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Abstract. J. C. Robson has investigated the ideal In of all polynomials in the free associative
algebra Rhxi over a non-commutative ring R generated by x and the n2 entries of an n� n
matrix ˛ D .aij /, which are satisfied by ˛. He found four cubics generating the ideal for n D
2 and proved its finite generation for any n. Ts. Rashkova has considered the ideal I2 for
matrix algebras with involution over a noncommutative ring and over a field of characteristic
zero. In the paper the ideal I3 is described for some special upper triangular matrices over a field
of characteristic 0. The T -ideal T .U2.G// is investigated as well for G denoting the infinite
dimensional Grassmann algebra.
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1. INTRODUCTION

The Cayley–Hamilton theorem and the corresponding trace identity play a funda-
mental role in proving classical results about the polynomial and trace identities of
the n�n matrix algebra Mn.K/ over a field K of characteristic zero.

The structure theory of semisimple rings and quantum matrices for example show
the importance of matrices over non-commutative rings in the theory of PI-algebras
and other branches of algebra as well.

J. C. Robson investigated in [12–14] the ideal In of all polynomials (including
nonmonics) in the free associative algebra Rhxi over a non-commutative ring R gen-
erated by x and the n2 entries of an n�n matrix ˛ D .aij /, which are satisfied by
˛. Those polynomials we call the laws over R of a non-commutative n�n matrix ˛.
These are not polynomial identities since the entries of ˛ are allowed as coefficients
in the laws and they vary with the choice of ˛.

Robson showed that In is an insertive ideal (meaning that its homogeneous ele-
ments are closed under inner multiplication by a constant aij in some fixed position)
and as such is finitely generated (see [13] and [12, Theorem 2.3]).
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The minimal degree of polynomials in In remains unknown. However, for the
case nD 2, Robson [12, Proposition 3.2] found four polynomials of degree 3 (least
possible) in I2 and Pearson showed in [10, Corollary] that these four Robson cubics
do indeed generate I2 as an insertive ideal.

2. RESULTS

The first study of the non-commutative case for nD 3 was done in [9]. The results
there provide further evidence of the tantalizing complexity of even these small ma-
trices. Each of the four found laws of degree 7 has 1156 terms. Thus, special cases
of 3�3 matrices even over a field are of interest.

In [11] we study the ideal I3 for some special 3� 3 upper triangular matrices
considered in [7]. These algebras could be endowed with involution � and their �-
codimensions have important properties.

Here we give a complete answer for the existing laws in these algebras and inves-
tigate the T -ideal T .U2.G// of the 2�2 upper triangular matrices over G, where G
stands for the infinite dimensional Grassmann algebra.

2.1. Laws for upper triangular matrices over a field

2.1.1. Special upper triangular matrices

In [7] D. La Mattina and P. Misso study some associative algebras with involution
generating �-varieties of algebras with linear or linearly bounded sequences of �-
codimensions. Questions concerning laws for them were discussed in [11]. Here we
give the complete answers.

Let K be a field of characteristic zero and

M2.K/D

˚
x D

0@a b c

0 a b

0 0 a

1A W a;b;c 2K
	
:

All coefficients in the polynomials below mean the corresponding scalar matrix,
i. e., aD aE for example.

Theorem 1. The only Robson cubic for a matrix from M2.K/ in the general case
is r.x/ D .x� a/3. For b D 0, c ¤ 0 a law of minimal degree is .x� a/2 and for
b D c D 0 it is x�a.

Proof. For a matrix x from the considered algebra we prove directly that .x �
a/3 D 0. Due to [8, Lemma 2, p.432] considering the subring T of the diagonal
elements of a generic upper triangular matrix A and w.x/ 2 T hxi, then w.A/ D 0
iff w.x/ 2 hx�a11ihx�a22i � � � hx�anni, where hf i is the ideal generated by f .
In the cited Lemma T is a subring of a non-commutative ring. In Theorem 1 the
elements of the matrix are elements of a field and then T hxi DKhxi and the possible
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laws of degree less or equal to 3 could be given with the linear combination

AD ˛1C˛2xC˛3.x�a/C˛4x
2
C˛5.x�a/

2
C˛6x.x�a/:

Equating to zero the corresponding entries we get the system

˛1Ca˛2Ca
2˛4 D 0;

b˛2Cb˛3C2ab˛4Cab˛6 D 0;

c˛2C c˛3C .2acCb
2/˛4Cb

2˛5C .acCb
2/˛6 D 0:

For b ¤ 0 the system has a solution

˛5 D�˛4�˛6;

˛1 D a˛3Ca
2˛4Ca

2˛6;

˛2 D�˛3�2a˛4�a˛6:

In this case A, is identically equal to zero. Considering b D 0, we get the rest of the
statement. �

Let us put

M3.K/D

˚
x D

0@a b c

0 0 d

0 0 a

1A W a;b;c;d 2K
	
:

Theorem 2. The only Robson cubic for a matrix from M3.K/ in the general case
is r.x/D .x�a/2x. For the three cases b ¤ 0, c D d D 0; d ¤ 0, b D c D 0, and
b D c D d D 0 a law of minimal degree is .x�a/x.

Proof. Directly we calculate that for a matrix x from the considered algebra we
have .x�a/2x D 0. Then, due to Lemma 2 from [8, p. 432], considerations analo-
gous to the proof of Theorem 1 lead us to the linear combination

AD ˛1C˛2xC˛3.x�a/C˛4x
2
C˛5.x�a/

2
C˛6x.x�a/

of all possible laws of degree � 3. Equating to zero the corresponding entries, we
obtain the system

˛1Ca˛2Ca
2˛4 D 0;

b˛2Cb˛3Cab˛4�ab˛5 D 0;

c˛2C c˛3C .2acCbd/˛4Cbd˛5C .acCbd/˛6 D 0;

˛1�a˛3Ca
2˛5 D 0;

d˛2Cd˛3Cad˛4�ad˛5 D 0:
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For b ¤ 0, d ¤ 0 the system has a solution

˛6 D�˛4�˛5;

˛1 D a˛3�a
2˛5;

˛2 D�˛3�a˛4Ca˛5:

In this case A is identically equal to zero.
The three cases b ¤ 0, c D d D 0; d ¤ 0, b D c D 0, and b D c D d D 0 give the

law .x�a/x. �

Let us put

M4.K/D

˚
x D

0@0 b c

0 a d

0 0 0

1A W a;b;c;d 2K
	
:

Theorem 3. The only Robson cubic for a matrix fromM4.K/ in the general case
is r.x/D .x�a/x2. For c D d D 0 or b D c D 0 a law of minimal degree is .x�a/.

Proof. It follows the above pattern of proof. Directly we get .x�a/x2 D 0. The
corresponding system is

˛1Ca˛2Ca
2˛4 D 0;

b˛2Cb˛3Cab˛4�ab˛5 D 0;

c˛2C c˛3Cbd˛4C .bd �2ac/˛5C .bd �ac/˛6 D 0;

˛1�a˛3Ca
2˛5 D 0;

d˛2Cd˛3Cad˛4�ad˛5 D 0:

For b ¤ 0, d ¤ 0 the system has the same solution as in the previous theorem and A
is identically equal to zero.

The two cases c D d D 0 and b D c D 0 give the law .x�a/x. �

2.1.2. The general upper triangular case

Now we consider the general case, namely, the algebra U3.K;�/ of the upper tri-
angular matrices of order 3with the involution � reflection along the second diagonal.
We could find the analogues of the Robson cubics for the �-symmetric matrices and
for the �-skew-symmetric matrices as well.

Theorem 4. The only law of minimal degree for a symmetric matrix x 2UC3 .K;�/,
where

UC3 .K;�/D

˚
x D

0@a b d

0 c b

0 0 a

1A W a;b;c 2K
	
;

is .x�a/2.x� c/. For b D d D 0 it is .x�a/.x� c/.
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Proof. Directly we calculate that .x� a/2.x� c/ D 0. Then as explained in the
above proofs we have to form the linear combination

AD ˛1C˛2.x�a/C˛3.x�a/
2
C˛4.x� c/C˛5.x� c/

2
C˛6.x�a/.x� c/

of all possible laws of degree � 3. Equating to zero the corresponding entries we get
the system

˛1C .a� c/˛4C .a� c/
2˛5 D 0;

b˛2Cb.c�a/˛3Cb˛4Cb.a� c/˛5 D 0;

d˛2Cb
2˛3Cd˛4C .2d.a� c/Cb

2/˛5C .d.a� c/Cb
2/˛6 D 0;

˛1C .c�a/˛2C .c�a/
2˛3 D 0;

b˛2Cb.c�a/˛3Cb˛4Cb.a� c/˛5 D 0;

˛1C .a� c/˛4C .a� c/
2˛5 D 0:

For b ¤ 0, d ¤ 0 the system has a solution

˛6 D�˛3�˛5;

˛1 D�.a� c/˛4� .a� c/
2˛5;

˛2 D�.�aC c/˛3�˛4� .a� c/˛5:

In this case A, is identically equal to zero. For b D d D 0, we obtain the quadratic
law .x�a/.x� c/. �

We point that in the general case .x � a/2.x � c/ D 0 is in fact the Cayley–
Hamilton theorem in a factor form, i. e., x3� .2aC c/x3Ca.aC2c/x�a2c D 0.

Theorem 5. The only law of minimal degree for a skew-symmetric matrix x 2
U�3 .K;�/, where

U�3 .K;�/D

˚
x D

0@a b 0

0 c �b

0 0 �a

1A W a;b;c 2K
	
;

is .x�a/.x� c/.xCa/. If aD b D 0, then a law is x.x� c/.

Proof. The law .x�a/.x� c/.xCa/D 0 is checked directly. Then we form the
linear combination

AD ˛1C˛2.x�a/C˛3.x�a/
2
C˛4.x� c/

C˛5.x� c/
2
C˛6.xCa/C˛7.xCa/

2

C˛8.x�a/.x� c/C˛9.x�a/.xCa/C˛10.x� c/.xCa/
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of all possible laws of degree � 3. Equating to zero the corresponding entries, we
obtain the system

˛1C .a� c/˛4C .a� c/
2˛5C2a˛6C4a

2˛7C2a.a� c/˛10 D 0;

b˛2Cb.c�a/˛3Cb˛4Cb.a� c/˛5Cb˛6

Cb.cC3a/˛7Cb.cCa/˛9C2ab˛10 D 0;

�b2˛3�b
2˛5�b

2˛7�b
2˛8�b

2˛9�b
2˛10 D 0;

˛1C .c�a/˛2C .c�a/
2˛3C .cCa/˛6C .cCa/

2˛7C .c�a/.cCa/˛9 D 0;

�b˛2�b.c�3a/˛3�b˛4Cb.aC c/˛5�b˛6

�b.cCa/˛7C2ab˛8�b.c�a/˛9 D 0;

˛1�2a˛2C4a
2˛3� .aC c/˛4C .aC c/

2˛5C2a.aC c/˛8 D 0:

Its solution is

˛1 D�2a.a� c/˛10� .a� c/˛4� .a� c/
2˛5�2a˛6�4a

2˛7;

˛8 D�˛10�˛3�˛5�˛7�˛9;

˛2 D�2a˛10� .�aC c/˛3�˛4� .a� c/˛5�˛6� .3aC c/˛7� .aC c/˛9:

In this case A, is identically equal to zero. The case a D b D 0 leads one directly to
the validity of the law x.x� c/. �

The law in the general case illustrates the Cayley–Hamilton theorem in a factor
form, namely x3� cx2�a2xCa2b D 0. All the computations are made using the
computer algebra system Mathematica.

2.2. Laws and identities for upper triangular matrices over the Grassmann alge-
bra

2.2.1. Preliminaries

We consider the matrix algebra of the 2�2 upper triangular matrices U2.G/ over
the Grassmann algebra G.

We recall the definition of the infinite dimensional Grassmann algebra G, namely,

G DG.V /DKhv1;v2; : : : j vivj Cvj vi D 0; i;j D 1;2; : : :i:

The algebra G0 (without 1) has a basis vi1vi2 : : :vik , where 1 � i1 < i2 < :: : < ik .
The elements vi are called generators of G0 while the elements vi1vi2 : : :vik for 1 �
i1 < i2 < :: : < ik are called basic monomials of G0. For G D G0[1, a generator is
1 as well. The algebras G and G0 are PI-equivalent (they satisfy one and the same
identities). It is easy to be seen that G0 D J.G/ for J.G/ being the Jacobson radical
of the algebra.
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The algebra G is in the mainstream of recent research in PI theory. Its importance
is connected mainly with the structure theory for the T -ideals of identities of asso-
ciative algebras developed by Kemer in [5]. Kemer proved [5, Theorem 1.2] that any
T -prime T -ideal can be obtained as the T -ideal of identities of one of the following
algebras: Mn.K/, Mn.G/ and Mn;u.G/, the latter being the algebra of n�n super-
matrices over G D G0˚G1 with G0 blocks (with entries of even degree) of sizes
u�u and .n�u/� .n�u/ and with G1 blocks (with entries of odd degree) of sizes
u� .n�u/ and .n�u/�u.

Well known facts concerning the algebra G are the following:

Proposition 1 ([6, Corollary, p. 437]). The T -ideal T .G/ is generated by the
identity Œx1;x2;x3�D 0.

Proposition 2 ([4, Exercise 5.3]). For Gk D G.Vk/ over k-dimensional vector
space Vk all identities follow from the identity Œx1;x2;x3� D 0 and the standard
identity S2p.x1; : : : ;x2p/ D

P
�2Sym.2p/.�1/

�x�.1/ : : :x�.2p/ D 0, where p is the
minimal integer with 2p > k.

Remark 1. In the monograph [4, Exercise 5.3] one could see that the identity
Œx1;x2� : : : Œx2pC1;x2pC2� D 0 on G2pC1 is equivalent to the standard identity of
degree 2pC2.

Remark 2. It could be seen [4, Exercise 5.8] that the T -ideal of the algebraM2.K/

from Theorem 1 is generated by the identities Œx1;x2;x3�D 0 and S4.x1; : : : ;x4/D 0.
Nevertheless, the algebra M2.K/ is not isomorphic to the Grassmann algebra G2 of
the two-dimensional vector space.

For the rest of the paper we will use capital letters for the matrices with entries
from the Grassmann algebra.

2.2.2. The T -ideal T .U2.G//

Theorem 6. The identity ŒX1;X2;X3�ŒX4;X5;X6�D 0 holds on the algebraU2.G/.

Proof. As the considered polynomial is multilinear we could rely on [16, Remark
3.1] stating that it is an identity on M2.G/ if and only if for every choice of the
matrix units eai ;bi

and either v�i D vi or v�i D 1, the substitution xi ! eai ;bi
v�i in

the polynomial gives zero.
We take the matrices Xi D

�
a1i b1i

0 c1i

�
for i D 1;2;3 belonging to U2.G/ with en-

tries being generators of G. It is easy to see that

ŒX1;X2;X3�D

�
Œa11;a12;a13� �

0 Œc11; c12; c13�

�
D

�
0 �

0 0

�
:

The same form has the matrix ŒX4;X5;X6�. As the only possibly non-zero entry of
the considered matrices is the (1,2)-entry, the multiplication gives 0. �
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Remark 3. Theorem 6 could be reformulated as follows. Let f .x;y;´/D Œx;y;´�.
The 2� 2 upper triangular matrices over the Grassmann algebra satisfy the identity
f 2 D 0 while their entries satisfy the identity f D 0.

In [3, Theorem 3.1], Domokos gave a compact form of a theorem of Szigeti from
[15], namely,

Proposition 3. For any 2�2 matrix X over a K-algebra S satisfying the identity
Œx1;x2;x3�D 0 we have that

X4�2X3.trX/CX2.2 tr2X � trX2/CX
�1
2

trX ı trX2� tr3X
�

C
1

4

�
tr4XC tr2X2C

1

2
tr2X trX2�

5

2
trX2 tr2XC2ŒtrX3; trX�

�
E

and

X4�2.trX/X3C .2 tr2X � trX2/X2C
�1
2

trX ı trX2� tr3X
�
X

C
1

4

�
tr4XC tr2X2�

5

2
tr2X trX2C

1

2
trX2 tr2X �2ŒtrX3; trX�

�
E

are equal to zero in S2�2.

In [15], Szigeti developed a new theory of determinants of n� n matrices over
rings satisfying the polynomial identity of m-Lie nilpotency

ŒŒŒ� � � Œx1;x2�;x3�; � � � �;xm�;xmC1�D 0:

As the Grassmann algebra is 2-Lie nilpotent the defined in [15] right m-adjoint of
a matrix, the right m-determinant of a matrix rdm and the right m-characteristic
polynomial p.x/ of a matrix and their properties could be interpreted for the ma-
trix algebra U2.G/.

Proposition 4 ([15, Theorem 4.2]). If p.x/D �0C�1xC�� �C�dxd is the right
m-characteristic polynomial of a n� n matrix A 2Mn.R/ over a m-Lie nilpotent
ring R then the left substitution of A into p.x/ is zero: .A/p D E�0CA�1C�� �C
Ad�d D 0.

Again in [15], Szigeti pointed out the identity of “algebraicity” for matrices over
the Grassmann algebra.

Proposition 5 ([15, Theorem 5.1]). The polynomial identity

S2n2

�
ŒY 2n

2

;Z�; ŒY 2n
2�1;Z�; : : : ; ŒY 2;Z�; ŒY;Z�

�
D 0

holds on Mn.G/ for any two matrices Y and Z.

Now we give some laws and identities for the upper triangular matrices over the
Grassmann algebra G.
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Theorem 7. Let the matrix X D
�
a b
0 c

�
belong to U2.J.G// for a;b;c being basic

monomials of G0.
(I) The following laws are valid for X :

.X �a/.X � c/D 0;

X3.trX/D 0;

.trX/X3 D 0:

(II) Two identities hold for any matrices X and Y of the considered type, namely
X2Y 2 D 0 and .X2Y /2 D 0.

Thus any matrix X is nilpotent of index 4. A matrix X with trX D 0 is nilpotent of
index 3.

Proof. (I) Direct calculations give the validity of the three stated laws for a matrix
X .

(II) Again applying direct calculations we get that the only non-zero entries in
X2, Y 2 and X2Y are the .1;2/ entries and the corresponding multiplication gives
zero. �

We see that both Proposition 3 and Proposition 4 for n D 2 are compatible with
Theorem 7 as for such a matrixA2U2.G/we have rdet2AD 0 and p.x/D rdet2.A�
Ex/D x4�2 rdetAx3. Thus A4�2.trA/A3 D 0.

Corollary 1. An identity of degree 9 holds for any two matrices Y and Z from
U2.G/ with entries being basic monomials, namely, S3.ŒY 3;Z�; ŒY 2;Z�; ŒY;Z�/D 0.

Proof. Applying Proposition 5 and the index of nilpotency of the matrix Y . �

Remark 4. If we consider the Grassmann algebra over a finite dimensional space,
the corresponding identities have much smaller degrees.

Theorem 8. The following two assertions hold:
(I) On the algebra U2.J.G2// we get the identityXYZ D 0 (respectively, X3D

0).
(II) Any matrix X D

�
a b
0 c

�
from U2.J.G2// satisfies the law .trX/X2 D 0, re-

spectively, X2.trX/D 0.

Proof. In the considered algebra the square of every element is zero. The identity
and the law are proved directly. �

Multiplying two linear combinations of the basic elements e1, e2 and e1e2 we get
only ˛e1e2. Its product with any other linear combination of e1, e2 and e1e2 gives
zero.

Analogous considerations are valid for the linear combinations of the basic el-
ements of any finite dimensional Grassmann algebra (over a n-dimensional vector
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space). The multiplication of n linear combinations will result in ˛e1e2 : : : en and the
result of the next multiplication will be zero. Thus, we come to the following

Corollary 2. The matrix algebra Uk.J.Gn// (respectively, Mk.J.Gn//) is nilpo-
tent of class � nC1.

Corollary 3. The polynomial identity Sn�1.ŒY n�1;Z�; ŒY n�2;Z�; : : : ; ŒY;Z�/D 0
holds on Mk.J.Gn// for n� 3 and k � 2.

As the algebra U2.G/ is a subalgebra of M2.G/ we turn to the Hall identity, the
four degree standard identity for M2.K/ and the product commutator identity for
U2.K/ considering the Grassmann algebra G instead of the field K. We get

Theorem 9. The polynomials ŒŒx1;x2�2;x1�, S4.x1;x2;x3;x4/, and Œx1;x2�Œx3;x4�
are not identities for the algebra U2.G/.

Proof. A counter example for the validity of the first and the third identity gives
the matrices

X1 D

�
e1 e2
0 e3

�
and

X2 D

�
e4e5C e6 1

0 e1C e3

�
:

We get that the .1;2/-entry of Œx1;x2�2 is nonzero, namely,

2e1e3e6C2e1e2e4e5e6�2e1e2e3e4e5C4e1e2e3e6:

The .1;2/-entry of ŒŒx1;x2�2;x1� is �2e1e2e3e4e5e6. For the second statement, we
rely on the general case considered later. �

In [1, 2], a connection is given between the identities on Mn.K/ and those on
Mn.G/.

Proposition 6 ([2, Proposition 2.1]). Let f1; : : : ;fd 2Khx1; : : : ;xmi be elements
of the T -ideal of identities of Mn.K/. If d > 1

2
n2m, then f1f2 � � �fd D 0 is an

identity on Mn.G/.

Remark 5. Applying the result to M2.G/ and the standard polynomial S4 we get
that S94 D 0 is an identity on M2.G/. However, this is not the best possible result.
Really onM2.G/ we get the identities S54 D 0 and ŒŒx;y�2;x�5D 0. Thus we get two
identities of degree 20 and 25, respectively, for U2.G/.

The above Proposition 6 has an analogue for the upper triangular matrices Un.

Theorem 10. Let f1; : : : ;fd 2Khx1; : : : ;xmi be elements of the T -ideal of iden-
tities of Un.K/. If d > 1

4
n.nC1/m, then f1f2 � � �fd D 0 is an identity on Un.G/.
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Proof. It follows the proof of Proposition 6 taking into account the dimension
of Un.K/ and the fact that the relatively free algebra F.Un.K// has as a basis the
monomials

x
a1

1 � � �x
am
m Œxi11

;xi21
; : : : ;xip11

� � � � Œxi1r
;xi2r

; : : : ;xipr r
�;

where the number r of participating commutators is � n�1 and the indices in each
commutator Œxi1s

;xi2s
; : : : ;xipss

� satisfy the relations i1s > i2s � � � �< ipss . �

Proposition 7 ([1, Lemma, p. 1509]). The algebra Mn.G/ satisfies the identity
Sk2n for some k > 1 but satisfies neither S2n nor identities of the form Skm for any k
when m< 2n.

Theorem 11. The algebra Un.G/ does not satisfy the identity S2n D 0.

Proof. We have

S2n.e11; e12; e22; e23; : : : ; en�1;n�1; en�1;n; eenn;fenn/D 2efe1n ¤ 0

for e;f 2G such that ef D�fe ¤ 0. �

In [16, Proposition 4.1 and Corollary 6.1], Vishne described an efficient way to
use the Sn-module structure in the computation of the multilinear identities of degree
n of a given algebra. He used the method to show that the minimal degree of an
identity for M2.G/ is 8 and gave explicit identities of degree 8. He described a class
of identities for M2.G/, namely,

Proposition 8 ([16, Corollary 4.3]). Let f be a multilinear polynomial of degree
8. If trf .x�.1/; : : : ;x�.8//D 0 for every x1; : : : ;x8 2M2.G/, then f is an identity of
M2.G/.

We use the notation An D
P
�2Sym.n/x�.1/x�.2/ � � �x�.n/. By G00 we denote the

even part of G0 and by G01 its odd part.

Proposition 9. The following identities hold:
(1) On U2.G01/ we have A2

k
D 0 for every integer k.

(2) On U2.G00/ we have S2
k
D 0 for every integer k.

Proof. For x1;x2 2 U2.G01/ and A2 D .aij / we get a11 D a21 D a22 D 0. Thus
A22 D 0. Then we use induction. Let Ak�1.x1; : : : ;xk�1/ have only one nonzero
entry, namely the .1;2/-entry. We have

Ak.x1; : : : ;xk/D Ak�1.x1; : : : ;xk�1/xkCAk�1.x1; : : : ;xk�2;xk/xk�1

CAk�1.x1; : : : ;xk�3;xk�1;xk/xk�2C�� �

CAk�1.x1;x3; : : : ;xk/x2CAk�1.x2; : : : ;xk/x1:

The multiplication by xi keeps the three zero entries in every summand. So for
Ak D .bij / we have b11 D b21 D b22 D 0 and thus A2

k
D 0.
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The arguments for S22 D 0 are similar as for x1;x2 2 U2.G00/ and for S2 D .cij /
we have c11 D c21 D c22 D 0. The recursive formulas

Sk.x1; : : : ;xk/D

kX
iD1

xi .�1/
k�1Sk�1.xiC1; : : : ;xk;x1; : : : ;xi�1/

for k even and

Sk.x1; : : : ;xk/D

kX
iD1

xiSk�1.xiC1; : : : ;xk;x1; : : : ;xi�1/

for k odd show that for Sk D .dij / we have d11 D d21 D d22 D 0 and, therefore,
S2
k
D 0. �
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