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Abstract. We study the backward parabolic problem for a nonlinear parabolic equation of the
form ut CAu.t/D f .t;u.t//;u.T /D ', where A is a positive self-adjoint unbounded operator
and f is a Lipschitz function. The problem is ill-posed, in the sense that if the solution does
exist, it will not depend continuously on the data. To regularize the problem, we use the quasi-
boundary method and the quasi-reversibility method to establish a modified problem. We present
approximated solutions that depend on a small parameter � > 0 and give error estimates for our
regularization.
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1. INTRODUCTION

Let K D< and let H be a Hilbert space on K with the inner product < �; � > and
the norm k � k. Let A WD.A/!H be a self-adjoint operator defined on a subspace
D.A/ of the vector spaceH , such that �A generates a contraction semi-group onH .
Consider the backward parabolic equation of finding a function u W Œ0;T �!H , such
that

ut CAu.t/D f .t;u.t//; 0 < t < T; (1.1)

u.T /D '; (1.2)

where ' 2 H is a prescribed final value and f W R�H ! H is a given Lipschitz
function. We can rewrite the above problem as the following integral equation (see,
e.g., [1], chapter 4)

u.t/D S.T � t /�1'�

TZ
t

S.s� t /�1f .s;u.s//ds; (1.3)

c
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where S.t/; t � 0 is the semigroup (generated by�A) which is defined precisely later.
This problem is well known to be severely ill-posed; i.e., solutions do not always
exist, and when they do exist, they do not depend continuously on the given data. In
addition, the ill-posed problem is very sensitive to the measurement errors (see, e.g.,
[2]). The final data is usually the result of discretely experimental measurements and
thus patched into L2-functions which resulted an error. With the natural error, the
normal computation is intractable, that require some special regularization methods.
Backward parabolic equations are very important in various practical situations and
there have been many articles devoted to this problem. The linear homogeneous case
f D 0 of this problem has been considered by many authors, using many different
approaches. In the case when A has discrete spectrum, backward problems have
been studied in many recent papers, such as [5–7, 9, 10, 12]. For some of works on
the continuous spectrum of A, we refer the reader to N.Boussetila and F. Rebbani
[3, 4], Denche and S. Djezzar [7], N.H. Tuan and D.D. Trong [13, 14]. As far as
we know, we did not find any results concerned with nonlinear backward Cauchy
problems with spectrum continuous operator. In this paper, we are going to modify
the quasi-boundary value (QBV) and the quasi-reversibility methods to solve (1.1)–
(1.2). In fact, we shall establish approximated solutions on the interval Œ0;T Cm�
(instead of Œ0;T �) with m > 0. Moreover, we shall prove that this idea the same
stability magnitude order as the one in the case of QBV method (we can see the same
idea in [8]).

The paper is organized into sections as follows: In Section 3, we shall regularize
the homogeneous problem. In Section 4, we describe our regularization method for
the nonlinear case.

2. AUXILIARY RESULTS

In this section, we present the notation and the functional setting which will be use
in this paper to prepare some material which will be used in our analysis.

Let a be a positive number. We denote by fE�; � � ag the spectral resolution of
the identity associated to A.

We denote by S.t/ D e�tA D
R1
a e�t�dE� 2 L.H/, t � 0, the C0-semigroup

generated by �A. Some basic properties of S.t/ are listed in the following theorem.

Theorem 1 (See [11], Ch.2, Theorem 6.13, p.74). For the family of operators
S.t/; t � 0 the following properties are valid:

(1) kS.t/k � 1, for all t � 0;
(2) the function t 7�! S.t/, t > 0, is analytic;
(3) for every real r � 0 and t > 0, the operator S.t/ 2L.H;D.Ar//;
(4) for every x 2D.Ar/, r � 0 we have S.t/Arx D ArS.t/x.
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Definition 1. Let A W D.A/ � H ! H be a self-adjoint operator on the Hilbert
space H and let g W R!K be a piecewise continuous function. We set

D.g.A//D fu 2H W

Z C1
a

jg.�/j2dkE�uk
2 <1g

and define the linear operator g.A/ WD.A/�H !H by the formula

g.A/uD

Z C1
a

g.�/dE�u;

for all u 2D.g.A//:

3. REGULARIZATION OF THE HOMOGENEOUS PROBLEM

In this section, we shall consider the homogeneous problem

ut CAu.t/D 0; 0 < t < T; (3.1)

u.T /D '; (3.2)

It is useful to state that the admissible set refers to the final value '. The following
lemma gives an answer to this question.

Lemma 1. Problem (3.1)–(3.2) has a solution if and only ifZ 1
a

e2�T dkE�'k
2 <1

and its unique solution is represented by

u.t/D e.T�t/A': (3.3)

If the problem (1.1) admits a solution u then this solution can be represented by

u.t/D e.T�t/A' D

Z 1
a

e�.T�t/dE�': (3.4)

Since t < T , we know from (3.4) that the terms e�.t�T /� is the source of the instabi-
lity. So, to regularize problem (3.4), we should replace it by the better terms. Let '
and '� denote the exact and measured data at t D T; respectively, which satisfy

k'�'�k � �;

where � is a noise level. In this paper, we perturbed the final condition u.T / D
' to form an approximate nonlocal problem depending on a small parameter. We
introduced the regularized problem with boundary condition containing a derivative
of the same order than the equation as the following equation

v�t CAv
�
D 0; 0 < t < T Cm

�v�t .0/Cv
�.T Cm/D '�
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wherem>0 is a fixed number. From [7], the approximated solution v� corresponding
to the final value '� is given as

v�.t/D

Z 1
a

e��t

��C e��.TCm/
dE�'�; t 2 Œ0;T Cm�: (3.5)

To get an error estimate for kv�.tCm/�u.t/k, we will use the function

u�.t/D

Z 1
a

e��t

��C e��.TCm/
dE�'; t 2 Œ0;T Cm�: (3.6)

Theorem 2. Assume that u has the eigenfunction expansion u.t/D
R1
0 dE�u.t/:

a) Assume that there exist a positive constant C1 such that kAu.0/k � C1. Then for
every t 2 Œ0;T �;

kv�.tCm/�u.t/k � �
tCm
TCm

� T Cm

ln.TCm
�
/

� T�t
TCm
C

C1

ln.TCm
�
/
: (3.7)

b) Assume that there exist positive constants m and C2 such thatZ 1
a

�2e2.tCm/�dkE�u.0/k
2
� C 22 : (3.8)

Then for every t 2 Œ0;T �;

kv�.tCm/�u.t/k � .C2C1/�
tCm
TCm

� T Cm

ln.TCm
�
/

� T�t
TCm

: (3.9)

Proof. First, we prove the following useful lemma.

Lemma 2. Let s; t; �;m;�;� be real numbers such that 0� t � s � T , � 2 .a;1/
and 0 < � < eT . Then the following estimate holds for all � 2 .a;1/

e�.tCm/�

��C e�.TCm/�
� �

t�T
TCm

� T Cm

ln.TCm
�
/

� T�t
TCm

: (3.10)

Proof. For � > 0, we define the function

h.�/D
1

��C e��.TCm/
:

Then

h.�/� h
� ln.TCm

�
/

T Cm

�
D

T Cm

�
�
1C ln.TCm

�
/
� � 2 .0;eT /:

Hence
1

��C e�.TCm/�
�

1

� ln.TCm
�
/
: (3.11)
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Using (3.11), we obtain

e�.tCm/�

��C e�.TCm/�
D

e�.tCm/��
��C e�.TCm/�

� tCm
TCm

�
�C e�.TCm/�

� T�t
TCm

�
1

.��C e�.TCm/�/
T�t
TCm

�

� T Cm

� ln.TCm
�
/

� T�t
TCm

D �
t�T
TCm

� T Cm

ln.TCm
�
/

� T�t
TCm

:

�

Now, we prove Theorem 2. The proof is divided into three steps.
Step 1. Estimate kv�.tCm/�u�.tCm/k. For every � 2 .0;1/,

v�.tCm/�u�.tCm/D

Z 1
a

e��.tCm/

��C e��.TCm/
dE�.'��'/

we have

kv�.tCm/�u�.tCm/k2 D

Z 1
a

� e��.tCm/

��C e��.TCm/

�2
dkE�.'��'/k

2

� �
2t�2T
TCm

� T Cm

ln.TCm
�
/

� 2T�2t
TCm

Z 1
a

dkE�.'��'/k
2

� �
2t�2T
TCm

� T Cm

ln.TCm
�
/

� 2T�2t
TCm
k'��'k

2

� �
2t�2T
TCm

� T Cm

ln.TCm
�
/

� 2T�2t
TCm

�2

� �
2tC2m
TCm

� T Cm

ln.TCm
�
/

� 2T�2t
TCm

:

Thus

kv�.tCm/�u�.tCm/k � �
tCm
TCm

� T Cm

ln.TCm
�
/

� T�t
TCm

:

Step 2. We estimate ku�.tCm/�u.t/k if kAu.0/k � C1.

u�.tCm/�u.t/D

Z 1
a

� e��.tCm/

��C e��.TCm/
� e.T�t/�

�
dE�'
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D

Z 1
a

��e.T�t/�

��C e�.TCm/�
dE�'

Since (3.4), we have u.0/D
R1
a e�T dE�': Thus dE�' D e��T dE�u.0/: This imp-

lies that

u�.tCm/�u.t/D

Z 1
a

��e�t�

��C e�.TCm/�
dE�u.0/:

Applying the inequality (3.11), we obtain

ku�.tCm/�u.t/k2 D

Z 1
a

� ��e�t�

��C e�.TCm/�

�2
dkE�u.0/k

2

�

� �

� ln.TCm
�
/

�2Z 1
a

�2dkE�u.0/k
2

�

� 1

ln.TCm
�
/

�2
kAu.0/k2:

Therefore

ku�.tCm/�u.t/k �
1

ln.TCm
�
/
kAu.0/k:

It implies that

kv�.tCm/�u.t/k � kv�.tCm/�u�.tCm/kCku�.tCm/�u.t/k

� �
tCm
TCm

� T Cm

ln.TCm
�
/

� T�t
TCm
C

1

ln.TCm
�
/
kAu.0/k:

Step 3. Estimate ku�.tCm/�u.t/k if
R1
a �2e2.tCm/�dkE�u.0/k

2 � C 22 .
Since u�.tCm/�u.t/D

R1
a

��
��Ce�.TCm/�

dE�u.0/, we have

u�.tCm/�u.t/D

Z 1
a

��

��C e�.TCm/�
dE�u.0/

D

Z 1
a

��e�.tCm/�

��C e�.TCm/�
e.tCm/�dE�u.0/:

Then

ku�.tCm/�u.t/k2 D

Z 1
a

� �e�.tCm/�

��C e�.TCm/�

�2�
�e.tCm/�

�2
dkE�u.0/k

2

� �2�
2t�2T
TCm

� T Cm

ln.TCm
�
/

� 2T�2t
TCm

Z 1
a

�2e2.tCm/�dkE�u.0/k
2

D �
2tC2m
TCm

� T Cm

ln.TCm
�
/

� 2T�2t
TCm

Z 1
a

�2e2.tCm/�dkE�u.0/k
2:
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Thus

ku�.tCm/�u.t/k � �
tCm
TCm

� T Cm

ln.TCm
�
/

� T�t
TCm

sZ 1
a

�2e2.tCm/�dkE�u.0/k
2:

Applying the triangle inequality, we obtain

kv�.tCm/�u.t/k � kv�.tCm/�u�.tCm/kCku�.tCm/�u.t/k

� �
tCm
TCm

� T Cm

ln.TCm
�
/

� T�t
TCm

C �
tCm
TCm

� T Cm

ln.TCm
�
/

� T�t
TCm

sZ 1
a

�2e2.tCm/�dkE�u.0/k
2

� .C2C1/�
tCm
TCm

� T Cm

ln.TCm
�
/

� T�t
TCm

:

�

4. REGULARIZATION OF THE NONLINEAR PROBLEM

In this section, we shall approximate the problem (1.1)–(1.2) by the following
problem

d

dt
u�.t/CA�u

�.t/D B.�; t/f .t;u�.t//; t 2 .0;T /; (4.1)

u�.T /D '; (4.2)

where A�;B.�; t/ are defined in (4.3) and (4.4). For every v 2H having the expan-
sion v D

RC1
a dE�v; we define

S.t/v D

Z C1
a

e�t�dE�v:

A�.v/D�
1

T Cm

Z C1
a

ln.�C e�.TCm/�/dE�v: (4.3)

B.�; t/.v/D

Z C1
a

.1C �e.TCm/�/
t�T
TCmdE�v; t 2 Œ0;T �: (4.4)

.�I CS.T Cm//
t�T
TCm v D

Z C1
a

dE�v

.�C e�.TCm/�/
T�t
TCm

(4.5)

Notice that if f D 0 then the problem (4.1)–(4.2) has been studied in [4]. The main
theorem is as follows

Theorem 3. Let ' 2 H . Then the problem .4:1/� .4:2/ has a unique solution
u� 2 H . Let m > 0 be a positive number. Let u 2 C.Œ0;T �IH/ be a solution of
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(1.1)–(1.3). Assume that u has the eigenfunction expansion u.t/ D
RC1
a dE�u.t/

satisfying
RC1
a e2.TCm/�dkE�u.t/k

2 <1 for every t 2 .0;T �. Let '� be a mea-
sured data such that k'��'k � � where � 2 .0;minfT;1�e�Tag/. Using '� we can
construct a function U � W Œ0;T �!H such that

kU �.t/�u.t/k � .1CB/ek.T�t/�
tCm
TCm ; 8t 2 .0;T �; (4.6)

where � 2 .0;minfT;1� e�Tag/ , U � is a solution of (4.1) with U �.T /D '� and

B D sup
t2Œ0;T �

sZ C1
a

e2.TCm/�dkE�u.t/k
2

Remark 1. The estimate (4.6) for t D 0 is �
m

TCm which depends onm. To improve
this, we estimate u.0/ by another direction. In fact, for � > 0, we can choose t� 2
.0;�/ such that

ku.0/�U �.t�/k �
h
.1CB/ekT CT kf .0/k

iT C1
T

s
T

ln.1
�
/
:

Proof. First, we introduce some useful lemmas for the proof of main results in this
paper.

Lemma 3. Let � > 0 and 0 < t < s < T . Let A� be defined in (4.3) where � 2
.0;1�e�Ta/. Let B.�; t/ be defined as in (4.4). Then the following inequalities hold:

a) k.�I CS.T Cm//
t�T
TCm k � �

t�T
TCm

b) kS.T � s/.�I CS.T Cm//
t
T
�1
k � �

t�s
TCm :

c) kA�k � 1
T

ln.1
�
/:

d) kB.�; t/k � 1:

Proof. a) Let v 2H and let v D
RC1
a dE�v be the eigenfunction expansion of v.

We have

.�I CS.T Cm//
t�T
TCm v D

Z C1
a

dE�v

.�C e�.TCm/�/
T�t
TCm

:

Then

k.�I CS.T Cm//
t�T
TCm vk2 D

Z C1
a

dkE�vk
2

.�C e�.TCm/�/
2T�2t
TCm

�

Z C1
a

dkE�vk
2

�
2T�2t
TCm

D �
2t�2T
TCm kvk2:

Therefore, we obtain

k.�I CS.T Cm//
t�T
TCm k � �

t�T
TCm :
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b) First, let v 2H , we get

kS.T � s/.�I CS.T Cm//
t�T
TCm .v/k2

D

Z C1
a

e2.s�T /�.�C e�.TCm/�/
2t�2T
TCm dkE�vk

2

D

Z C1
a

.�e.TCm/�C1/
2s�2T
TCm .�C e�.TCm/�/

2t�2s
TCm dkE�vk

2

�

Z C1
a

.�C e�.TCm/�/
2t�2s
TCm dkE�vk

2

�

Z C1
a

�
2t�2s
TCm dkE�vk

2

D �
2t�2s
TCm kvk2:

Then, the following inequality is obtained

kS.T � s/.�I CS.T Cm//
t�T
TCm k � �

t�s
TCm :

c) We have

kA�.v/k
2
D

1

.T Cm/2

Z C1
a

ln2.
1

�C e�.TCm/�
/dkE�vk

2:

Since � 2 .0;1� e�Ta/, we obtain �C e�.TCm/� < 1; 8�� a. But

0 < ln.
1

�C e�.TCm/�
/ < ln.

1

�
/:

It follows that

kA�.v/k
2
�

1

.T Cm/2
ln2.

1

�
/

Z C1
a

dkE�vk
2
�

1

T 2
ln2.

1

�
/kvk2:

d) Takingv 2H , we have

kB.�; t/.v/k2 D

Z C1
a

.1C �e.TCm/�/
2t�2T
TCm dkE�vk

2
�

Z C1
a

dkE�vk
2
D kvk2;

which finishes the proof.
�

Lemma 4. Let ' 2H and let f W R�H !H be a continuous operator satisfying
kf .t;w/�f .t;v/k � kkw� vk for a k > 0 independent of w;v 2 H;t 2 R. Then
problem (4.1)–(4.2) has a unique solution u� 2 C.Œ0;T �IH/ for any 0 < � < 1�
e�Ta.
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Proof. The proof of Lemma 4 is divided into three steps.
Step 1.
For w 2 C.Œ0;T �IH/, we define

F.w/.t/D .�I CS.T Cm//
t�T
TCm

h
'�

TZ
t

S.T � s/f .s;w.s//ds
i
: (4.7)

For every w;v 2 C.Œ0;T �IH/, we shall prove that

kF n.w/.t/�F n.v/.t/k �

�
k.T � t /

�

�n C n
nŠ
jjjw�vjjj; (4.8)

where C DmaxfT;1g and jjj:jjj is the sup norm in C.Œ0;T �IH/. Using the induction
method we can verify the latter inequality. We have

F.v/.t/D .�I CS.T Cm//
t�T
TCm

h
'�

TZ
t

S.T � s/f .s;v.s//ds
i
: (4.9)

Using (4.7),(4.9), Lemma 3 and the Lipschitz property of f , we have

kF.w/.t/�F.v/.t/k D k

TZ
t

S.T � s/.�I CS.T Cm//
t�T
TCm .f .s;w.s//�f .s;v.s//dsk

�
k

�

TZ
t

kw.s/�v.s/kds � C
k

�
.T � t /jjjw�vjjj:

Thus, (4.8) holds for nD 1. Suppose that (4.8) holds for nD j . We prove that it also
holds for nD j C1. In fact, we have

kF jC1.w/.t/�F jC1.v/.t/k

D k

TZ
t

S.T � s/.�I CS.T Cm//
t�T
TCm .f .F jw/.s/�f .F j v/.s//dsk

�
1

�
.T � t /k

TZ
t

kF j .w/.s/�F j .v/.s/k2ds

�

�
k

�

�.jC1/ .T � t /jC1
.j C1/Š

C jC1jjjw�vjjj:

Therefore, by the induction principle, we have (4.8) for all w;v 2 C.Œ0;T �IH/. We

consider F W C.Œ0;T �IH/! C.Œ0;T �IH/. Since lim
n!1

�
kT
�

�n
Cn

nŠ
D 0, there exists



REGULARIZATION FOR A NONLINEAR BACKWARD 301

a positive integer n0 such that F n0 is a contraction. It follows that the equation
F n0.w/D w has a unique solution u� 2 C.Œ0;T �IH/.

We claim thatF.u�/Du�. In fact, one hasF.F n0.u�//DF.u�/. HenceF n0.F.u�//D
F.u�/. By the uniqueness of the fixed point of F n0 , one has F.u�/ D u�, i.e., the
equation F.w/D w has a unique solution u� 2 C.Œ0;T �IH/.

Step 2.
Suppose u� is the unique solution of the integral equation (4.7), then u� is also a
solution of the (4.1)–(4.2).
In fact, we have

u�.t/D .�I CS.T Cm//
t�T
TCm

h
'�

TZ
t

S.T � s/f .s;u�.s//ds
i
; t 2 Œ0;T �:

Taking the derivative of u�.t/, and by direct computation, we get
d

dt
u�.t/D A�u

�.t/CB.�; t/f .t;u�.t//:

Now, we are clear to see that
u�.T /D ':

Hence, u� is a solution of problem (4.1)–(4.2).
Step 3. The problem (4.1)–(4.2) has at most one solution in C.Œ0;T �IH/.

Let u and v be two solutions of problem (4.1)–(4.2) such that u;v 2 C.Œ0;T �IH/.
First, we denote g W R�H !H by

g.t;u.t//D B.�; t/f .t;u.t//:

Next, because the property of function f , we have for any w;v 2H

kg.t;w.t//�g.t;v.t//k � kB.�; t/kkf .t;w/�f .t;v/k � kkw�vk:

Let b be a positive constant, we put

w.t/D e�b.t�T /.u.t/�v.t// b > 0:

By calculating directly, we can get

wtCA�w.t/�bw.t/D e
b.t�T /

�
g.t;e�b.t�T /u.t//�g.t;e�b.t�T /v.t//

�
:

It follows that

<wt .t/CA�w.t/�bw.t/;w.t/ >

D< eb.t�T /
�
g.t;e�b.t�T /u.t//�g.t;e�b.t�T /v.t//

�
;w.t/ > :

Using the Lipschitz property of f , we have

j< eb.t�T /
�
g.t;e�b.t�T /u.t//�g.t;e�b.t�T /v.t//

�
;w.t/ > j � kkw.t/k2:
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So we obtain

< eb.t�T /
�
g.t;e�b.t�T /u.t//�g.t;e�b.t�T /v.t//

�
;w.t/ > � �kkw.t/k2:

Using Lemma 3 c), we have

j< A�w.t/;w.t/ > j �
1

T
ln.
1

�
/kw.t/k2;

which gives

< A�w.t/;w.t/ > � �
1

T
ln.
1

�
/kw.t/k2:

This implies that

1

2

d

dt
kw.t/k2 � bkw.t/k2�kkw.t/k2�

1

T
ln.
1

�
/kw.t/k2:

Let any t1 2 Œ0;T �: Taking the integral with respect to t from t1 to T , we get

kw.T /k2�kw.t1/k
2
� 2

Z T

t1

.b�k�
1

T
ln.
1

�
//kw.t/k2dt:

Choosing b D kC 1
T

ln.1
�
/ and noting that w.T / D 0, we get w.t1/ D 0. Hence,

w.t/D 0 or u.t/D v.t/; 8t 2 Œ0;T �. This completes the proof of step 3. �

Lemma 5. The (unique) solution of problem (4.1)–(4.2) depends continuously (in
C.Œ0;T �IH// on '.

Proof. Let u and v be two solutions of problem (4.1)–(4.2) corresponding to the
final values ' and ! respectively. We have

u.t/�v.t/D .�I CS.T Cm//
t�T
TCm .'�!/

�

TZ
t

S.T � s/.�I CS.T Cm/
t�T
TCm .f .u.s/�f .v.s//ds:

Applying Lemma 3 and the Lipchitz property of f we get

ku.t/�v.t/k � k.�I CS.T Cm//
t�T
TCm .'�!/k

Ck

TZ
t

S.T � s/.�I CS.T Cm//
t�T
TCm .f .u.s/�f .v.s//dsk

� �
t�T
TCm k'�!kCk

TZ
t

�
t�s
TCm ku.s/�v.s/kds:
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Therefore

�
�t
TCm ku.t/�v.t/k � ��

T
TCm k'�!kCk

TZ
t

��
s

TCm ku.s/�v.s/kds:

Applying Gronwall’s inequality, we obtain

ku.t/�v.t/k � �
t�T
TCm ek.T�t/k'�!k:

So, the solution of the problem (4.1)–(4.2) is depended continuously on '. �

Now, we turn to
Proof of Theorem 3. In view of (1.3), we have

u.t/D S.t �T /'�

TZ
t

S.t � s/f .u.s//ds:

It follows that

S.T � t /.�I CS.T Cm//.t�T /=TCmu.t/

D .�I CS.T Cm//
t�T
TCm'�

TZ
t

S.T � s//.�I CS.T Cm//
t�T
TCmf .u.s//ds:

Applying Lemma 3 and the inequality 1� .1Cx/�˛ � x˛; .x;˛ > 0/ we get

ku.t/�u�.t/k �

TZ
t

kS.T � s/.�I CS.T Cm//
t�T
TCm k kf .u.s//�f .u�.s//kds

Ck.I �S.T � t /.�I CS.T Cm//
t�T
TCm /u.t/k

� k

TZ
t

�
t�s
TCm ku.s/�u�.s/kds

C

sZ C1
a

�
1� .1C �e.TCm/�

� t�T
TCm

/2dkE�u.t/k
2

� k�
tCm
TCm

TZ
t

��
sCm
TCm ku.s/�u�.s/kds

C �
T � t

T Cm

sZ C1
a

e2.TCm/�dkE�u.t/k
2:
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Noting that 0 < � < �
tCm
TCm (0 < � < 1), we obtain

�
�t�m
TCm ku.t/�u�.t/k � BCk

TZ
t

�
�s�m
TCm ku.s/�u�.s/kds:

Using Gronwall’s inequality we obtain

�
�t�m
TCm ku.t/�u�.t/k � Bek.T�t/:

Therefore
ku.t/�u�.t/k � Bek.T�t/�

tCm
TCm :

It follows from Lemma 5 that

kU �.t/�u�.t/k � �
t�T
TCm ek.T�t/k'��'k � e

k.T�t/�
tCm
TCm :

Therefore

kU �.t/�u.t/k � kU �.t/�u�.t/kCku�.t/�u.t/k

� .1CB/ek.T�t/�
tCm
TCm ;

for every t 2 .0;T /:
This completes the proof of Theorem 3.

�

Proof of Remark 1. For t 2 .0;T /, considering the function h.t/D ln t
t
�

ln�
T

, we
have h.�/ > 0; lim

t!0
h.t/D �1;h0.t/ > 0; .0 < t < �/. It follows that the equation

h.t/D 0 has a unique solution t� in .0;�/. Since ln t�
t�
D

ln�
T

, the inequality ln t > �1
t

gives t� <
r

T

ln 1
�

.

We have u.t�/�u.0/ D
R t�
0 u
0.t/dt . Hence ku.0/�u.t�/k � t� sup

t2Œ0;T �

ku0.t/k. On

the other hand, one has

ku0.t/k � kAu.t/kCkf .u.t//k �

sZ C1
a

�2dkE�u.t/k
2Ckku.t/kCkf .0/k

�
1

T

sZ C1
a

e2T�dkE�u.t/k
2Ckku.t/kCkf .0/k

� .
1

T
Ck/BCkf .0/k:

It follows that ku.0/�u.t�/k �
h
. 1
T
Ck/BCkf .0/k

i
t� : From (4.3), (4.4) and the

definition of t� we get

ku.0/�U �.t�/k � ku.0/�u.t�/kCku.t�/�U
�.t�/k
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� t� sup
t2Œ0;T �

ku0.t/kC .1CB/ek.T�t�/�
t�Cm
TCm

�

h
.
1

T
Ck/BCkf .0/k

i
t�C .1CB/e

kT �
t�
T :

Since �
t�
T D t� and . 1

T
Ck/B � .1CB/ekT

T
we have

ku.0/�U �.t�/k �
h
.1CB/ekT CT kf .0/k

iT C1
T

t�

�

h
.1CB/ekT CT kf .0/k

iT C1
T

s
T

ln.1
�
/
:
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[9] D. N. Hào, N. Van Duc, and H. Sahli, “A non-local boundary value problem method for parabolic
equations backward in time,” J. Math. Anal. Appl., vol. 345, no. 2, pp. 805–815, 2008.

[10] Y. Huang and Q. Zheng, “Regularization for a class of ill-posed Cauchy problems,” Proc. Am.
Math. Soc., vol. 133, no. 10, pp. 3005–3012, 2005.

[11] A. Pazy, Semigroups of linear operators and applications to partial differential equations, ser.
Applied Mathematical Sciences. New York: Springer-Verlag, 1983, vol. 44.



306 NGUYEN HUY TUAN, NGUYEN DO MINH NHAT, AND DANG DUC TRONG

[12] N. H. Tuan, P. H. Quan, D. D. Trong, and N. D. M. Nhat, “A nonlinear backward parabolic
problem: regularization by quasi-reversibility and error estimates,” Asian-Eur. J. Math., vol. 4,
no. 1, pp. 145–161, 2011.

[13] N. H. Tuan and D. D. Trong, “A simple regularization method for the ill-posed evolution equation,”
Czech. Math. J., vol. 61, no. 1, pp. 85–95, 2011.

[14] N. H. Tuan, D. D. Trong, and P. H. Quan, “On a backward cauchy problem associated with con-
tinuous spectrum operator,” Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods,
vol. 73, no. 7, pp. 1966–1972, 2010.

Authors’ addresses

Nguyen Huy Tuan
Division of Applied Mathematics, Ton Duc Thang University, Nguyen Huu Tho Street, District 7,

Hochiminh City, Vietnam.
E-mail address: tuannh@tdt.edu.vn

Nguyen Do Minh Nhat
Department of Mathematics, Wayne State University, 656 W. Kirby, 1150 FAB, Detroit, MI 48202,

USA
E-mail address: nhatnguyen@wayne.edu

Dang Duc Trong
Department of Mathematics and Computer Sciences, Hochiminh City National University, 227

Nguyen Van Cu, Hochiminh City, Vietnam
E-mail address: ddtrong@hcmus.edu.vn


