

Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 11 (2010), No 2, pp. 169-174 DOI: 10.18514/MMN.2010.240 Vol. 11 (2010), No 2, pp. 169-174

Some results on symmetric bi- (σ, τ) -derivations in near-rings

Mehmet Ali Öztürk and Hasret Yazarli

Miskolc Mathematical Notes HU e-ISSN 1787-2413 Vol. 11 (2010), No. 2, pp. 169–173

SOME RESULTS ON SYMMETRIC BI- (σ, τ) -DERIVATIONS IN NEAR-RINGS

MEHMET ALI ÖZTÜRK AND HASRET YAZARLI

Received 1 December, 2009

Abstract. The aim of this paper is to investigate certain results on 3-prime near-rings and generalize these results on near-rings to semi-group ideals of 3-prime near-rings.

2000 *Mathematics Subject Classification:* 16A12, 16D30, 16S99, 16Y99, 16W25

Keywords: near-ring, prime near-ring, semigroup ideal, derivation, symmetric bi-derivation, symmetric bi- (σ, τ) -derivation

1. INTRODUCTION

For preliminary definitions and results related to near-rings, we refer for Pilz [5]. The concept of a symmetric bi-derivation has been introduced by Maksa [3]. In recent years, many mathematicians studied the commutativity of prime and semiprime rings admitting suitably-constrained symmetric bi-derivations. In $[4]$, Öztürk (together with Jun) introduced the notion of a symmetric bi-derivations in near-rings and proved some results. Moreover the concept of symmetric bi- (σ, τ) -derivation of near-ring has been introduced by Ceven (together with Öztürk) [2]. The aim of this paper is to investigate some results on 3-prime near-rings and generalize the results on near-rings to semi-group ideals of 3-prime near-rings.

2. PRELIMINARIES

Throughout this paper N will be a zero-symmetric left near-ring, and usually N will be 3-prime, that is, it will have the property that $xNy = \{0\}$ implies $x = 0$ or $y = 0$. The symbol Z will denote the multiplicative center of N. A nonempty subset U of N will be called semigroup right ideal (resp. semigroup left ideal) if $UN \subset U$ (resp. $NU \subset U$) and U is both a semigroup right ideal and a semigroup left ideal, it is called a semigroup ideal. For $x, y \in N$, the symbol [x, y] will denote the commutator $xy - yx$, while the symbol (x, y) will denote the additive-group commutator $x + y - x - y$. A mapping $D: N \times N \rightarrow N$ is said to be symmetric if $D(x, y) = D(y, x)$ for all $x, y \in N$. A mapping $d : N \rightarrow N$ defined by $d(x) =$ $D(x, x)$ is called the trace of D where $D: N \times N \rightarrow N$ is a symmetric mapping. It

c 2010 Miskolc University Press

is obvious that, if $D: N \times N \rightarrow N$ is a symmetric mapping which is also bi-additive (i.e., additive in both arguments), then the trace of D satisfies the relation $d(x + y) =$ $d(x) + 2D(x, y) + d(y)$ for all $x, y \in N$. A symmetric bi-additive mapping D : $N \times N \rightarrow N$ is called a symmetric bi-derivation if $D(xy, z) = D(x, z) y + x D(y, z)$ is fulfilled for all $x, y, z \in N$. Then, for any $y \in N$, a mapping $x \mapsto D(x, y)$ is a derivation. A symmetric bi-additive mapping $D: N \times N \rightarrow N$ is called symmetric bi- (σ, τ) -derivation if there exist automorphisms $\sigma, \tau : N \to N$ such that $D(xy, z) =$ $D(x, z) \sigma(y) + \tau(x) D(y, z)$ for all $x, y, z \in N$. Note that if $\sigma = 1$ and $\tau = 1$ then D is a symmetric bi-derivation.

3. RESULTS

The following lemmas and theorems are necessary for the paper.

Lemma 1 ([3, Lemma 3]). *Let* N *be a 3-prime near-ring.*

- (i) If $z \in Z \{0\}$, then z is not a zero divisor.
- (ii) *If* $Z \{0\}$ *contains an element z*, *for which* $z + z \in Z$, *then* $(N, +)$ *is abelian.*

Lemma 2 ([1, Lemma 1.3]). *Let* N *be 3-prime, and let* d *be a nonzero derivation on* N:

- (i) *If* U *is a nonzero semi-group right ideal (resp. semi-group left ideal) and* x *is an element of* N *such that* $Ux = \{0\}$ *(resp.* $xU = \{0\}$ *), then* $x = 0$ *.*
- (ii) If U is nonzero semi-group right ideal or semi-group left ideal, then $d(U) \neq$ f0g*.*
- (iii) *If* U *is a nonzero semi-group right ideal and* x *is an element of* N *which centralizes* U *, then* $x \in Z$ *.*

Lemma 3 ([1, Lemma 1.4]). *Let* N *be 3-prime, and* U *a nonzero semi-group ideal of* N*. Let* d *be a nonzero derivation on* N:

(i) If $x, y \in N$ and $xUy = \{0\}$, then $x = 0$ or $y = 0$.

(ii) *If* $x \in N$ *and* $d(U)$ $x = \{0\}$ *, then* $x = 0$ *.*

(iii) *If* $x \in N$ *and* xd $(U) = \{0\}$ *, then* $x = 0$ *.*

Lemma 4 ([1, Lemma 1.5]). *If* N *is 3-prime and* Z *contains a nonzero semigroup left ideal or semigroup right ideal,* N *is a commutative ring.*

Lemma 5 ([2, Lemma 3]). *Let* N *be a 2-torsion free 3-prime near-ring,* D *a symmetric bi-* (σ, τ) -derivation of N and d the trace of D. If $xd(N) = \{0\}$ for all $x \in N$, then $x = 0$ or $D = 0$.

Lemma 6 ([2, Lemma 4]). Let N be a near-ring. D is a symmetric bi- (σ, τ) *derivation of* N *if and only if* $D (x,y,z) = \tau (x) D (y, z) + D (x, z) \sigma (y)$ for all $x, y, z \in$ N*.*

Lemma 7 ($[2, \text{Lemma 5}]$). Let N be a near-ring, D a symmetric bi- (σ, τ) -derivation *of* N. Then, for all $x, y, z, w \in N$,

- (i) $[D(x, z) \sigma(y) + \tau(x) D(y, z)] w = D(x, z) \sigma(y) w + \tau(x) D(y, z) w$,
- (ii) $[\tau(x) D(y, z) + D(x, z) \sigma(y)] w = \tau(x) D(y, z) w + D(x, z) \sigma(y) w.$

Theorem 1 ([2, Theorem 1]). *Let* N *be a 3-prime near-ring,* D *a nonzero symmetric bi-* (σ, τ) *-derivation of N. If* N *is 2-torsion free and* $D(N, N) \subset Z$ *, then* N *is commutative ring.*

Lemma 8. *Let* N *be a 2-torsion free 3-prime near-ring,* U *a nonzero semigroup ideal of* N *and* D *symmetric bi-* (σ, τ) *-derivation of* N. If $D(U, U) = \{0\}$ *, then* $D = 0$ *.*

Proof. Suppose $D(x, y) = 0$ for all $x, y \in U$. Then taking $xz, z \in N$ instead of x , we have

$$
0 = D (xz, y) = D (x, y) \sigma (z) + \tau (x) D (z, y)
$$

= $\tau (x) D (y, z)$

Replacing yw by y, $w \in N$ in last relation, we get

$$
0 = \tau(x) D(y, z) \sigma(w) + \tau(x) \tau(y) D(w, z)
$$

= $\tau(x) \tau(y) D(w, z)$

for all $x, y \in U$, $w, z \in N$. Since τ is an automorphism of N and, $U \neq \{0\}$, we get $D(N, N) = \{0\}$ by Lemma 3. That is, $D = 0$. □

Lemma 9. *Let* N *be a 2-torsion free 3-prime near-ring,* U *a nonzero semigroup ideal of* N, D *a nonzero symmetric bi-* (σ, τ) *-derivation of* N *and* $a \in N$ *. If* $D(U, U)a = \{0\}$, then $a = 0$. (Similarly, if $D(U, U)a = 0$, then $a = 0$.)

Proof. Suppose $D(x, y)a = 0$ for all $x, y \in U$. Taking $wy, w \in N$ instead of y and using Lemma 7(i), we get

$$
0 = D(x, wy)a = [D(w, x) \sigma(y) + \tau(w) D(y, x)]a
$$

= D(w, x) \sigma(y) a + \tau(w) D(y, x) a
= D(x, w) \sigma(y) a

Since σ is an automorphism of N and $U \neq \{0\}$, we get $D(N, U) = \{0\}$ or $a = 0$ by Lemma 3(i). Assume $D(N, U) = \{0\}$. Hence $D(U, U) = \{0\}$, and so $D = 0$ by Lemma 8. This completes the proof.

The other case $(aD(U, U) = \{0\})$ can be treated similarly.

Theorem 2. *Let* N *be a 3-prime near-ring,* U *a nonzero semigroup ideal of* N *and* D *a nonzero symmetric bi-* (σ, τ) -derivation of N. If N is 2-torsion free and $D(U, U) \subset Z$, then N is commutative ring.

Proof. Since $D(x, y) \in Z$ for all $x, y \in U$, we have $D(x, y)z = zD(x, y)$, for all $x, y \in U$ and $z \in N$. Relacing xw by $w, w \in U$, we get

$$
D (xw, y)z = zD (xw, y)
$$

\n
$$
D (x, y) \sigma (w)z + \tau (x) D (w, y)z
$$

\n
$$
= zD (x, y) \sigma (w) + z\tau (x) D (w, y)
$$
 (3.1)

Taking $z = \sigma(w)$ and using $D(U, U) \subset Z$, we obtain that

$$
D(x, y) \sigma(w) \sigma(w) + \tau(x) D(w, y) \sigma(w)
$$

= $\sigma(w) D(x, y) \sigma(w) + \sigma(w) \tau(x) D(w, y)$

and so

$$
D(w, y) [\sigma(w), \tau(x)] = 0, \text{ for all } x, y, w \in U
$$

Since Z contains no nonzero divisors of zero, we see that for each $w \in U$, either $D(w, y) = 0$ for all $y \in U$ or $[\tau(x), \sigma(w)] = 0$, for all $x \in U$. In the first case, equation (3.1) yields

$$
D(x, y) [\sigma(w), z] = 0, \quad \text{for all } x, y, w \in U, z \in N.
$$

By the same argument as above, we have, we have $[\sigma(w), z] = 0$, for all $z \in N$. In particular, we obtain for all $x \in U$, $[\tau(x), \sigma(w)] = 0$, in each case. That is, $U \subset Z$ by Lemma $2(iii)$. Hence N is a commutative ring by Lemma 4. This completes the proof. \Box

Theorem 3. Let N be a 2-torsion free 3-prime near-ring. Let D_1 and D_2 be *nonzero symmetric bi-* (σ, τ) -derivations of N and d_1 and let d_2 be nonzero trace of *D*₁ and *D*₂*, respectively. If* $d_2(y)$ *,* $d_2(y) + d_2(y) \in C$ $(D_1(x,z))$ for all $x, y, z \in C$ *N*, then $(N, +)$ is abelian and $d_2(N) \subseteq Z$.

Proof. Since $d_2(y)$, $d_2(y) + d_2(y) \in C$ $(D_1(x,z))$ for all $x, y, z \in N$, if both w and $w + w$ commute elementwise with $D_1(x, z)$ for all $s \in N$, then

 $[D_1(x,z) + D_1(s,z)](w+w) = [D_1(x,z) + D_1(x,z) + D_1(s,z) + D_1(s,z)]w$

On the other hand,

$$
[D_1(x,z) + D_1(s,z)](w+w) = [D_1(x,z) + D_1(s,z) + D_1(x,z) + D_1(s,z)]w
$$

Comparing these expressions we get, for all $x, s \in N$,

$$
D_1((x,s),z)w = 0
$$
\n(3.2)

Thus, let $w = d_2(y)$ in (3.2), we get $D_1((x, s), z) d_2(y) = 0$ for all $x, z, s, y \in N$, so $D_1((x, s), z) = 0$. Since (x, s) is also an additive commutator for any $z \in N$, we have

$$
0 = D_1((x,s)z, z) = D_1((x,s), z) \sigma(z) + \tau((x,s)) d_1(z)
$$

= $\tau((x,s)) d_1(z)$

Since τ is an automorphism, we get $(x, s) = 0$. That is, $(N, +)$ is abelian. Now, replacing xw by x in $D_1(x, z) d_2(y) = d_2(y) D_1(x, z)$, we get

$$
0 = D_1(xw, z) d_2(y) - d_2(y) D_1(xw, z)
$$

= D_1(x, z) \sigma(w) d_2(y) + \tau(x) D_1(w, z) d_2(y)
- d_2(y) \tau(x) D_1(w, z) - d_2(y) D_1(x, z) \sigma(w)

Taking $d_1(t)$ for $\sigma(w)$ in the last relation, we get

$$
\tau(x) D_1(w, z) d_2(y) = d_2(y) \tau(x) D_1(w, z)
$$
\n(3.3)

Replacing wu by w in (3.3) and using (3.3) , we have

$$
\tau(x) D_1(w, z) \sigma(u) d_2(y) = d_2(y) \tau(x) D_1(w, z) \sigma(u)
$$

= $\tau(x) D_1(w, z) d_2(y) \sigma(u)$

$$
\tau(x) D_1(w, z) [\sigma(u), d_2(y)] = 0
$$

Since U is a nonzero semi-group ideal and D_1 is nonzero, we get $[\sigma(u), d_2(v)] = 0$. Since σ is an automorphism, we have $d_2(N) \subseteq Z$.

Acknowledgement: The authors are deeply grateful to the referee for the valuable suggestions.

REFERENCES

- [1] H. E. Bell, *On derivations in near-rings. II.*, ser. Mathematics and its Applications. Dordrecht: Kluwer Acad. Publ., 1997, vol. 426.
- [2] Y. Ceven and M. A. Öztürk, "Some properties of symmetric bi- (σ, τ) -derivations in near-rings," *Commun. Korean Math. Soc.*, vol. 22, no. 4, pp. 487–491, 2007.
- [3] G. Maksa, "On the trace of symmetric bi-derivations," *C. R. Math. Rep. Acad. Sci. Canada*, vol. 9, no. 6, pp. 303–307, 1987.
- [4] M. A. Öztürk and Y. B. Jun, "On the trace of symmetric bi-derivations in near-rings," *Inter. J. Pure and Appl. Math.*, vol. 17, no. 1, pp. 9–102, 2004.
- [5] G. Pilz, *Near-rings*, ser. North-Holland Mathematics Studies. Amsterdam: North-Holland Publishing Co., 1983, vol. 23.

Authors' addresses

Mehmet Ali Öztürk

Adıyaman University, Faculty of Arts and Sciences, Department of Mathematics, 02040 Adıyaman, TURKEY

E-mail address: maozturk@adiyaman.edu.tr

Hasret Yazarlı

Cumhuriyet University, Faculty of Arts and Sciences, Department of Mathematics, 58140 Sivas, **TURKEY**

E-mail address: hyazarli@cumhuriyet.edu.tr