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Abstract. Bachet elliptic curves are the curves y2 D x3Ca3 and, in this work, the group struc-
ture E.Fp/ of these curves over finite fields Fp is considered. It is shown that there are two
possible structures E.Fp/ Š CpC1 or E.Fp/ Š Cn �Cnm, for m;n 2 N; according to p � 5
.mod 6/ and p � 1 .mod 6/, respectively. A result of Washington is restated in a more specific
way saying that if E.Fp/ŠZn�Zn, then p � 7 .mod 12/ and p D n2�nC1.
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1. INTRODUCTION

Let p be a prime. We shall consider the elliptic curves

E W y2
� x3

Ca3 .mod p/; (1.1)

where a is an element of F �p D Fp n f0g. Let us denote the group of the points on E
by E

�
Fp

�
.

If F is a field, then an elliptic curve over F has, after a change of variables, the
following form:

y2
D x3

CAxCB;

where A;B 2 F with 4A3C27B2 ¤ 0 in F . Here, D D�16
�
4A3C27B2

�
is called

the discriminant of the curve. Elliptic curves are studied over finite and infinite fields.
Here we take F to be a finite prime field Fp with characteristic p >3. ThenA;B 2 Fp.
The set of points .x;y/ 2 Fp �Fp on E, together with a point o at infinity, is called
the set of Fp-rational points of E on Fp and is denoted by E

�
Fp

�
. Np denotes the

number of rational points on this curve. It must be finite.
In fact one expects to have at most 2pC1 points (including o) (for every x, there

exist at most two values of y). But not all elements of Fp have square roots. In fact
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only half of the elements of Fp have a square root. Therefore, the expected number
is about pC1.

It is known that

Np D pC1C

p�1X
xD0

�
�
x3
CAxCB

�
:

Here we use the fact that the number of solutions of y2 � u .mod p/ is 1C�.u/.
The following theorem of Hasse quantifies this result.

Theorem 1.1 (Hasse, 1922). The inequality Np <
�p
pC1

�2 holds.

Now we look at the algebraic structure of E
�
Fp

�
: Let P .x1;y1/ and Q.x2;y2/

be two points on E W y2 D x3CAxCB: Let also

mD

˚
y2�y1

x2�x1
if P ¤Q;

3x2
1CA

2y1
if P ¤Q;

where y1 ¤ 0, while when y1 D 0, the point is of order 2. If we put

x3 Dm
2
�x1�x2 and y3 Dm.x1�x3/�y1 ;

then

P CQD

�
o if x1 D x2 and y1Cy2 D 0;

Q if P DQ;
.x3;y3/ in the other cases.

By definition �P D .x;�y/ :
Because of the definition of addition in an arbitrary field, it takes very long to make

any addition and the results are very complicated.
Here we shall deal with Bachet elliptic curves y2 D x3Ca3 modulo p: Let Np;a

denote the number of rational points on this curve. Some results on these curves have
been given in [1] and [4].

A historical problem leading to Bachet elliptic curves is that how one can write an
integer as a difference of a square and a cube. In another words, for a given fixed
integer c, search for the solutions of the Diophantine equation y2 � x3 D c. This
equation is widely called as Bachet or Mordell equation. The existence of duplication
formula makes this curve interesting. This formula was found in 1621 by Bachet.
When .x;y/ is a solution to this equation, where x;y 2Q, it is easy to show that�

x4�8cx

4y2
;
�x6�20cx3C8c2

8y3

�
is also a solution for the same equation. Furthermore, if .x;y/ is a solution such that
xy ¤ 0 and c ¤ 1;�432, then this leads to infinitely many solutions, which could not
proven by Bachet. Hence if an integer can be stated as the difference of a cube and
a square, this could be done in infinitely many ways.
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If p � 5 .mod 6/, it is well known that E
�
Fp

�
Š CpC1, the cyclic group of order

pC 1, see [2]. But when p � 1 .mod 6/, there is no result giving the group struc-
ture of E

�
Fp

�
. In this work, we discuss this situation. We show that this group is

isomorphic to a direct product of two cyclic groups Cn and Cnm, i. e.,

E
�
Fp

�
Š Cn�Cnm

for m;n 2N. If we denote the order of E
�
Fp

�
by Np;a, then

Np;a D n
2mD pC1�b;

where b > 0 when a 2Qp, and b < 0 otherwise. Here b is the trace of the Frobenius
endomorphism.

2. BACHET ELLIPTIC CURVES HAVING A GROUP OF THE FORM Cn�Cnm

Let E be the curve in (1.1). Then its twist is defined as the curve y2 � x3Cg3a3,
where g is an element of Q0p, the set of quadratic non-residues modulo p. As usual,
Qp denotes the set of quadratic residues modulo p. Here note that if a 2Qp, then
ga 2Q0p and when a 2Q0p, then ga 2Qp. It is easy to show that b of (1.1) and of
its twist have different signs. Therefore

Theorem 2.1. Let p � 1 .mod 6/ be a prime. If (1.1) has the group isomorphic
to Cn �Cnm with order n2m D pC 1� b, then its twist is isomorphic to Cr �Crs

with order r2s D pC1Cb.

Let us set t D jbj ; that is,

t D
ˇ̌
pC1�Np;a

ˇ̌
:

We first have

Theorem 2.2. The following assertions hold:

(a) Let p � 1 .mod 12/ be a prime. Then

b � 2 .mod 12/ iff Np;a � 0 .mod 12/

and

b � 10 .mod 12/ iff Np;a � 4 .mod 12/:

(b) Let p � 7 .mod 12/ be a prime. Then

b � 4 .mod 12/ iff Np;a � 4 .mod 12/

and

b � 8 .mod 12/ iff Np;a � 0 .mod 12/:
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Proof. (a) Let p� 1 .mod 12/ be a prime. Then we can write this as pD 1C12n,
n 2Z. Also b � 2 .mod 12/ can be stated as b D 2C12m, m 2Z. By substituting
these, we get

b � 2 .mod 12/ ” Np;a D pC1�b

and hence Np;a D 1C12nC1� .2C12m/D 12.n�m/ and this is only valid when
Np;a � 0 .mod 12/. Similarly,

b � 10 .mod 12/ ” Np;a D pC1�b D 1C12nC1� .10C12m/

and therefore Np;a D�8C12.n�m/ and this means that Np;a � 4 .mod 12/. Part
(b) is proved in a similar fashion. �

Theorem 2.3. Let p � 1 .mod 6/ be a prime. Then b is not divisible by 6.

Proof. Let us consider the curve y2 D x3C1. It has a point of order 6. Therefore
its reduction modulo p has also a point of order 6. Therefore

b � pC1�Np;a � 2�0� 2 .mod 6/:

The other possibility for the curve is y2 D x3C a3 with a is a quadratic non-
residue. It is the quadratic twist of the other curve, so has b��2 .mod 6/. Therefore
in both cases b is non-zero modulo 6. �

Corollary 2.1. Let p� 1 .mod 6/ be a prime. ThenNp;a� 0 .mod 4/ orNp;a�

4 .mod 6/.

Also one obtains the following result:

Corollary 2.2. If p� 1 .mod 12/ is a prime, then b��2 .mod 12/ and if p� 7
.mod 12/ is a prime, then b ��4 .mod 12/.

We now have the following result about the number of points on curves (1.1).

Theorem 2.4. Let p � 1 .mod 6/ be a prime. Then:
(a) If t � 2 .mod 6/, then (1.1) has b D t and Np;a � 0 .mod 6/, and its twist

has b D�t and Np;a � 4 .mod 6/.
(b) If t � 4 .mod 6/, then (1.1) has b D t and Np;a � 4 .mod 6/, and its twist

has b D�t and Np;a � 0 .mod 6/.

Proof. Let p � 1 .mod 6/ be a prime. Let us put p D 1C 6n, n 2 Z. Let t � 2
.mod 6/. If b D t , then b � 2 .mod 6/ and we put b D 2C6m, m 2Z. Therefore

Np;a D pC1�b D 6nC1C1�2�6m

D 6.n�m/

implying that Np;a � 0 .mod 6/.
The other parts can be proven similarly. �

We then immediately have the following result concerning the elements of order
3:
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Corollary 2.3. The following assertions hold:
(a) Let p� 1 .mod 12/ be a prime. If t � 2 .mod 12/, then (1.1) has bD t and

Np;a � 0 .mod 12/ and E
�
Fp

�
has elements of order 3. Its twist has bD�t

and Np;a � 4 .mod 12/ implying that there are no elements of order 3.
If t � 10 .mod 12/, then (1.1) has b D t and Np;a � 4 .mod 12/ and

E
�
Fp

�
has no elements of order 3, while its twist has b D �t and Np;a � 0

.mod 12/ implying that the group has elements of order 3.
(b) Let p� 7 .mod 12/ be a prime. If t � 4 .mod 12/, then (1.1) has bD t and

Np;a� 4 .mod 12/ and therefore has no points of order 3, while its twist has
b D�t and Np;a � 0 .mod 12/ having elements of order 3.

If t � 8 .mod 12/, then (1.1) has b D t and Np;a � 0 .mod 12/ implying
that it has elements of order 3 while its twist has b D �t and Np;a � 4

.mod 12/ having no such elements.

The elements of order 3 are important in the classification of these elliptic curves
modulo p. We now show that their number is either 2 or 8.

Theorem 2.5. Let p � 1 .mod 6/ be a prime. If Np;a � 0 .mod 6/, then there
are 2 or 8 points of order 3.

Proof. By [3], there are at most 9 points together with the point at infinity ø, form-
ing a subgroup which is either trivial, cyclic of order 3 or the direct product of two
cyclic groups of order 3. As we want to determine the number of elements of order
3, this group cannot be trivial. Then it is C3 or C3�C3 and it is well-known that it
contains 2 or 8 elements of order 3, respectively. �

In fact, if we let E
�
Fp

�
Š Cn�Cnm, then when 3 divides n, E

�
Fp

�
has 8 points

of order 3, and if not, it has 2 points of order 3.
We are now going to give one of the main results in Theorem 2.8. We first need

the following results:

Corollary 2.4. Let p be a prime. Then for only x D 0 among all values of x in
Fp, x3C1 takes the value 1.

Proof. It is clear that x D 0 satisfies the condition. The fact that no other value of
x satisfies x3C1D 1 is clear from the fact that p is a prime. �

Theorem 2.6. Let p � 1 .mod 6/ be a prime. There are 3 values of x between 1
and p so that x3C1� 0 .mod p/.

Proof. It is obvious that x3� a .mod p/ has three solutions in Fp for every a¤ 0.
For aD�1, the proof follows. �

Theorem 2.7. Let p � 1 .mod 6/ be a prime. ThenX
x2Fp

�
�
x3
C1

�
� 4 .mod 6/:
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Proof. For each x 2 Fp, calculate the p values of x3C 1. By Corollary 2.4, one
of these values is 1. By Theorem 2.6, three of them are 0. The rest p� 4 values of
x3C 1 are grouped into p�4

3
triples. As p � 1 .mod 6/, p�4

3
is odd. Indeed, let

us write p D 1C 6k, k 2 Z. Then p�4
3
D 2k� 1. Let us suppose that out of these

triples, s triples are in Qp and 2k�1� s are in Q0p. If a triple is in Qp, then it adds
C3 to the sum

P
x2Fp

�
�
x3C1

�
, and if it is in Q0p, �3 is added. ThereforeX

x2Fp

�
�
x3
C1

�
D 1C3 �0C s � .C3/C .2k�1� s/ � .�3/

D 6.s�k/C4

implying the result. �

Theorem 2.8. Let p� 1 .mod 6/ be a prime. Then a 2Qp iffNp;a� 0 .mod 6/.

Proof. It is well-known that

Np;a D pC1C
X

x2Fp

�
�
x3
Ca3

�
:

By putting pD 1C6n for n 2Z, we get Np;a D 6nC2C
P

x2Fp
�
�
x3Ca3

�
. Now

as �.a/D 1, and as the set of the values of x3 is the same as the set of the values of
a3x3, we can write X

x2Fp

�
�
x3
Ca3

�
D

X
x2Fp

�
�
a3x3

Ca3
�

D

X
x2Fp

�
�
a3
�
�
�
x3
C1

�
D

X
x2Fp

�
�
x3
C1

�
;

and by Theorem 2.7, this sum is congruent to 4 modulo 6. Hence, by puttingX
x2Fp

�
�
x3
Ca3

�
D 4C6r; r 2Z;

we get Np;a D 6nC2C4C6r implying that Np;a � 0 .mod 6/. �

Corollary 2.5. Let p � 1 .mod 6/ be a prime. If Np;a � .mod 6/, then b � 2
.mod 6/.

Proof. As Np;a D pC 1� b D pC 1C
P

x2Fp
�
�
x3Ca3

�
, we know that b D

�
P

x2Fp
�
�
x3Ca3

�
. By Theorem 2.7, the result follows. �

Similarly, we have

Theorem 2.9. Let p � 1 .mod 6/ be a prime. Then a 2Q0p iff N � 4 .mod 6/.
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Corollary 2.6. Let p � 1 .mod 6/ be a prime. Let E be the curve given by (1.1).
Then:

(a) a 2Qp iff E
�
Fp

�
has 2 or 8 elements of order 3.

(b) a 2Q0p iff E
�
Fp

�
has no elements of order 3.

Proof. This is clear from Corollary 2.3 and Theorem 2.8. �

3. BACHET ELLIPTIC CURVES HAVING A GROUP OF THE FORM Cn�Cn

Now we shall consider the case where the Bachet elliptic curves have a group
isomorphic to Cn �Cn for same n. This is only possible when p � 1 .mod 6/, as
otherwise when p � 5 .mod 6/, E

�
Fp

�
is isomorphic to the cyclic group CpC1. We

shall consider a result of Washington and refine it.

Theorem 3.1 ([5]). Let E be an elliptic curve over Fq where q is a prime power
and suppose E

�
Fq

�
Š Zn �Zn for some integer n. Then either q D n2C 1, q D

n2�nC1, or q D .n�1/2.

Now we give a more specific result for Bachet elliptic curves given by (1.1) over
Fq .

Theorem 3.2. Let E be the elliptic curve in (1.1). Suppose that

E
�
Fp

�
ŠZn�Zn :

Then p � 7 .mod 12/ and p D n2�nC1.

Proof. By Theorem 3.1, there are three possibilities p D n2C1, p D n2�nC1,
and pD n2�2nC1. The latter one is immediately rules out as p cannot be a square.
We need only to show that p cannot be equal to n2C1.

If p D n2C 1, then n2 D p� 1 and hence p� 1 is in Qp. But it is known that
p�1 could be in Qp only when p � 1;5 .mod 12/ is a prime. Therefore the result
follows. �
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