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Abstract. The degree distance, Zagreb coindices and reverse degree distance of a connected
graph have been studied in mathematical chemistry. In this paper some new extremal values of
these topological invariants over some special classes of graphs are determined.
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1. INTRODUCTION

All graphs in this paper are finite and simple. A graph invariant is a function on
a graph that does not depend on the labeling of its vertices. Such quantities are also
called topological indices. Two of these graph invariants are known under various
names, the most commonly used ones are the first and second Zagreb indices. Due to
their chemical relevance they have been subject of numerous papers in the chemical
literature [9,12,13,16,20], while the first Zagreb index attracted a significant attention
of mathematicians.

The problem of determining extremal values and the corresponding extremal graphs
of some graph invariants is the topic of several papers [2,4, 10, 13—15,17,20]. The
aim of this paper is to investigate similar problems for a recently introduced general-
ization of Zagreb indices.

Let G be a connected graph with vertex and edge sets V(G) and E(G), respect-
ively. For every vertex u € V(G), the edge connecting u and v is denoted by uv
and degg (1) denotes the degree of u in G. The distance dg (u,v) is defined as the
length of a shortest path connecting u and v and the diameter of G, diamg (G), is the
maximum possible distance between any two vertices in the graph. We will omit the
subscript G when the graph is clear from the context.
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The first and second Zagreb indices were originally defined as

M\(G)= ) degu)’

ueV(G)
and

My(G)= )  deg(u)deg(v),
uveE(G)
respectively. The first Zagreb index can be also expressed as a sum over edges of
G, M(G) = ZMUGE(G)[deg(u) + deg(v)]. We refer the reader to [16] for the proof
of this fact. The readers interested in more information on Zagreb indices can be
referred to [4,9, 10,12, 14, 16, 17] and to the references therein.

The Zagreb indices can be viewed as the contributions of pairs of adjacent ver-
tices to certain degree-weighted generalizations of Wiener polynomials [7]. It turned
out that computing such polynomials for certain composite graphs depends on such
contributions from pairs of non-adjacent vertices.

The first and second Zagreb coindices were first introduced by Dosli¢. They are
defined as follows:

M\(G)= ) [deg(u)+deg(v)],
uvé€E(G)

My(G)= ) [deg(u)deg(v)].
uvé€E(G)

Dobrynin and Kochetova [6] and Gutman [8] introduced a new graph invariant,
“degree distance”, defined as follows: the degree distance of a vertex x, denoted by
D'(x), is defined as D'(x) = D(x)deg(x), where D(x) =}, cy(g)d(x,y) and the
degree distance of G, denoted by D'(G), is

D'(G)= ) D'(x)= > D(x)deg(x)

xeV(G) xeV(G)

1

=5 > d(x.y)[deg(x) + deg(y)].
x,yeV(G)

If G is n—vertex graph then the reverse Wiener matrix is an n x n matrix RW(G) =
[RW;;] such that RW;; = diam(G)—d(v;,v;), ifi # j and O otherwise. The reverse
degree distance of G is defined as " D'(G) = )/, deg(v;) 27=1 RW;; [21].

The girth of G is the length of a shortest cycle contained in G. A Moore graph is
a graph of diameter k with girth 2k 4 1. Those graphs have the minimum number of
vertices possible for a regular graph with given diameter and maximum degree. For a
real number k, let ) ; (G) denote the sum of the k—th powers of the degrees of G. We
denote by 07 (1, m) the maximum value of ) _,(G) when G is a graph (not necessarily
connected) with n vertices and m edges. Also, let ) ,(n,m) = maxgeg, ,, > »(G)
where £, denotes the family of connected graphs on n vertices and m edges.
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For the sake of completeness we state here some results from the references [1, 3,
,11,14,17,21] which will be useful throughout the paper.

Lemma A (Ashrafi, Dosli¢ and Hamzeh [1]). Suppose G is a connected graph
with exactly n vertices and m edges. Then we have:
(@) M1(G) =2m(n—1)—M(G),
(b) M2(G) =2m> — Ma(G) — 3 M1(G).
The subdivision graph S(G) of a graph G is obtained by inserting a new vertex of

degree two on each edge of G. If G has n vertices and m edges, then S(G) hasn +m
vertices and 2m edges.

Lemma B (Ili¢ and Stevanovi¢ [10]). Suppose G is a graph with exactly n vertices
and m edges. Then

(a) It holds that M1(G) > am? - rpe equality is attained if and only if G is

regular.
(b) It holds that M»(G) > 4’%3. The equality is attained if and only if G is
regular.

(c) Let A be the maximum vertex degree in G. Then M'n(G) < AA;[;n(G) and

M%EG) < AA/ZI:;G) . Equality is attained simultaneously in both inequalities if
and only if G is regular.

(d) M (S(G)) = M; (G) + 4m and Mz(S(G)) =2M,; (G)

Lemma C (Liu and Liu [14]). Let G be a connected graph with n vertices and m
edges. Then

(@) If A > 228020 yhen My(G) < m(A+8+1).
(b) M1(G) < (A+8) 88T "m? with equality if and only if G is regular.

Lemma D (Sun and Wei [17]). If G is a connected bicyclic graph with exactly n
vertices, m edges and without pendant vertices, then Lk I(G) < MZ(G) , with equality
ifand only if G = K> 3.

Lemma E (Zhou and Trinajsti¢ [21]). Let G be a connected graph with n vertices,
m edges and diameter |. Then

(a) "D'(G) =2m(n—1)—D'(G).

(b) If n > 2 then (I —1)M1(G) <"D'(G) <2m( —2)(n—1) + M1(G) with
either equality if and only if | < 2.

(c) Let G be a connected triangle-free and quadrangle-free graph withn > 3 ver-
tices, minimal degree § and maximal degree A. Then [ —148§(1 —2)]M1(G)
—2m(l—2)§ < "D'(G) < (A+2)M1(G) + 2m[(l —=3)(n—1) — A] with
right equality if and only if G is a Moore graph of diameter 2, or a regular
graph of diameter 3 (and girth 5, 6 or 7) and with left equality if and only if
G =S, or G is a Moore graph of diameter 2, or a regular graph of diameter
3 (and girth 5, 6 or 7).
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(d) M1(G) <n(n—1) with equality if and only if G is the star or a Moore graph
of diameter 2.

(e) Let G be a connected graph with minimal degree § and maximal degree A.
Then2l(n—1)m —2AW(G) < "D'(G) < 2l(n — 1)m —28W(G) with either
equality if and only if G is a regular graph.

(f) Let G be a tree with n vertices and diameter diam(G). Then "D'(G) =
2(n —1)2diam(G) —4W(G) +n(n —1).

The join G + H of graphs G and H with disjoint vertex sets V(G) and V(H)
and edge sets E(G) and E(H ) is the graph union G U H together with all the edges
joining V(G) and V(H).

Lemma F (Bucicovschi and Cioaba [3]). If 1 <n—1 <m and G is a connected
graph with n vertices and m edges, then D'(G) > 4(n—1)m—>_,(n,m) = 4(n —
2)m —n? +5n —4—o05(n —1,m —n + 1). Equality happens if and only if G is a
Jjoin of Ky and a graph G’ on n — 1 vertices and m —n + 1 edges with ) _,(G') =
oa(n—1,m—n+1).

Let ! and p2 denote the classes of connected unicyclic and bicyclic graphs,
respectively. Note that any graph in g contains a unique cycle and it has n edges and
every graph in 50,% contains two linearly independent cycles, cycles without common
edges, having n + 1 edges.

Lemma G (Tomescu [11]). Suppose G is a connected graph with n vertices, m
edges. Then we have:

(a) For every n > 3 we have minGep’%D'(G) = 3n% —3n — 6 and the unique
extremal graph is K1 ,—1 +e.

(b) For every n > 4 we have minGepﬁD’(G) =3n% +n—18. The extremal
graph is unique and may be obtained from K1 ,—1 by adding two edges hav-
ing a common extremity.

Throughout this paper our notation is standard. For terms and concepts not defined
here we refer the reader to any of several standard monographs such as, e.g., [5] or

[1&].
2. RESULTS

In this section some new extremal values of Zagreb coindices, degree distance and
reverse degree distance over some special classes of graphs are determined. We begin
by Zagreb coindices of graphs.

2.1. Zagreb coindices

The aim of this subsection is to obtain new lower and upper bounds for the first
and second Zagreb coindices of graphs.

Proposition 1. Let G be a simple graph with n vertices and m edges. Then
Mi(G) <= m? +2m(n — 1) with equality if and only if G is regular.

n
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Proof. Apply Lemma A(a) and Lemma B(a). O

Proposition 2. Let G be a simple graph with n vertices, m edges. Then 2m? —
MG (A4 1) < Ma(G) < 2m*(1 — 22 — 1. The right hand (left hand) side of
thls inequality is satisfied if and only if G is regular.

Proof. The right hand side is a consequence of Lemma A(b) and Lemma B(b). To
prove the left hand side of inequality, we notice that by Lemma A and Lemma B(c),
we have:

MaG) _ ., Ma(G) 1

—>—Mi(G)
m 2m
AM(G) 1
> om - AMUG) 1 6
2m 2m
=2m? — MI(G)(A+1)

which completes our argument. By Lemma A and Lemma B(c) the equality holds if
and only if G is regular. 0

Proposition 3. Let G be a simple graph with n vertices, m edges.
(a) M1(S(G)) < 4m(n—2) + 4m>*(1 — %), the equality holds if and only if G
is regular.
(b) M2(S(G)) < 8m? — 2m — 10m , the equality holds if and only if G is
regular.

(€) M2(S(G)) = —2m? + 18m — 10mn + 3 M;(S(G)).

Proof. The parts (a) and (b) are obtained from Lemma A and Lemma B(a) and the
following inequalities:
Mi(S(G)) = 4m(n+m—1) =M (S(G))
=4dmmn+m—1)—M(G)—4m
=4dmn+m—-2)— M;(G)
4m?

<d4mn+4m?* —8m — —
n

1
=4m(n—2) +4m>(1—-),
n
and,

M>(S(G)) = 8m” — M2(S(G)) - %Ml (5(6))

5
= 8m2—2m—§M1(G)

10m?2
—

<8m?—2m—
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The equalities in parts (a) and (b) are also obtained from Lemma A and Lemma B(a).
For part (c), we apply Lemma A, Lemma B(d) and the following equality:

M>(S(G)) = 8m?* —2m + g(—4mn —4m? +8m + M{(S(G)))

5 -
=—2m?*+18m—10mn + EMI(S(G)).
This completes our proof. O

Proposition 4. Suppose G is a graph with n vertices and m edges. Then M1(G)
>2mn—1)—m(A+38 +1).

Proof. Apply Lemma A(a) and Lemma C(a). O

Proposition 5. Suppose G is a connected graph with n vertices, m edges.
Mi(G) > 2m(n—1)— (A+8) 2" m2. The equality holds if and only if G is regular.

Proof. Apply Lemma A(a) and Lemma C(b). O
Proposition 6. Let G be a connected bicyclic graph with n vertices and m edges
without pendant vertices, then Mln(G) > zm(;'_l) + MZ”(IG) 2m+ £ Ml (G) with equal-

ity if and only if G is isomorphic to K3 3.

Proof. By Lemmas A and D M'n(G) = zm(Z_l) — M‘n(G) > zm(Z_l) — Mf?EG) and

Mzm(G) = 2m— MZT(G) - MZI—,(nG), as desired. O

Proposition 7. Let G be a graph of order n containing m edges, then 2(m? +
—1)2 - - — _ _ —1)2
i2) = (5) (1= D)2 = 207" < My (G) + M2 (G) < 2(m? +?) — (3) (251)? - 51,
The equality in right hand side is satisfied if and only n =~ 1 (mod 4) and G is "2;1-
regular. The equality in left hand side is satisfied if and only G is isomorphic to
complete graph K,,.

Proof. Apply [19, Theorems 2.2 and 3.1]. O

2.2. Degree Distance of Graphs

The degree distance of a graph is a degree analogue of the Wiener index of the
graph. So, it is useful to find the lower and upper bounds of this topological index on
some classes of graphs as trees, triangle- and quadrangle-free graphs and so on.

Proposition 8. Let G be a connected graph with n vertices, m edges and diameter
diam(G). Then 4(n — 1)m — M{(G) < D'(G) < —(diam(G) — 1) M1(G) + 2(n —
1)mdiam(G) with either equality if and only if diam(G) < 2.

Proof. Apply Lemma E(1) and Lemma E(2). O
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Proposition 9. Let G be a connected triangle- and quadrangle-free graph with
n > 3 vertices, minimal degree 8, maximal degree A, m edges and diameter [. Then

—(A+2)M1(G)+2m[3(n—1)+ A] < D'(G)
<—[l—-148(-2)]M(G)+2(I —2)mé
+2(n—1)ml
with right equality if and only if G is a Moore graph of diameter 2, or a regular graph
of diameter 3 (and girth 5, 6 or 7) and with left equality if and only if G = S, or G

is a Moore graph of diameter 2, or a regular graph of diameter 3 (and girth 5, 6 or
7).

Proof. Apply Lemma E(1) and Lemma E(3). Il

Proposition 10. Let G be a connected graph with n vertices, maximal degree A
and m edges. Then —(A+2)n(n—1) +2m[3(n — 1) + A] < D'(G) with equality if
and only if G is the star or a Moore graph of diameter 2.

Proof. Apply Lemma E(1) and Lemma E(4). U

Proposition 11. Let G be a connected graph with minimal degree § and maximal
degree A. Then 26W(G) < D'(G) < 2AW(G) with either equality if and only if G
is a regular graph.

Proof. Apply Lemma E(1) and Lemma E(5). O

Proposition 12. Let G be a tree with n vertices and diameter diam(G). Then
D'(G) = (n—1)[diam(G)(2m —2n +2) —n] + 4W(G).

Proof. Apply Lemma E(1) and Lemma E(6). (|

2.3. Reverse Degree Distance of Graphs

The reverse degree distance of graphs is a new topological index proposed by
Zhou and Trinajsti¢ [21]. In the next two propositions, some extremal properties of
this topological index are investigated.

Proposition 13. If1 <n—1 <m and G is a connected graph with n vertices and
m edges, then "D'(G) < —4(n—1)m+ ) ,(n,m)+2(n— 1)mdiam(G). Equality
happens if and only if G is a join of Ky and a graph G' on n— 1 vertices and m —n + 1
edges with ) 5(G') =oa(n—1,m—n+1).

Proof. Apply Lemmas E(1) and F. U

Proposition 14. Suppose G is a connected graph with n vertices and m edges.
Then for every n > 3 we have "D'(G) < —3n? 4+ 3n + 6+ 2m(n — 1)diam(G) and
the unique extremal graph is K1 ,—1 +e.

Proof. Apply Lemmas E(1) and G(a). O
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Proposition 15. Suppose G is a connected graph with n vertices and m edges.
Then for every n > 4 we have "D'(G) < —3n% —n + 18 4+ 2m(n — 1)diam(G) and
the extremal graph is unique and may be obtained from K n—1 by adding two edges
having a common extremity.

Proof. Apply Lemmas E(1) and G(b). U
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