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1. INTRODUCTION

In this paper we consider systems of ordinary differential equations under periodic
and symmetric assumptions. More concretely, we mostly consider a weakly nonlinear
ordinary differential equation of the form

x0.t/D "f .x.t/; t/; t 2 R; (1.1)

with a small parameter " 2 R, where xWR ! Rn. We suppose that the function
f WRnC1! Rn in (1.1) is sufficiently smooth, pT -periodic in the second variable,
and symmetric in the first one, i. e.,

Af .x; t/D f .Ax; tCT /; t 2 R; (1.2)

where AWRn! Rn is a linear map such that Ap D 1 for some p 2 N. Due to this
property, we have the following useful construction. Let h�; �i be a scalar product on
Rn. By setting

.x;y/ WD
1

p

p�1X
iD0

hAix;Aiyi; fx;yg � Rn;
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as a new scalar product on Rn, we obtain .Ax;Ay/ D .x;y/ and jAxj D jxj for
jxj WD

p
.x;x/, x 2Rn, and thusA is unitary with respect to .�; �/. We mostly suppose

1 … �.A/, where �.A/ is the spectrum of A. The norm� on ˇ.Rn/ generated by j � j
is denoted by k � k.

Remark 1.1. We study (1.1) always in an arbitrary but fixed open bounded subset
of Rn. So we do not study bifurcations from infinity of (1.1) for " small.

Next, for T > 0 we introduce the Banach space

X WD
˚
x 2 C 0.R;Rn/ j x.tCT /D Ax.t/; t 2 R

	
: (1.3)

Note jx.�/j is a T -periodic function because jx.tCT /j D jAx.t/j D jx.t/j for every
t . So we take the norm kxk Dmaxt2Œ0;T � jx.t/j Dmaxt2R jx.t/j on X . It is easy to
see that if a function x belongs to the space X then it is a pT -periodic function.

Definition 1.1. By a symmetric and periodic solution x of equation (1.1) we un-
derstand a solution x 2X , where X is defined by (1.3).

The main goal of this paper is to find a unique symmetric and periodic solution
(see Sections 2 and 3) for (1.1) and to establish conditions, under which this solution
is either stable (see Section 4) or hyperbolic (see Sections 5 and 6). We also present
examples to illustrate the theory in Sections 7 and 8. We show that our symmetric
averaging method could help when the classical averaging theory fails [18, 27].

The results presented here are generalizations of achievements for anti-periodic
problems withAD�1 [1,2], and continuations of [7]. Doubly symmetric solutions of
reversible systems are studied in [20]. Symmetric properties of periodic solutions of
nonlinear nonautonomous ordinary differential equations are also studied in [23,24].

2. UNIQUENESS FOR GENERAL NONLINEARITIES

In spite of the fact that we are interested in (1.1), we start with its general form
with "D 1, i. e., we first consider the equation

x0.t/D f .x.t/; t/; t 2 R: (2.1)

Looking for a symmetric and periodic solution x of equation (2.1) is equivalent to
solve (2.1) on t 2 Œ0;T � under the boundary condition

x.T /D Ax.0/: (2.2)

The following lemma guarantees the existence and uniqueness of a solution of
problem (2.1), (2.2).

Lemma 2.1. Assume that 1 … �.A/ and, moreover, there exists a constant K > 0

such that
jf .x1; t /�f .x2; t /j �K jx1�x2j (2.3)

�As usual, the symbol ˇ.Rn/ stands for the algebra of square matrices of dimension n.
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for all x1, x2 from Rn. If �
k.A�1/�1kC1

�
KT < 1; (2.4)

then equation (2.1) has a unique solution x 2X .

Proof. Let us first solve the boundary value problem

x0 D zh; x.T /D Ax.0/; (2.5)

where zh 2 X . Obviously, x.t/ D x.0/C
R t
0
zh.s/ds and Ax.0/ D x.T / D x.0/CR T

0
zh.s/ds; whence

x.0/D .A�1/�1
Z T

0

zh.s/ds:

and, therefore, the solution of (2.5) has the form

x.t/D .A�1/�1
Z T

0

zh.s/dsC

Z t

0

zh.s/ds; t 2 Œ0;T �:

Let us put

B.x/.t/ WD .A�1/�1
Z T

0

f .x.s/; s/dsC

Z t

0

f .x.s/; s/ds; t 2 Œ0;T �;

for an arbitrary x fromX . For any x1;x2 2X , using the Lagrange theorem and (2.3),
we get

kB.x1/�B.x2/k D






.A�1/�1
Z T

0

.f .x1.s/; s/�f .x2.s/; s//ds

C

Z t

0

.f .x1.s/; s/�f .x2.s/; s//ds






�

�
k.A�1/�1kC1

�
KT kx1.t/�x2.t/k:

Taking condition (2.4) into account and applying the Banach fixed point theorem we
get that problem (2.1), (2.2) has a unique solution x 2X . The proof is complete. �

Now we replace Lipschitz condition (2.3) as follows. Let j � j0 be a norm on Rn.
Then for any x;y 2 Rn the limit [3, 4]

N.x;y/ WD lim
�!C0

jxC�yj0�jxj0

�
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exists and has the following elementary properties:

N.cx;cy/D cN.x;y/ ;

jN.x;y1/�N.x;y1/j � jy1�y2j0 ;

N

 
x;
1

m

mX
kD1

yk

!
�
1

m

mX
kD1

N.x;yk/

	

(2.6)

for any c > 0 and x, y, y1, y2, : : : , ym from Rn. So the function y 7! N.x;y/ is
globally Lipschitz continuous and convex. Next, for any B 2 ˇ.Rn/, there is its
Lozinskii logarithmic norm [16]

�.B/ WD lim
�!C0

k1C�Bk0�1

�
;

where kBk0 WDmaxjxj0D1 jBxj0. Note that

sup
jxj0D1

N.x;Bx/D �.B/: (2.7)

Now we are ready to prove the following results motivated by [6, 14, 15] and [30,
Theorem 9.6].

Lemma 2.2. Let f 2 C 1.RnC1;Rn/. If there is a constant ˛ > 0 such that

�.Dxf .x; t//� �˛ 8.x; t/ 2 RnC1

then (2.1) possesses a unique symmetric and periodic solution which is globally
asymptotically stable.

Proof. Let x.t/ be a solution of (2.1) defined on Œ0;ı/ for some ı > 0. Then by
(2.6), (2.7) and the Jensen inequality [25], for almost each t 2 Œ0;ı/, we derive

d

dt
jx.t/j0 DN.x.t/;x

0.t//DN.x.t/;f .x.t/; t//

�N.x.t/;f .x.t/; t/�f .0; t//Cjf .0; t/j0

�N

�
x.t/;

Z 1

0

Dxf .�x.t/; t/x.t/d�

�
Ckf .0; �/k0

�

Z 1

0

N .x.t/;Dxf .�x.t/; t/x.t//d�Ckf .0; �/k0

�

Z 1

0

�.Dxf .�x.t/; t//d� jx.t/j0Ckf .0; �/k0

� �˛jx.t/j0Ckf .0; �/k0 ;

(2.8)
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where kf .0; �/k0Dmaxt2R jf .0; t/. Note jx.t/j0 is locally absolute continuous. The
Gronwall inequality implies

jx.t/j0 � e�˛t jx.0/j0C
kf .0; �/k0

˛

�
1� e�˛t

�
;

so x.t/ is defined for any t � 0 and it terminates in the ball B .0;2kf .0; �/k0=˛/
centered at 0 with the radius 2kf .0; �/k0=˛, i. e., (2.1) is dissipative possessing a pT -
periodic solution x0.t/ inside B .0;2kf .0; �/k0=˛/ (see [4]).

Next, let x1.t/ and x2.t/ be two solutions of (2.1) on RC. Then similarly to the
consideration above, for almost every t 2 RC, we obtain

d

dt
jx1.t/�x2.t/j0 DN

�
x1.t/�x2.t/;

d

dt
.x1.t/�x2.t//

�
DN.x1.t/�x2.t/;f .x1.t/; t/�f .x2.t/; t//

DN

�
x1.t/�x2.t/;

Z 1

0

Dxf .�x1.t/C .1��/x2.t/; t/.x1.t/�x2.t//d�

�
�

Z 1

0

N .x1.t/�x2.t/;Dxf .�x1.t/C .1��/x2.t/; t/.x1.t/�x2.t///d�

�

Z 1

0

�.Dxf .�x1.t/C .1��/x2.t/; t//d� jx1.t/�x2.t/j0

� �˛jx1.t/�x2.t/j0 ;

i. e., the Gronwall inequality again implies

jx1.t/�x2.t/j0 � e�˛t jx1.0/�x2.0/j0 : (2.9)

So (2.9) gives the uniqueness of x0.t/ and it is globally asymptotically stable. It is
easy to verify that x.t/ WDA�1x0.tCT / is also a pT -periodic solution of (2.1). The
uniqueness gives x.t/D x0.t/, i. e., x0 2X . The proof is finished. �

Lemma 2.2 is extended in Corollary 4.1 of Section 4 in the context of averaging
theory. The above result can be slightly modified as follows.

Lemma 2.3. Let f 2 C 1.RnC1;Rn/. Assume that

�.Dxf .x; t//� 0 8.x; t/ 2 RnC1

and, moreover, that (2.1) possesses a bounded uniformly asymptotically stable solu-
tion x0 on RC. Then x0 is symmetric, periodic, and globally asymptotically stable.

Proof. Let x.t/ be a solution of (2.1) defined on Œ0;ı/ for some ı > 0. Then for
˛ D 0, (2.8) implies that jx.t/j0 � jx.0/j0Ckf .0; �/k0t holds for all t � 0. So x.t/
is defined on Œ0;1/.

Next, let x1.t/ and x2.t/ be two solutions of (2.1) on RC. Then for ˛ D 0, (2.9)
implies

jx1.t/�x2.t/j0 � jx1.0/�x2.0/j0 8t � 0: (2.10)
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Furthermore, from the uniform asymptotic stability of x0.t/ on RC, there is an ı0 >0
such that

fx 2 Rn j dist.x;fx0.t/ j t 2 RCg/ < ı0g � BA ;

where BA is the domain of attraction of x0.t/. Then (2.10) implies that B.´;ı0=2/�
BA holds for any ´ 2 BA. Consequently, BA D Rn. Since x0.t/ is bounded on
RC by assumption, all solutions of (2.1) terminates in a large ball. So (2.1) has
a pT -periodic solution which now must be x0.t/. Then like above it is unique and
symmetric. The proof is finished. �

We recall the following well-known results:

(1) If jxj0 D
qPm

kD1x
2
k

then �.B/ D �
�
1
2
.BCB�/

�
, where � means the

largest eigenvalue.
(2) If jxj0 DmaxkD1;2;:::;m jxkj then

�.B/D max
kD1;2;:::;m

0@bkkCX
j¤k

jbkj j

1A ;
where bkj , k;j D 1;2; : : : ;m, mean the entries of matrix B .

(3) If jxj0 D
Pm
kD1 jxkj then �.B/DmaxkD1;2;:::;m

�
bkkC

P
j¤k jbjkj

�
.

Applying Lemmas 2.2 and 2.3, we obtain the following particular results used in
the sequel [6].

Lemma 2.4. Let us put

J.x; t/ WD
1

2

�
Dxf .x; t/CDxf .x; t/

�
�

(2.11)

and let �.x; t/ be the largest eigenvalue of J.x; t/. If there is a constant ˛ > 0 such
that

�.x; t/� �˛ 8.x; t/ 2 RnC1 (2.12)
then (2.1) possesses a unique symmetric and periodic solution which is globally
asymptotically stable.

Lemma 2.5. Assume

�.x; t/� 0 8.x; t/ 2 RnC1 (2.13)

and (2.1) possesses a bounded, uniformly asymptotically stable solution x0.t/ on RC.
Then x0.t/ is symmetric, periodic and globally asymptotically stable.

Remark 2.1. We do not need to suppose that 1 … �.A/ in Lemmas 2.2–2.5.
Remark 2.2. By reversing the time t $ �t in (2.1), we get similar results like

above ensuring that x0.t/ is a global repeller, namely, (2.12) and (2.13) are replaced
by the inequalities �.x; t/ � ˛ and �.x; t/ � 0 for all .x; t/ 2 RnC1, respectively,
where �.x; t/ is the smallest eigenvalue of J.x; t/.
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3. UNIQUENESS FOR WEAK NONLINEARITIES

First, we consider the Cauchy problem

x0.t/D "f .x.t/; t/; t 2 Œ0;T �; (3.1)

x.0/D x: (3.2)

Let us denote by '".x; t/ the unique solution of problem (3.1), (3.2). Note that

'".x;0/D x: (3.3)

Obviously, the equation
'".x;pT /D x (3.4)

determines pT -periodic solutions of (1.1). For this reason, we consider the diffeo-
morphism given by the formula

P".x/ WD '".x;pT /: (3.5)

Taking (3.4) and (3.5) into account, we get

P".x/D x: (3.6)

On the other hand, the T -periodic and symmetric solutions of (1.1), i. e., the solu-
tions belonging to X , are given by the equation

Ax D '".x;T /:

In this connection, we introduce the new mapping

g".x/ WD A
�1'".x;T /: (3.7)

Summarizing the considerations above, we arrive at the following simple lemma.

Lemma 3.1. A fixed point x of P", respectively of g", determines a pT -periodic,
respectively a periodic and symmetric, solution of equation (1.1) satisfying (3.2).

The basic relationship between mappings P" and g" is expressed by the following
lemma.

Lemma 3.2. The relation

P".x/D Œg".x/�
p (3.8)

holds, where P" and g" are defined, respectively, by (3.5) and (3.7).

In (3.8), Œg".x/�p is defined as

Œg".x/�
p
D g".g".g".g" : : : .x/////„ ƒ‚ …

p

; x 2 Rn:
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Proof of Lemma 3.2. It is easy to see that

'".x; tCT /D A'".A
�1'".x;T /; t/;

which implies

'".x;2T /D A'".A
�1'".x;T /;T /D AAA

�1'".g".x/;T /:

Taking into account (3.7), the last relation is equal to

'".x;2T /D A
2Œg".x/�

2:

Let us apply inductive method. Assume that relation

'".x; iT /D A
i Œg".x/�

i

is true. Now we show that this relation is true also for iC1:

'".x;.iC1/T /D '".x; iT CT /D A'".A
�1'".x;T /; iT /

D A'".g".x/; iT /D A �A
ig"Œg".x/�

i
D AiC1Œg".x/�

iC1:

So, finally we obtain

P".x/D '".x;pT /D A
pŒg".x/�

p
D Œg".x/�

p:

The proof is finished. �

In the sequel we assume for simplicity that f is C1-smooth. Asymptotic expan-
sion can be obtained by the methods of averaging and multiple scales. So there exist
the Taylor series of P" and g" with respect to the small parameter ":

P".x/D P0.x/C "P1.x/C : : : (3.9)

and
g".x/D g0.x/C "g1.x/C : : : :

Remark 3.1. It follows from the definition of the mapping P" given by formula
(3.5) that P0 D 1.

The next lemma follows from Lemma 3.2.

Lemma 3.3. If x is a solution of equation

g".x/D x; (3.10)

then it is also a solution of equation (3.6).

Let us solve equation (3.10), which, by (3.7), has the form

H.x;"/ WD A�1'".x;T /�x D 0:

Since
g0.x/D A

�1'0.x;T /D A
�1x; (3.11)

we obtain that H.0;0/ D 0 and DxH.0;0/ D A�1� 1. Using the assumption 1 …
�.A/ and applying the Implicit Function Theorem, we get the following result.
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Theorem 3.1. If 1 … �.A/ then equation (3.10) has a unique C1-smooth solution
x" DO."/ for "¤ 0 small. Note that

P".x"/D x" :

Theorem 3.1 implies the following one.

Theorem 3.2. If 1 … �.A/ and " ¤ 0 is small, then equation (1.1) has a unique
pT -periodic solution x".t/ 2X such that x".0/D x" and x".t/DO."/.

Proof. Lemmas 3.1, 3.2 and Theorem 3.1 immediately give the result. �

4. STABILITY OF PERIODIC AND SYMMETRIC SOLUTIONS

To study stability of the T -periodic and symmetric solution x".�/ 2X of equation
(1.1), we consider the linearization

M."/ WDDxg".x"/ (4.1)

of mapping (3.7) at the fixed point x" DO."/. Note that, by (3.8), we have

ŒDxg".x"/�
p
DDxP".x"/;

which, by the Dunford spectral mapping theorem [11], yields

� .DxP".x"//D Œ� .Dxg".x"//�
p : (4.2)

Taking (3.7) into account, we get

Dxg".x/D A
�1Dx'".x;T /:

So, using (3.11), we obtain

Dxg0.x/D A
�1Dx'0.x;T /D A

�1: (4.3)

From (4.1), (4.3) we have that
M.0/D A�1; (4.4)

but A is a unitary linear mapping with all eigenvalues on the unit circle.
Let us consider the decomposition of the mapping M."/ into the Taylor series on

a small parameter " using (4.4):

M."/D A�1C "M1C : : : : (4.5)

By definition,

M1 D
d

d"
M.0/;

it is easy to see, taking into account (4.1), x0 D 0 and D2xg0.0/D 0, that

M1 D
d

d"
ŒDxg".x"/�

ˇ̌̌
"D0
DD2xg0.0/

d

d"
x0C

d

d"
Dxg0.x0/

D A�1
d

d"
Dx'0.0;T /: (4.6)
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Let us consider problem (3.1), (3.2). By (3.3), we get that

P'".x; t/D "f .'".x; t/; t/; (4.7)

'".x;0/D x: (4.8)

We differentiate (4.7), (4.8) with respect to x and get
d

dt
.Dx'".x; t//D "Dxf .'".x; t/; t/Dx'".x; t/; (4.9)

Dx'".x;0/D 1: (4.10)

Now differentiating (4.9), (4.10) with respect to " and putting "D 0, we get
d

dt

� d
d"
Dx'0.x; t/

�
DDxf .x; t/Dx'0.x; t/;

d

d"
Dx'0.x;0/D 0:

Thus,
d

d"
Dx'0.x;T /D

Z T

0

Dxf .x;s/ds: (4.11)

Using (4.6) and (4.11) we arrive at the equality

M1 D A
�1

Z T

0

Dxf .0;s/ds:

Now we return to the Taylor series (4.5). Considering previous calculations and
using that x" DO."/ from Theorem 3.1, we derive

M."/D A�1C "A�1
Z T

0

Dxf .0;s/dsC�� �

D A�1
�
1C "

Z T

0

Dxf .0;s/dsC�� �
�
D A�1G."/; (4.12)

where G."/ D AM."/ D 1C "
R T
0 Dxf .0;s/dsC�� � . Since A�1 is unitary, we get

that M."/ is stable if G."/ is stable. Let us now prove a generalization of a classical
result [5, 6, 22].

Theorem 4.1. Let M."/ 2ˇ.Rn/ be given by (4.12). If

Re

(
�

 Z T

0

Dxf .0;s/ds

!)
� .�1;0/; (4.13)

then there exists an "0 > 0 such that r.M."// < 1 for any 0 < "� "0, where r.M."//
is the spectral radius of M."/.

In order to prove Theorem 4.1, we recall the following well-known results [10,11,
17].
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Theorem 4.2. Let K 2ˇ.Rn/. Then r.K/ < 1 if and only if there exists a norm
on Rn such that kKk< 1.

Theorem 4.3. Assume that (4.13) is fulfilled then there exists a scalar product
h�; �i1 and constant ˛, ˛ > 0 such that* Z T

0

Dxf .0;s/ds

!
x;x

+
1

� �˛kxk21 for any x 2 Rn; (4.14)

where kxk1 D
p
hx;xi1, x 2 Rn.

Proof of Theorem 4.1. Consider the expression kG."/xk21DhG."/x;G."/xi1 :Dif-
ferentiating kG."/k21 with respect to ", we get

d

d"
kG."/xk21 D 2hG

0."/x;G."/xi1 :

Using the Lagrange theorem, we obtain

kG."/xk21 D kG.0/xk
2
1C

d

d"
kG.�/xk21"

D kxk21C2hG
0.�/x;G.�/xi1"; 0� � � ":

(4.15)

By virtue of (4.14), we arrive at the equality

hG0.0/x;G.0/xi1 D
D�R T

0 Dxf .0;s/ds
�
x;x

E
1
� �˛kxk21 :

Thus,
2hG0.�/x;G.�/xi1 � �˛kxk

2
1

for 0 < "� "0 with "0 small enough. Returning to (4.15), we obtain

kG."/xk21 � kxk
2
1�˛kxk

2
1"D .1�˛"/kxk

2
1 :

Supposing that "0˛ < 1, we get

kG."/xk1 �
p
1�˛"kxk1 8x 2 Rn:

Consequently, we have that kG."/k1 �
p
1�˛" < 1. Then Theorem 4.2 implies that

r.G."// < 1. Finally, since A is unitary with respect to the norm j � j, we have [11]

r.M."//D lim
k!1

k

q
kM."/kk D lim

k!1

k

q
kG."/kk D r.G."// < 1;

which completes the proof of Theorem 4.1. �

Summarizing, we obtain the following result.

Theorem 4.4. Suppose 1 … �.A/. Then for any " > 0 small, the unique symmetric
and T -periodic solution x.t/ D O."/ of equation (1.1) is asymptotically stable if
condition (4.13) is fulfilled.
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Proof. We know from Theorem 4.1 that r .Dxg".x"// < 1. Then, using (4.2), we
have

r .DxP".x"//D r .Dxg".x"//
p < 1:

The proof is complete. �

Finally, we generalize Lemma 2.2 as follows to get a practical global stability of
symmetric and periodic solutions of (1.1) [12]. By using the change of variables [8]

x ! xC "

�Z t

0

f .x;s/ds� xf .x/t

�
;

equation (1.1) is transformed to the form

x0.t/D " xf .x.t//C "2g.x.t/; t;"/ (4.16)

with a C1-smooth and pT -periodic g. Here xf .x/ WD 1
pT

R pT
0 f .x;s/ds. Note that

A xf .x/D xf .Ax/. Therefore, A xf .0/D xf .0/ and, thus, xf .0/D 0 because 1 … �.A/.
Suppose the existence of a norm j � j0 on Rn and a constant ˛ > 0 such that

�.D xf .x// < �˛ for any x 2 Rn; (4.17)

where � is the corresponding Lozinskii logarithmic norm. Then from the proof of
Lemma 2.2 we see that equilibrium ´D 0 is a global attractor for the system

Ṕ D " xf .´/: (4.18)

Now we are ready to prove the following results [28].

Theorem 4.5. Suppose that (4.17) holds for a norm j � j0 on Rn and a constant
˛ > 0 with the corresponding Lozinskii logarithmic norm �. Take R0 > R1 > 0 and
put

K0 W D max
jxj0�R0; j"j�1;t2R

jg.x; t;"/j0 ;

and

K1 W D max
jxj0�R0; j"j�1;t2R

kDxg.x; t;"/k0:

If

0 < " <min
�
1;
R0�R1

K0
˛;
R0˛

3K0
;
K1

˛

�
; (4.19)

then any solution of (4.16) starting from the ball B.0;R1/ remains in B.0;R0/ and
tends asymptotically to a unique pT -periodic solution of (4.16).

Moreover, if x.�/ and ´.�/ are solutions of (4.16) and (4.18) on RC such that
x.0/D ´.0/ and jx.0/j �R1, then

jx.t/�´.t/j0 �
K0

˛
" (4.20)

for all t 2 RC.
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Proof. We take " satisfying (4.19). Let x.t/ be a solution of (4.16) such that
jx.0/j �R1 and jx.t/j �R0 for all t 2 Œ0;ı/. Then from the proof of Lemma 2.2, we
obtain

jx.t/j0 � e�˛"tR1C
"K0

˛
�R1C

"K0

˛
�R0

for any t 2 Œ0;ı/. Thus, in fact, ı DC1. Since

"K0

˛
�
R0

3
<
R0

2
;

all solutions starting from B.0;R1/ terminate in B.0;R0=2/ as t !1. Next, again
from the proof of Lemma 2.2, we obtain

jx1.t/�x2.t/j0 � e�".˛�"K1/t jx1.t/�x2.t/j0 � 2e�".˛�"K1/tR1 8t � 0

for any two solutions x1.t/ and x2.t/ of (4.16) starting in B.0;R1/. Consequently,
(4.16) has a unique pT -periodic solution in B.0;R1/ and it is attracting all solutions
starting in this ball. Finally, like above we see that any solution of (4.18) starting
in ball B.0;R1/ remains in B.0;R1/ and it asymptotically tends to an equilibrium
´D 0. Estimate (4.20) is derived similarly for any solutions x.�/ and ´.�/ of (4.16)
and (4.18) on RC with x.0/D ´.0/ and jx.0/j �R1. The proof is complete. �

We get immediately from Theorem 4.5 the following result.

Corollary 4.1. Assume that (4.17) holds for a norm j � j0 on Rn and a constant
˛ > 0 with the corresponding Lozinskii logarithmic norm �. Then for any bounded
subset � � Rn there are constants zK > 0 and z" > 0 such that for any 0 < " < z", if
x.t/ and ´.t/ are solutions of (1.1) and (4.18) on RC with x.0/D ´.0/ 2 � , then

jx.t/�´.t/j0 � zK0" (4.21)

for all t 2 RC. Moreover, x.t/ asymptotically tends to a unique periodic and sym-
metric solution of (1.1).

Remark 4.1. Results similar to the estimates (4.20) and (4.21) above are obtained
in the paper [27].

5. AVERAGING THEORY

In this section we survey classical results [5, 9, 18, 21, 22, 26, 27] on the local
uniqueness and stability of pT -periodic solutions of equation (1.1). We already know
that pT -periodic solutions are described by mapping (3.5). So, now we recall some
known results for this mapping. Taking into account (3.9), we have

P".x/D '0.x;pT /C "'1.x;pT /C�� � (5.1)

From (3.6) we have
P0.x/C "P1.x/C�� � D x;
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which, in view of the relation P0.x/D '0.x;pT /D x, becomes "P1.x/C�� � D 0: It
is easy to see that P1.x/D d

d"
P".x/j"D0 ; and using (5.1) we get

P1.x/D
d

d"
'0.x;pT /: (5.2)

Similar as it is done in Section 4 we solve the problem (4.7), (4.8) and considering
(5.2), one can get that

P1.x/D
d

d"
D'0.0;pT /D

Z pT

0

f .x;s/ds (5.3)

and

DxP1.x/D

Z pT

0

Dxf .x;s/ds: (5.4)

Now repeating the procedure of the previous sections, we are ready to state the fol-
lowing classical result.

Theorem 5.1. If there exists x0 2 Rn such thatZ pT

0

f .x0; s/ds D 0

and

det
Z pT

0

Dxf .x0; s/ds 6D 0;

then, for any "¤ 0 small, equation (1.1) has a unique pT -periodic solution x.t/D
x0CO."/. Moreover, for " > 0 small, the following statements are true:

(1) If Re
n
�
�R pT
0 Dxf .x0; s/ds

�o
� .�1;0/ then x.t/ is asymptotically sta-

ble.
(2) If Re

n
�
�R pT
0 Dxf .x0; s/ds

�o
\ .0;1/¤¿ then x.t/ is unstable.

(3) If Re
n
�
�R pT
0 Dxf .x0; s/ds

�o
� .0;1/ then x.t/ is a repeller.

(4) If Re
n
�
�R pT
0 Dxf .x0; s/ds

�o
\f0g D ¿ then x.t/ is hyperbolic with the

same hyperbolicity type as
R pT
0 Dxf .x0; s/ds.

Remark 5.1. By (1.2), (5.3), and (5.4), we have

AP1.x/D P1.Ax/; ADxP1.x/DDxP1.Ax/A 8x 2 Rn : (5.5)

So if P1.x0/ D 0 then P1.xj / D 0 and �.DxP1.xj // D �.DxP1.x0// for xj WD
Ajx0 and j D 0;1; : : : ;p�1. Assuming x0 ¤ 0 from 1 … �.A/, there is the maximal
p0 > 1, p0jp such that xj are different for j D 0;1; : : : ;p0�1. Then if

detDxP1.x0/¤ 0;
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then, by Theorem 5.1, we have p0 distinct pT -periodic solutions xj .t/D xj CO."/
for j D 0;1; : : : ;p0� 1. By (1.2), the function zxj .t/ WD Ajx0.t � jT / D Ajx0C
O."/D xjCO."/ is also a solution of (1.1). The uniqueness from Theorem 5.1 yields
zxj .t/D xj .t/. Consequently, xj .t/, j D 0;1; : : : ;p0�1 are distinct solutions of (1.1),
but geometrically they are A-symmetric to one other with same local asymptotic
properties.

6. k-HYPERBOLICITY

To study hyperbolicity of periodic solutions of equation (1.1) we need the follow-
ing results from [22].

Definition 6.1. A continuous matrix functionL"WRn!Rn of "� 0 is k-hyperbolic
if, for every matrix function N" defined for "� 0 satisfying N" D o."k/, there exists
an interval 0 < " < "1 in which L"CN" is hyperbolic of the same type (i. e., with the
same number of eigenvalues on each side of the unit circle).

Definition 6.2. A continuous matrix function L"WRn! Rn of "� 0 is strongly k-
hyperbolic if there exists a continuous real matrix C" defined in an interval 0� " < "0
such that C" is regular (even for "D 0) and such that

C�1L"C" D

�
A" 0

0 B"

�
for 0 < " < "0, where A" and B" are r � r and s� s blocks, respectively, and kA"k<
1� c"k , kB�1" k< 1� c"

k for some c > 0.

Now repeating proofs of Theorems 2.2 and 2.4 of [22], we arrive at the following
generalizations.

Theorem 6.1. Strong k-hyperbolicity implies k-hyperbolicity.

Theorem 6.2. IfL"DL0C"L1C�� �C"kLk , if the eigenvalues ofL0 are distinct
numbers on the unit circle, and if the eigenvalues �i ."/ of L" suitably numbered
satisfy j�i ."/j < 1� c"k for i D 1; : : : r , j�i ."/j > 1� c"k for i D r C 1; : : : ;n, for
some constant c > 0 and " > 0 small, then L" is strongly k-hyperbolic.

Remark 6.1. A difference between our Theorem 6.2 and [22, Theorem 2.2] is that
it is supposed L" D 1C "L1C�� �C "kLk and the eigenvalues of L1 are distinct in
[22, Theorem 2.2].

Now we can improve Theorem 4.4 as follows.

Theorem 6.3. Suppose 1 … �.A/ and all eigenvalues of A are distinct complex
numbers on the unit circle. Let x" DO."/ be the unique solution of (3.10). If

Dxg".x"/DG";kCo."
k/ WD A�1C "G1C�� �C "

kGkCo."
k/
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with a k-hyperbolic matrix function G";k then Dxg".x"/ is hyperbolic of the same
type as G";k . In particular, G";k is k-hyperbolic if it fulfills assumptions of Theo-
rem 6.2.

According to (4.2), from Theorem 6.3, we obtain the following consequence.

Theorem 6.4. Suppose 1 … �.A/ and all eigenvalues of A are distinct complex
numbers on the unit circle. If the eigenvalues �i ."/ of A�1C "G1C �� � C "kGk
suitably numbered satisfy j�i ."/j < 1� c"k for i D 1; : : : r , j�i ."/j > 1� c"k for
i D rC1; : : : ;n, for some constant c > 0 and " > 0 small.

Then the unique symmetric and T -periodic solution of (1.1) is hyperbolic for any
" > 0 small.

7. APPLICATIONS TO WEAKLY NONLINEAR PROBLEMS

In this section, we present two concrete weakly nonlinear ordinary differential
equations to illustrate our theory.

7.1. A scalar problem

Let us consider a scalar differential equation

x0 D ".x�x3C sin t /; x 2 R; (7.1)

with T D � , pD 2 and f .x; t/D x�x3C sin t , Ax D�x. Indeed, we verify condi-
tion (1.2):

Af .x; t/D�f .x; t/D�.x�x3C sin t /D

D .�x/� .�x3/C sin.tC�/D f .�x; tC�/D f .Ax; tC�/:

Let us establish the stability of the pT -periodic solution of the symmetric problem
(1.1), (2.2). Using (5.3) we get

P1.x/D

Z 2�

0

.x�x3C sin t /dt D 2�.x�x3/:

Solving the equation P1.x/D 0 we find that

x D 0; x D�1; x D 1:

It is easy to see, using (5.4), that

P 01.x/D 2�.1�3x
2/;

P 01.�1/ < 0; P 01.0/ > 0; P 01.1/ < 0:

From Theorem 5.1 we know that x0.t/ D O."/, x˙.t/ D ˙1CO."/ are the only
2�-periodic solutions of the problem (7.1) for " > 0 small, while x0.t/ is unstable
(a repeller) and x˙.t/ are asymptotically stable. Note by Remark 5.1, curves x˙.t/
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are symmetric with respect to the origin to each others. Furthermore, from Theo-
rem 3.2 we know that x0.t/ is the only �-antiperiodic solution of (7.1). Now using
Theorem 4.4 together with a calculationZ �

0

f 0.0;s/ds D � > 0;

we reverify its instability.

7.2. A planar problem

Let us consider a planar differential system

x01 D ".f1.x1;x2/Ch1.t// ;

x02 D ".f2.x1;x2/Ch2.t//
(7.2)

with smooth functions f1;2, h1;2, T D �=2, p D 4, and with

AD

�
0 �1

1 0

�
: (7.3)

Then symmetry condition (1.2) implies

f1.x1;x2/D f2.�x2;x1/; f2.x1;x2/D�f1.�x2;x1/; (7.4)

and

h1

�
tC

�

2

�
D�h2.t/; h2

�
tC

�

2

�
D h1.t/: (7.5)

Note that (7.5) gives h1;2.tC�/D�h1;2.t/ and, thus,Z 2�

0

h1;2.t/dt D 0:

Consequently, (5.3) now has the form

P1.x/D 2� .f1.x1;x2/;f2.x1;x2// ; (7.6)

where x D .x1;x2/. Symmetry conditions (7.4) are satisfied, e. g., for the polynomi-
als

f1.x1;x2/D a0x1Cb0x2C

mX
j;kD0;jCk�3
2jjCkC1

�
ajkx

j
1x

k
2 Cbkjx

k
1x

j
2

�
;

f2.x1;x2/D�b0x1Ca0x2

�

mX
j;kD0;jCk�3
2jjCkC1

�
.�1/kbkjx

j
1x

k
2 C .�1/

jajkx
k
1x

j
2

�
:

(7.7)
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Hence DxP1.0/D
�
a0 b0
b0 a0

�
. Then from Theorem 5.1 we know that x0.t/DO."/ is

the only symmetric and �=2-periodic solution of (7.2) which is in addition asymptot-
ically stable (a repeller) if a0 < 0 (a0 > 0), respectively, for " > 0 small. We need to
compute higher-order terms for a0D 0, but it is not carried out here. Since in general
polynomials (7.7) are difficult to handle, we consider the following particular cases.

7.2.1. Degenerate cases

If a0 D b0 D 0 then DxP1.0/ D 0 and so Theorem 5.1 is not applicable. But
Theorem 3.2 still guarantees the existence and uniqueness of x0.t/. This is one of
advantages of our results. For instance, consider

x01 D "
�
ajx

j
1 Cbjx

j
2 Ch1.t/

�
;

x02 D "
�
�bjx

j
1 Cajx

j
2 Ch2.t/

�
;

(7.8)

where aj ;bj 2 Rnf0g, j 2N, j � 3 is odd and h1;2 ¤ 0 satisfy (7.5). The lineariza-
tion of (7.8) along x0.t/D

�
x1;0.t/;x2;0.t/

�
has the form

x01 D "
�
jajx1;0.t/

j�1x1Cjbjx2;0.t/
j�1x2

�
;

x02 D "
�
�jbjx1;0.t/

j�1x1Cjajx2;0.t/
j�1x2

�
:

(7.9)

LetX".t/ be the fundamental matrix solution of (7.9). Then in notations of Sections 4
and 5, we have Dxg".x"/D A�1X".�=2/ and DxP".x"/DX".2�/ for x" D x0.0/.
Since

�
�
A�1X0.�=2/

�
D
˚

e˙�{=2
	
;

it follows that �
�
A�1X".�=2/

�
D
˚
�";x�"

	
is close to

˚
e˙�{=2

	
. Let � .X".2�//D

f�";1;�";2g. Then, due to (4.2), we have �";1 D �4" and �";2 D .x�"/4 D �4" D x�";1.
On the other hand, by the Liouville theorem [11], we know that

�";1�";2 D detX".2�/D e

Z 2�

0

jaj

�
x1;0.t/

j�1
Cx2;0.t/

j�1
�
dt
:

Therefore, since
R 2�
0

�
x1;0.t/

j�1Cx2;0.t/
j�1

�
dt > 0, we see that j�";1j D j�";2j<

1 for aj < 0 and j�";1j D j�";2j> 1 for aj > 0. Furthermore, the relation P1.x/D 0
has the form

ajx
j
1 Cbjx

j
2 D 0; �bjx

j
1 Cajx

j
2 D 0; (7.10)

which gives .x1x2/j .a2j Cb
2
j /D 0. Thus, (7.10) has only zero solution x1D x2D 0.

Summarizing, we have the following result.
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Theorem 7.1. Weakly nonlinear system (7.8) has the only 2�-periodic solution
x0.t/ D O."/ for " > 0 small, which is moreover ��=2-symmetric, i. e., has the
property

x0.tC�=2/D

�
0 �1

1 0

�
x0.t/ 8t 2 R: (7.11)

If aj < 0 then x0.t/ is globally asymptotically stable, and if aj > 0 then x0.t/ is
a global repeller.

Proof. We concentrate on the case aj < 0, since the case aj > 0 can be handled
similarly. We already know that (7.8) possesses a solution x0.t/ which is asymptoti-
cally stable. Now we apply Lemma 2.5. By (2.11), we have

J.x; t/D jaj "

 
x
j�1
1 0

0 x
j�1
2

!
;

which clearly satisfies (2.13). The proof is finished. �

7.2.2. Nondegenerate cases

First we consider a linear perturbation of (7.8) of the form

x01 D "
�
a0x1Cb0x2Cajx

j
1 Ch1.t/

�
x02 D "

�
�b0x1Ca0x2Cajx

j
2 Ch2.t/

�
;

(7.12)

where a0;b0;aj 2 R, j 2N, j � 3 is odd and h1;2 satisfy (7.5). Then

J.x; t/D "

 
a0Cjajx

j�1
1 0

0 a0Cjajx
j�1
2

!
which, clearly, satisfies relation (2.12) for a0 < 0, aj � 0 and any " > 0. Thus,
applying Lemma 2.4, we obtain the following result.

Theorem 7.2. Assume a0 < 0, aj � 0. Then nonlinear system (7.12) has the
only 2�-periodic solution x0.t/ D O."/ for any " > 0, which is moreover ��=2-
symmetric, i. e., it satisfies (7.11) and it is globally asymptotically stable.

Remark 7.1. Except of Theorem 7.2 in this paper, we do not know anything about
dynamics of (1.1) as " is increasing.

Finally, to get further interesting results, we consider the following simple form of
(7.7):

f1.x1;x2/D x1Cx2Cax
2
1x2Cbx1x

2
2 ;

f2.x1;x2/D�x1Cx2Cbx
2
1x2�ax1x

2
2 ;

(7.13)

where a;b 2 R are constants with .a;b/¤ .0;0/. Hence x0.t/ is a repeller for " > 0
small. We intend to find more 2�-periodic solutions of (7.2) with (7.13). For this



30 NATALIYA DILNA AND MICHAL FEČKAN

reason, we solve
x1Cx2Cax

2
1x2Cbx1x

2
2 D 0;

�x1Cx2Cbx
2
1x2�ax1x

2
2 D 0;

(7.14)

which gives
x2
�
2C .aCb/x21 � .a�b/x1

�
D 0: (7.15)

For x2D 0 from (7.14) we derive x1D 0 which gives x0.t/. If x2¤ 0 and aD b � 0
then (7.15) has no more solutions. So we suppose a¤ b and then (7.15) gives x1¤ 0
along with

x2 D
.aCb/x22C2

.a�b/x1
: (7.16)

Inserting (7.16) into the first equation of (7.14), after some computation, we arrive at

2.aCb/C4.a2Cb2/x21C .aCb/.a
2
Cb2/x41 D 0: (7.17)

If aC b D 0 then (7.17) gives x1 D 0 and so we again obtain x2 D 0. Hence we
suppose aCb ¤ 0, and then (7.17) gives

x21;C D

p
2.a�b/�2

p
a2Cb2

.aCb/
p
a2Cb2

;

x21;� D�

p
2.a�b/C2

p
a2Cb2

.aCb/
p
a2Cb2

:

(7.18)

It is elementary to observe
p
2.a�b/�2

p
a2Cb2 < 0;

p
2.a�b/C2

p
a2Cb2 > 0

whenever aC b ¤ 0. So (7.18) has a real solution if and only if aC b < 0, which
is from now supposed. Then by (7.16), we get four solutions of (7.14). But since
according to (7.4), system of equations (7.14) is equivariant with respect to the sym-
metry (7.3), these solutions are rotationally symmetric (see also Remark 5.1). So we
concentrate on the first solution given by the formulae

x1;C D

sp
2.a�b/�2

p
a2Cb2

.aCb/
p
a2Cb2

;

x2;C D

p
2.aCb/

p
a2Cb2

�p
2.a�b/�2

p
a2Cb2

� : (7.19)

Then by (7.6) and (7.13) we get

DxP1.x1;C;x2;C/D
2�

.aCb/
p
a2Cb2

�
u v

w w

�
;



SYMMETRIC PERIODIC SOLUTIONS 31

where

uD .a�b/
p
a2Cb2C

p
2
�
2a2CabCb2

�
;

v D .b�a/
p
a2Cb2C

p
2
�
a2CabC2b2

�
;

and

w D .a�b/
p
a2Cb2C

p
2
�
a2CabC2b2

�
:

It is interesting to note detDxP1.x1;C;x2;C/D�16� . The eigenvalues of the matrix
DxP1.x1;C;x2;C/ are given by the formulae

�˙ D 2�
a�b�

p
9a2C14abC9b2

aCb
:

Since aC b < 0, we see that �C > 0 and �� < 0. Summarizing, we obtain the
following result.

Theorem 7.3. Consider the system

x01 D "
�
x1Cx2Cax

2
1x2Cbx1x

2
2Ch1.t/

�
;

x02 D "
�
�x1Cx2Cbx

2
1x2�ax1x

2
2Ch2.t/

�
;

(7.20)

where a;b 2 R are constants with .a;b/¤ .0;0/, h1;2 are continuous functions sat-
isfying (7.5) and " > 0 is a small parameter. Then:

(1) If aCb� 0 then (7.20) has the only 2�-periodic solution x0.t/DO."/which
is in addition a repeller and ��=2-symmetric, i. e., it satisfies (7.11).

(2) If aCb < 0 then (7.20) has in addition precisely four more 2�-periodic so-
lutions xj .t/, j D 1;2;3;4 which are hyperbolic with the same hyperbolicity
type and orbitally ��=2-symmetric to each others.

Proof. The proof follows immediately from the above computations together with
application of Theorem 5.1 and Remark 5.1. �

8. APPLICATIONS TO PLANAR WEAKLY LINEAR PROBLEMS

We consider
x0 D "B.t/x; (8.1)

where B.t/D
�
Bik.t/

�2
i;kD1

is a smooth 2�2-matrix function, 2�-periodic in t 2 R
and " 2 R is a small real parameter.

We first study (8.1) without symmetries using standard approach [8, 9, 13, 19, 21,
22, 29]. If X".t/x D '".x; t/ is the Cauchy solution of (8.1), where X".t/ is its
fundamental matrix solution, then we expand X".t/ in the form

X".t/D
X
i�0

Yi .t/"
i ; Y0.0/D 1; Yi .0/D 0 8i � 1 (8.2)
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to derive from (8.1) the recurrence formulas

YiC1.t/D

Z t

0

B.s/Yi .s/ds; Y0.t/D 1:

Thus, we have

X".2�/D 1C "

Z 2�

0

B.t/dtC "2
Z 2�

0

Z t

0

B.t/B.s/dsdtCO."3/: (8.3)

If
R 2�
0 B.t/dt ¤ 0 then we can apply results of Section 6 (see Remark 6.1). Here

we concentrate on the degenerate cases by supposing (see also [9])Z 2�

0

B.t/dt D 0: (8.4)

Then (8.3) becomes

X".2�/D 1C "2
Z 2�

0

Z t

0

B.t/B.s/dsdtCO."3/: (8.5)

The results of [19, 21, 22] are difficult to apply to (8.5) (see Remark 6.1). We show
that if we consider some symmetries to (8.1), then our theory helps to study such
degenerate cases. Now f .x; t/D B.t/x, so symmetry condition (1.2) gives

AB.t/D B.tCT /A; (8.6)

where Ap D 1 for some p 2 N, p � 2, and T D 2�=p. Then we have X".iT / D
Ai
�
A�1X".T /

�i for all i � 1, which implies�
A�1X"

�
2�

p

��p
DX".2�/: (8.7)

We already know (8.7) from Lemma 3.2. In spite of the fact that Y1.2�/D 0, in many
cases we could have Y1.T /¤ 0. Thus, using (8.7), we could still study the existence
and stability of the zero solution x D 0 of (8.1) also in the degenerate case (8.4).

Finally, it is better to pass in computations to the complex variable ´D x1C {x2 2
C for x D .x1;x2/ 2 R2. Then (8.1) has the form

Ṕ D ".a.t/´Cb.t/x́/ (8.8)

in which

a.t/D
B11.t/CB22.t/

2
C {

B21.t/�B12.t/

2
;

b.t/D
B11.t/�B22.t/

2
C {

B12.t/CB21.t/

2
;

(8.9)

and x́ D x1� {x2. Next we again expand

´".t/D
X
i�0

wi .t/"
i ; w0.0/D w; wi .0/D 0 8i � 1 (8.10)
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to derive from (8.8) the recurrence formulas

wiC1.t/D

Z t

0

.a.s/wi .s/Cb.s/ xwi .s//ds; w0.t/D w: (8.11)

In the next sections, we demonstrate the above approach by considering two dif-
ferent classes of symmetries A of (8.1).

8.1. Rotation symmetries

We consider the rotation A´ D e
2�
n
{´, so p D n and T D 2�

n
. Note n 2 N and

n� 3. Now f .´; t/D a.t/´Cb.t/x́, so the symmetry condition (1.2) (see also (8.6))
implies

a.tCT /D a.t/; b.tCT /D e
4�
n
{b.t/: (8.12)

Note that (8.4) gives Z 2�

0

a.t/dt D 0;

Z 2�

0

b.t/dt D 0: (8.13)

So both (8.12) and (8.13) imply
R T
0 a.t/dt D 0. But we need either

R T
0 a.t/dt ¤ 0 orR T

0 b.t/dt ¤ 0. For this reason, we further consider f .´; t/D b.t/x́. Next, expanding
b.t/D

P
k2Znf0g bk ek{t and using (8.12) we derive

b.t/D
X
m2Z

bm e.2Cmn/{t : (8.14)

Then

zb D

Z T

0

b.t/dt D

Z 2�=n

0

b.t/dt D
�

e
4�
n
{
�1
� X
m2Z

bm

.2Cmn/{
:

In general zb ¤ 0, so by (4.12) we consider the linear map ´ 7! zbx́, which for zb D
zb1C {zb2 and ´D x1C {x2 has the form

.x1;x2/ 7!

 
zb1 zb2
zb2 �zb1

!�
x1
x2

�
:

However, the matrix
�
zb1 zb2
zb2 �zb1

�
¤ 0 is always hyperbolic and not asymptotically sta-

ble. So we can not apply Theorem 4.1. Consequently, we get now only that the
equation

Ṕ D "b.t/ x́ (8.15)
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has zero solution the only symmetric one for " ¤ 0 small, when b.t/ is given by
(8.14). Furthermore, by (8.2) we obtain

A�1X"

�
2�

n

�
D A�1

�
1C "Y1

�
2�

n

��
CO."2/

D

 
cos 2�

n
sin 2�

n

�sin 2�
n

cos 2�
n

! 
1C "zb1 "zb2

"zb2 1� "zb1

!
CO."2/:

The eigenvalues of A�1
�
1C "Y1

�
2�
n

��
are given by

�˙ D cos
2�

n
˙

{
p
2

r
1� cos

4�

n
�2jzbj2"2

for " small with

j�˙j D

q
1�jzbj2"2 D 1�

jzbj2

2
"2CO."3/:

So the matrix A�1
�
1C "Y1

�
2�
n

��
is by Theorem 6.2 strongly 2-hyperbolic, but we

should have its strongly 1-hyperbolicity in order to apply results of Section 6 con-
cerning the hyperbolicity of the zero solution. We should need to compute higher
order terms in (8.2).

Next, by (8.11) and (8.13), we get

´".2�/D

�
1C "2

Z 2�

0

Z t

0

b.t/xb.s/dsdt

�
wCO

�
"3
�
;

and using (8.14), we derive

´".2�/D
�
1C "2#{

�
wCO

�
"3
�

for

# D 2�
X
m2Z

jbmj
2

2Cmn
;

which is a nonzero constant for b.t/¤ 0. In the variable x, we get

X".2�/D B2."/CO."
3/ (8.16)

for

B2."/D

�
1 �"2#

"2# 1

�
D

�
1 0

0 1

�
C "2

�
0 �#

# 0

�
:

Since

1 … �

��
0 �#

# 0

��
;
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equation (8.15) has the only zero 2�-periodic solution. Note the eigenvalues ofB2."/
are 1˙ "2#{. Furthermore, we see that

B2."/�1

D 1

p
1C "4#2

� 1�
#2

3
"4

for "¤ 0 small, so by Definition 6.2, B2."/ is strongly 4-hyperbolic, but we should
have its strongly 2-hyperbolicity in order to apply results of Section 6 concerning the
hyperbolicity of the zero solution. Consequently, the expansion approach (8.2) seems
to be difficult for application to (8.15), and hence our approach is as follows. Since
�
�
A�1X0

�
2�
n

��
D
˚

e˙2�{=n
	
, so �

�
A�1X"

�
2�
n

��
D
˚
�";x�"

	
is close to

˚
e˙2�{=n

	
for " small. Next, (8.15) has the form�

x01
x02

�
D "

�
b1.t/ b2.t/

b2.t/ �b1.t/

��
x1
x2

�
:

Hence � .X".2�// D f�";1;�";2g with �";1�";2 D 1. But (8.7) gives �";1 D �
p
" and

�";2 D x�
p
" D
x�";1. This implies that j�";1j D j�";2j D 1. Summarizing, we obtain the

following result.

Theorem 8.1. Assume (8.13) and b.t/¤ 0 is given by (8.14). Then the zero solu-
tion is the only symmetric one of equation (8.15) for "¤ 0 small. It is stable but not
asymptotically stable. Moreover, it is the only 2�-periodic solution of (8.15).

We see that simple arguments using symmetries of (8.15) provide the stability of
this equation, while expansion method seems to be rather awkward.

8.2. Reflection symmetries

Now we consider A´D e
�
n
{
x́ with p D 2n and T D �

n
. Note that A has the form

AD

�
cos �

n
�sin �

n

�sin �
n
�cos �

n

�
;

satisfies the relation A2 D 1, and has the eigenvalues 1 and �1 and the correspond-
ing orthogonal eigenvectors

�
sin �

n
; cos �

n
�1
�

and
�
sin �

n
; 1C cos �

n

�
, respectively.

Thus, A is the reflection with respect to the line x2 D� tan
�
�
2n

�
x1.

Next, the symmetry condition (1.2) (see also (8.6)) gives

a.tCT /D xa.t/; b.tCT /D e
2�
n
{xb.t/: (8.17)

Using the above approach, we derive

a.t/D
X
k2N

�
akCxak ek

�
n
{
�

ekt{ (8.18)

and
b.t/D

X
k2N

�
bkCxbk e.2Ck/

�
n
{
�

ekt{ : (8.19)
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Then

yaD

Z T

0

a.t/dt D

Z �=n

0

a.t/dt D
X
k2N

�
akCxak ek

�
n
{
� ek

�
n
{
�1

k{
(8.20)

and

yb D

Z T

0

b.t/dt D

Z �=n

0

b.t/dt D
X
k2N

�
bkCxbk e.2Ck/

�
n
{
� ek

�
n
{
�1

k{
: (8.21)

In general ya¤ 0 and yb ¤ 0, so by (4.12) we consider the linear map ´ 7! ya´C ybx́.
Now we want to show that for any given ya; yb 2C, we can find a.t/, b.t/ satisfying

(8.20) and (8.21). For this reason, we first derive�
akCxak ek

�
n
{
� ek

�
n
{
�1

k{
D

�
ak e�k

�
2n
{
Cxak ek

�
2n
{
�

ek
�
n
{ ek

�
2n
{
� e�k

�
2n
{

k{

D

�
4Re

n
ak e�k

�
2n
{
o sink �

2n

k

�
ek

�
n
{ :

So the range of the mapping

C 3 ak 7!
�
akCxak ek

�
n
{
� ek

�
n
{
�1

k{
2C� R2

in the plain R2 is the line x2 D tank �
n
x1. Consequently, the mapping

C�C 3 .a1;a2/ 7!
�
a1Cxa1 e

�
n
{
� e

�
n
{
�1

{
C

�
a2Cxa2 e2

�
n
{
� e2

�
n
{
�1

2{
2C

is onto (surjective). Hence, for any ya 2C, there are a1;a2 2C such that (8.20) holds
with

a.t/D
�
a1Cxa1 e

�
n
{
�

et{C
�
a2Cxa2 e2

�
n
{
�

e2t{ : (8.22)

Similarly we have�
bkCxbk e.2Ck/

�
n
{
� ek

�
n
{
�1

k{
D

�
4Re

n
bk e�.2Ck/

�
2n
{
o sink �

2n

k

�
e.1Ck/

�
n
{ :

So the range of the mapping

C 3 bk 7!
�
bkCxbk e.2Ck/

�
n
{
� ek

�
n
{
�1

k{
2C� R2

in the plain R2 is the line x2 D tan.1Ck/�
n
x1. Consequently, the mapping

C�C 3 .b1;b2/ 7!
�
b1Cxb1 e3

�
n
{
� e

�
n
{
�1

{
C

�
b2Cxb2 e4

�
n
{
� e2

�
n
{
�1

2{
2C
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is onto (surjective). Hence, for any yb 2C, there are b1;b2 2C such that (8.21) holds
with

b.t/D
�
b1Cxb1 e3

�
n
{
�

et{C
�
b2Cxb2 e4

�
n
{
�

e2t{ : (8.23)

Summarizing we see that, for any given a;b;c;d 2R, by adjusting suitable a1;a2;b1;b2 2
C, we have Y1

�
�
n

�
D
�
a b
c d

�
. Next we derive

A�1X"

��
n

�
D A�1

�
1C "Y1

��
n

��
CO."2/

D

�
cos �

n
�sin �

n

�sin �
n
�cos �

n

��
1C "a "b

"c 1C "d

�
CO."2/ :

The eigenvalues z�˙ of A�1
�
1C "Y1

�
�
n

��
are given by the equalities

z�˙D
1

2

 
".a�d/cos

�

n
� ".bC c/sin

�

n

˙

s
4C4".aCd/C "2

�
ad �bcC

�
.d �a/cos

�

n
C .bC c/sin

�

n

�2�!
for " small, which yield

z�C D 1C "
sin �

n

2

�
acot

�

2n
Cd tan

�

2n
� .bC c/

�
CO."2/;

z�� D�1� "
sin �

n

2

�
a tan

�

2n
Cd cot

�

2n
C .bC c/

�
CO."2/:

ƒ

(8.24)

The two planes

x1 cot
�

2n
Cx2 tan

�

2n
�x3 D 0;

x1 tan
�

2n
Cx2 cot

�

2n
Cx3 D 0

decompose the space R3 into four subspaces where, by (8.24), we get four different
types of a strong 1-hyperbolicity ofA�1

�
1C "Y1

�
�
n

��
with the corresponding hyper-

bolicities of A�1X"
�
�
n

�
. For instance, A�1X"

�
�
n

�
is asymptotically stable for " > 0

small if
acot

�

2n
Cd tan

�

2n
< bC c < �a tan

�

2n
�d cot

�

2n
: (8.25)

Note that (8.25) yields aCd < 0. On the other hand, the real parts of the eigenvalues
of
�
a b
c d

�
lie in � .�1;0/ if and only if

aCd < 0; ad �bc > 0; (8.26)

which condition follows from the Routh–Hurwitz criterion [6]. The relationship be-
tween constants a;b;c;d 2 R and a1;a2;b1;b2 2 C are given by (8.20), (8.21) and
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(see (8.9)) also by the equalities

aD Re yaCRe yb; b D Im yb� Im ya; c D Im yaC Im yb; d D Re ya�Re yb; (8.27)

which are obtained by solving the equality

ya´C ybx́ D

�
a b

c d

��
x1
x2

�
;

where ´D x1C {x2, for any x1 and x2 from R. Inserting (8.27) into (8.25) and (8.26),
summarizing, we obtain the following result.

Theorem 8.2. Assume (8.13), and a.t/ and b.t/ are given by (8.22) and (8.23),
respectively. Then the equation

Ṕ D ".a.t/´Cb.t/x́/ (8.28)

has zero solution the only symmetric one for "¤ 0 small which can be either hyper-
bolic, asymptotically stable or unstable, respectively.� For instance, it is asymptoti-
cally stable for " > 0 small if Re ya < 0 and either jyaj> jybj or the inequalities

Re ya sec
�

n
CRe yb cot

�

n
< Im yb < �Re ya sec

�

n
CRe yb cot

�

n

are satisfied. Constants ya and yb are given by (8.20) and (8.21), respectively.

We do not compute Y2.2�/ in (8.2) for (8.28) since it is an awkward formula, but
we again see that in general, for instance in the hyperbolic cases, the zero solution is
the only 2�-periodic solution of (8.28).
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