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Abstract. In this paper, we extend the preconditioners of Sturler and Liesen [SIAM J. Sci. Com-
put., 26(2005): 1598-1619]. The spectral characteristics of the preconditioners are investigated
and the results show that all eigenvalues of the preconditioned matrices are strongly clustered.
Finally, numerical experiments are also reported for illustrating the efficiency of the presented
preconditioners.
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1. INTRODUCTION

Consider the following general nonsingular saddle point linear system

A� �

�
G BT

C 0

��
x

y

�
D

�
b

q

�
D f; (1.1)

where G 2 Rn�n, B;C 2 Rn�m have full rank, x;b 2 Rn and y;q 2 Rm, and the
vectors x;y are unknown. Here we assume that A is nonsingular, that will be used
in the following analysis. Under these assumptions, system (1.1) has a unique solu-
tion. This system is very important and appears in many different applications of
scientific computing, such as constrained optimization [1, 16], the finite element or
finite difference methods of solving the Navier-Stokes equation [4–7], fluid dynam-
ics, constrained least problems and generalized least squares problems [10–12], and
the discretized time-harmonic Maxwell equations in mixed form [9].

Results for the general systems have been obtained before, for example, Murphy,
Golub and Wathen [3] proposed the block-diagonal preconditioner�

G�1 0

0 .CG�1BT /�1

�
:
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Then the preconditioned matrices are diagonalizable and have at most three distinct
eigenvalues. Hence, a Krylov subspace method will converge in at most three steps.
Because such a general system is typically large and sparse, the preconditioner is
expensive. Recently, Sturler and Liesen [14] considered the following preconditioner�

D�1 0

0 .CD�1BT /�1

�
;

where G D D �E and D can be efficiently inverted. For such a preconditioner,
one should assume that A and CD�1BT are invertible. But it may be expensive to
compute CD�1BT , and the matrix CD�1BT may be singular, so we introduce the
following preconditioner �

D�1 0

0 .F CCD�1BT /�1

�
;

where D and F CCD�1BT are invertible. We can get a suitable F such that
F CCD�1BT is invertible and we can reduce the computing cost of the Schur
complement. If we choose suitable D and F , we find that all of the block diag-
onal preconditioners can be included. When G is singular or ill-conditioned, such
preconditioners can still be applied.

This paper is organized as follows. In Section 2, we will establish new precon-
ditioners and study their spectral analysis for the saddle point systems. The related
systems are given in Section 3. In Section 4, numerical experiments are given. Fi-
nally, the conclusions are presented in Section 5.

2. BLOCK DIAGONAL PRECONDITIONER

We split G as G DD�E, whereD is easy to solve. CD�1BT is the exact Schur
complement of the matrix �

D BT

C 0

�
:

In this paper, we introduce the following preconditioner which is a generalization of
the preconditioners of [14]:

P.D/D

�
D�1 0

0 .F CCD�1BT /�1

�
:

Then we get the left preconditioned matrix:

B.F /D P.D/AD

�
I �D�1E D�1BT

.F CCD�1BT /�1C 0

�
D

�
I �S N

M 0

�
;

(2.1)
where,
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MN D .F CCD�1BT /�1CD�1BT

D .F CCD�1BT /�1.F CCD�1BT
�F /

D I C .�.F CCD�1BT /�1F /

D I CQ:

When F D 0, MN D I (it is the case in [14]), and the preconditioner reduces to
the preconditioner in [14]. If B D C , E D CTW �1B and F D W �CD�1BT , it
reduces to the block diagonal preconditioner in [13] and [8].

In the following analysis, we discuss the eigendecomposition of the matrix

B0 D

�
I N

M 0

�
; (2.2)

and we assume that Q is diagonalizable and 5C4ıj ¤ 0, where Qvj D ıj vj .

Theorem 1. Let B0 be of the form (2.2). Then B0 has the following eigenvalues
and eigenvectors:

(a) n�m eigenpairs of the form .1; ŒuT
j ;0�

T /, where u1; � � � ;un�m form a basis of
Null.M/, the nullspace of M .

(b) 2m eigenpairs of the form .�˙; Œuj ; .�
˙/�1.Muj /

T �T /, where �˙ D .1˙p
5C4ıj /=2, and Qvj D ıj vj . Then the eigenvector matrix Y of B0 is given by

Y D

�
U1

0

U2

.�C/�1MU2

U2

.��/�1MU2

�
; (2.3)

where U1 D Œu1; � � � ;un�m� and U2 D Œun�mC1; � � � ;un�.

Proof. We consider the equation

B0Œu
T ;vT �T D �ŒuT ;vT �T ;

which is equivalent to the following two equations

uCNv D �u; (2.4)

MuD �v: (2.5)
Since B0 is nonsingular, we can assume �¤ 0. So from (2.5), we have

v D ��1Mu:

First, we assume �D 1. Substituting this into (2.4) and (2.5), we have

Nv D 0 and MuD v: (2.6)

Since BT has full column rank by assumption, this implies that v D 0 and that B0

has only eigenpairs of the form .1; ŒuT
j ;0�

T /; where u 2 nul l.M/.
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Since C has full row rank, so does M , and B0 has precisely n�m distinct eigen-
pairs of this type. Next, we assume �¤ 1. From (2.4), we can get

uD .��1/�1Nv:

Substituting this into (2.5) yields

Qvj D .�
2
���1/vj : (2.7)

Hence, vj must be eigenvectors of Q, we assume that Qvj D ıj vj . Then we solve
(2.7) for � to yield

�˙ D

�
1˙

q
5C4ıj

�
=2:

So, the remaining 2m eigenpairs are .�˙; Œuj ; .�
˙/�1.Muj /

T �T /. �

We are now ready to consider the perturbation bounds on the eigenvalues of B.F /.
Throughout this paper k�k indicates the 2-norm, and we let

Y D

�
U1

0

U2

.�C/�1MU2

U2

.��/�1MU2

�
D

�
Y11 Y12

Y21 Y22

�
;


C D diag..��j �1/=.�
�
j ��

C
j //;


� D diag..�Cj �1/=.�
�
j ��

C
j //:

Theorem 2. Consider matrices B.F / of the form (2.1). Let Y be the eigenvector
matrix of B0, as given by (2.2). Then for each eigenvalue �B of B.F / there exists an
eigenvalue � of B0 such that

j�B ��j �





Y �1

�
S 0

0 0

�
Y






� 2max.1;




C

 ;k
�k/

Y �1
11 SY11



 : (2.8)

Proof. SinceB0 is diagonalizable, this follows from a classic result in perturbation
theory [15]. We expand the right-hand side of (2.8) (see also [3, 14]

j�B ��j �





� OIY �1
11 SY11

OIY �1
11 SY12

�Œ0;
��Y �1
11 SY11 �Œ0;
��Y �1

11 SY12

�




�
p
2max.1;




C

 ;k
�k/



� Y �1
11 SY11

�Œ0;I �Y �1
11 SY11

�




� 2max.1;




C

 ;k
�k/

Y �1
11 SY11



 :
�

We can find that, if ıj ��5=4, 
˙ can be very large. So we should take a suitable
Q such that the value of ıj are well separated from �5=4. In section 4, we will
present some choices.
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Now we will derive a bound on


Y �1

11 SY11



, following the approach in [3, 14].
Recall that Y11 D Œ U1 U2 �, where U T

1 U1 D I and U2 DNV with unit columns.
Let U2 D V2�, where V T

2 V2 D I . Furthermore, denote !1 D


U T

1 V2



.

Theorem 3. Define Y11, S , U1, U2, V2, � and !1 as above, and let �.:/ denote
the 2-norm condition number. Then

Y �1

11 SY11



� �.�/�1C!1

1�!1

�1=2

kSk :

The proof is similar to that of Lemma 2.3 in [14].

3. FIXED-POINT METHOD AND ITS RELATED SYSTEM

We can derive the following splitting from (2.1):

B.F /

�
x

y

�
D

�
I �S N

M 0

��
x

y

�
D

�
B0�

�
S 0

0 0

���
x

y

�
D

�
f

g

�
:

(3.1)
Note that

B�1
0 D

�
In�N.MN/

�1M N.MN/�1

.MN/�1M �.MN/�1

�
: (3.2)

We left-multiply (3.1) by B�1
0 to yield the fixed-point iteration�

xkC1

ykC1

�
D

�
.I �N.MN/�1M/S 0

..MN/�1M/S 0

��
xk

yk

�
C

� bfbg
�
: (3.3)

So we can get the related system for the fixed-point iteration

.I � .I �N.MN/�1M/S/x D bf : (3.4)

Theorem 4. The spectral radius of the fixed point iteration matrix in (3.3) and the
eigenvalues �R of the related system matrix in (3.4) satisfy

�.I � .I �N.MN/�1M/S/

j1��Rj

�
�

kSk

.1�!2
1/

1=2
; (3.5)

where !1 is the largest singular value of U T
1 U2.

Proof. Let bN DN.MN/�1;cM DM . We have

.I � bNcM/U1 D U1; .I � bNcM/U2 D 0:

Thus

.I � bNcM/S D .U1;U2/

�
In�m 0

0 0

�
.U1;U2/

�1S;
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Then, similary to the proof of Theorem 4.4 in [3], we have

�.I � .I �N.MN/�1M/S/

j1��Rj

�
�

kSk

.1�!2
1/

1=2
:

�

Generally, this leads to better clustering and tighter bounds for the related system
than for the block-diagonally preconditioned system. Because of these advantages,
the related system will generally have faster convergence than the block-diagonally
preconditioned system, as we will see it in section 4.

4. NUMERICAL EXAMPLES

All the numerical experiments were performed with MATLAB 7.0. In all of our
runs we used a zero initial guess. The stopping criterion is jjr.k/jj2=jjr

.0/jj2 � 10
�6,

where r.k/ is the residual vector after the k-th iteration. The right-hand side vectors b
and q are taken such that the exact solutions x and y are both vectors with all of their
components equal to 1. The initial guess is chosen to be the zero vector. We will use
preconditioned GMRES(10) to solve the saddle point-type systems. Our numerical
experiments are similar to ones in [2]. The matrices considered are taken from [2]
with a slightly altered notations. We construct the saddle point-type matrix A from a
transformed matrix OA of the following form

OAD

0@ F1 0 BT
u

0 F2 BT
v

Bu Bv 0

1A ;
whereG D

�
F1 0

0 F2

�
is positive real. The matrix OA arises from the discretization

by the maker and cell finite direrence scheme of a leaky two dimensional liddriven
cavity problem in a square domain .0� x � 1I0� y � 1/. Then the matrix .Bu;Bv/

is replaced by a random matrix OB with the same sparsity as .Bu;Bv/, replaced by
B1D OB.1 Wm;1 Wm/�

3
2
Im, such that B1 is nonsingular. Denote B2D OB.1 Wm;mC

1 W n/, then we have B D .B1;B2/ with B1 2 R
m;m and B2 2 R

m;n�m. Obviously,
the resulting saddle point-type matrix

AD

�
G BT

B 0

�
satisfies that rank.BT /D rank.B/Dm.

From the matrix A we construct the following saddle point-type matrices:

A1 D

�
G1 BT

B 0

�
;
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where G1 is constructed from G by replacing its first m
4

rows and columns with zero
entries. Note that G1 is semipositive real and its nullity is m

4
.

In our numerical experiments the matrix W in the augmentation block precondi-
tioners is taken as W D Im and the mesh h D 1=16. During the implementation of
our augmentation block preconditioners, we assume

P1D

 
D�1 0

0
�
CD�1BT

��1

!
;

where F D 0;D DG1C10B
TC; and

P2D

�
D�1 0

0 I

�
;

where F D I �CD�1BT ;D DG1CB
TC;

P3D

 
D�1 0

0
�
0:01CD�1BT

��1

!
;

where F D 1:1CD�1BT ;D DG1C10B
TC; respectively.
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FIGURE 1. Spectrum of A and P�1A when hD 1
16
.nCmD 736/.

On Figure 1, we can observe that that the eigenvalues of P�1A are strongly
clustered, which is expected by Theorem 2.1 and Theorem 2.2. In our example,
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we compared the three different preconditioners. On Figure 2, we see that the choice
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FIGURE 2. Convergence curve and total numbers of inner GMRES
iterations when hD 1

16
.nCmD 736/.

of a suitable F improves the results.

5. CONCLUSION

In this paper, we extended the block positive definite preconditioner introduced
in [3], and we proved some of its properties. Then, we gave numerical examples in
order to illustrate the efficiency of our method.
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