditions (3). Finally, we show, that in a special case, we
obtain from our result the same velocity v(r) which we would have got if we solved
this technical problem taking into account the laws of classical physics.

2. Solution of the coupled system

After multiplying (2) by r, the terms in the brackets of (1) and (2) are brought to the
form rny(n), y = y(r). These expressions may be reduced to derivatives with constant
coefficients if we substitute

r = R2e
−t, resp. t = lnR2 − ln r. (4)

If the change of variable (4) is applied to v(r) and ν(r), we determine the resulting
functions

V (t) = v(R2e
−t) = v(r) and U(t) = ν(R2e

−t) = ν(r). (5)

Substituting (4), (5), rv0 = −V̇ , r2v00 = V̈ + V̇ and the analogous ν derivatives into
equations (1) and (2) then multiplying by r, we obtain

V̈ − V = −kR2(µ+ k)−1 e−t U̇, (6)

Ü − 2kγ−1R22e−2tU = kγ−1R2e−t (V̇ − V ). (7)

After multyplying the above equation by γet/(kR2) and differentiatiing it, we have

V̇ − V =
γ

kR2
etÜ − 2R2e−tU, V̈ − V̇ =

γ

kR2

d(etÜ)

dt
− 2R2 d(e

−tU)
dt

. (8)

These two equations and equation (6) are a system of three independent differential
equations. Consequently, V , V̇ and V̈ can be eliminated. In this way we obtain

...
U + 2 Ü − M2e−2t U̇ = 0, M =

·
k

γ

µ
2µ+ k

µ+ k

¶¸1/2
R2 . (9)
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Suppose the Laplace transform of U(t) is denoted by Υ(s). Then we take the Laplace
transform of both sides of equation (9). Dividing the transformed equation by s2(s+
2), then using the method of partial fraction and taking into account the boundary
conditions U(0) = ν(R2) = 0, we get

Υ(s)− M2

s2
Υ(s+ 2) =

1

s2
U̇(0) +

µ
− 1
4s
+
1

2s2
+

1

4(s+ 2)

¶
Ü(0) .

Applying to this relation the inverse Laplace transform on this relation, we obtain
the integral equation

U(t)−M2

Z t

0

Z t1

0

e−2t2 U(t2) dt2 dt1 = t U̇(0) + [−1 + 2t+ e−2t]
Ü(0)

4
.

Introducing the new variables

t1 = ln(M/x1) , t2 = ln(M/x2) , t = ln(M/x) (10)

and setting

w(ξ) = U [ln(M/ξ)]

we bring the integral equation to the form

w(x)−
Z x

M

Z x1

M

x2w(x2)dx2
dx1
x1
= ln(

M

x
) U̇(0) + [−1 + 2 lnM

x
+

x2

M2
]
Ü(0)

4
.

If we apply to the transformed integral equation the differential operator d/dx (x d/dx),
we obtain the modified inhomogeneous Bessel equation with zero order

xw00 +w0 − xw = xM−2Ü(0), w = w(x).

The general solution of this differential equation is defined by

w(x) = C1I0(x) +C2K0(x)−M−2Ü(0). (11)

In (resp. Kn) is called the modified Bessel function of the first (resp., second kind)
of order n. Kn is also known as MacDonald function.

Substituting x =Me−t (see (10)) and (11) into the first equation (8), we get

xṼ 0(x) + Ṽ (x) =
kR2
µ+ k

x

M
(C1I0(x) +C2K0(x))− 2R2 x

M3
Ü(0) . (12)

By variation of constants we obtain a particular solution of the form Ṽp = C(x)x−1.
The general solution of equation (7) (resp. (12)) is now explicitely expressed:

Ṽ = − R2
M3

Ü(0)x+C3
1

x
+

kR2
µ+ k

1

M
(C1I1(x)−C2K1(x)) . (13)
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Substituting e−t = x/M into (4), using (5), x =Me−t, (11) and (13), we find

v = − Ü(0)
M2

r + C̃3
1

r
+

k

µ+ k

1

N
(C1I1(Nr)−C2K1(Nr)) , (14)

ν = C1I0(Nr) +C2K0(Nr)− Ü(0)

M2
, N =M/R2 . (15)

These two functions satisfy equations (1) and (2) identically. To determine the arbi-
trary constants, we apply the boundary conditions (3) to (14) and (15). This yields

C1 =
ΩR22
H
[K0(a2)−K0(a1)] , C2 =

ΩR22
H
[I0(a2)− I0(a1)] ,

Ü(0)

M2
=
ΩR22
H
[I0(a1)K0(a2)− I0(a2)K0(a1)], aj = NRj , j = 1, 2,

C̃3 =
ΩR1R22

H
(I1(a1)[K0(a1)−K0(a2)]+ K1(a1)[I0(a1)− I0(a2)] +

+R1[I0(a1)K0(a2)− I0(a2)K0(a1)]) ,

H = (R21 −R22)[I0(a1)K0(a2)− I0(a2)K0(a1)] + [K0(a1)−K0(a2)] ∗
∗[R1I1(a1)−R2I1(a2)] + [I0(a1)− I0(a2)][R1K1(a1)−R2K1(a2)].

3. Conclusion

The classic case of suspension motion is obtained if the material constant k of the
micropolar suspension is equal to zero. In that case, the relation for the velocity of
suspension motion is reduced to the well-known form

v =
Ω

R22 −R21

·
R22 r −

R21R
2
2

r

¸
; ν = 0.
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