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1. INTRODUCTION

The study of the statistical convergence for sequences of positive linear operators
was attempted in the year 2002 by A. G. Gadjiev and C. Orhan [8]. The research
orientation was proved to be extremely fertile, many researchers approaching this
subject recently [2–4]. Motivated by this research direction, we construct a general
class of positive linear operators of discrete type and study its statistical approxima-
tion properties.

In order to construct the operators, we need some notation on A-statistical con-
vergence. Let A WD .akn/k;n2N be a non-negative regular summability matrix. For
a given sequence of real numbers, x WD .xn/n2N, the sequence Ax WD ..Ax/k/ de-
fined by the formula

.Ax/k WD

1X
nD1

aknxn

is called the A-transform of x whenever the series converges for each k 2N. A se-
quence x is said to be A-statistically convergent to a real number L if for every " > 0,
one has

lim
k

X
nWjxn�Lj�"

akn D 0:

We denote this limit by stA� limx D L (see [6]).
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2. DEFINITION OF OPERATORS

We set RC WD Œ0;1/ and N0 WD f0g[N. Let D be a given interval of the real
line. We denote by C.D/ the space of all real-valued continuous functions onD. For
each n 2N we consider a set of indices In and a net on D called .xn;j /j2In . We set
ei .x/D x

i , i � 0, x 2D. Following [1], let .ln/n�1 be a sequence of positive linear
operators of discrete type, defined by the equality

.lnf /.x/D
X
j2In

un;j .x/f .xn;j /; x 2D; f 2 C.D/; (2.1)

where .un;j /j2In is a family of continuous functions on D satisfying the following
conditions

un;j .x/� 0; x 2D; (2.2)X
j2In

un;j .x/D e0 .x/ ; x 2D; (2.3)

X
j2In

un;j .x/xn;j D e1 .x/ ; x 2D; (2.4)

X
j2In

un;j .x/x
2
n;j D e2 .x/C n .x/ ; x 2D; (2.5)

where  n 2 C.D/.
Under this assumptions the sequence .ln/n�1 can be indicated by the following

system

ln W
˝
D;In;xn;j ;un;j .x/ I n

˛
; .n;j / 2N�In; x 2D: (2.6)

We denote by CB.D/ the space of all continuous functions on D and bounded on
the entire line, i. e.,

jf .x/j �Mf for all x 2 R;

where Mf is a constant depending on f . CB.D/ is a Banach space with respect to
the supremal norm k�k.

In [1], compounding two sequences of operators given by (2.6), the author con-
structed a sequence of positive linear operators .Ln;�/n�1 acting on C.RC/.

In what follows, we will replace the conditions (2.3)–(2.5) imposed on the se-
quence .un;j /j2In by the following ones:

stA� lim
n




X
j2In

un;j � e0




D 0; (2.7)

stA� lim
n




X
j2In

un;jxn;j � e1




D 0; (2.8)
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stA� lim
n




X
j2In

un;jx
2
n;j � e2




D 0: (2.9)

A sequence of positive linear operators of the form (2.1) which satisfies the condi-
tions (2.2) and (2.7)–(2.9) will be denoted by

zln W
˝
D;In;xn;j ;un;j .x/

˛
; .n;j / 2N�In; x 2D: (2.10)

Further on we will consider two sequences of operators of the type (2.10) and
(2.6), respectively,

zln W
˝
Œ0;1�;In;xn;j ;un;j .x/

˛
; .n;j / 2N�In; x 2 Œ0;1�;

and
ln W

˝
Œ0;b�;Jn;yn;j ;vn;j .x/ I n

˛
; .n;j / 2N�Jn; x 2 Œ0;b�;

such that 1� b and, for any n2N, there is a function z n 2C .Œ0;b�/with the property

xn;j j .x/D z n .x/ ; j 2 In; x 2 Œ0;b� : (2.11)

Let us consider a continuous function �W Œ0;b�! Œ0;1�. Now we are ready to
introduce the operator zLn;� by putting�

zLn;�f
�
.x/D

X
j2In

X
s2Jj

un;j
�
�.x/

�
vj;s .x/f

�
xn;jyj;sC .1�xn;j /x

�
(2.12)

for all x 2 Œ0;b�, f 2 CB .Œ0;b�/, and n 2 N. We observe that these operators are
positive and linear.

3. A BOHMAN–KOROVKIN TYPE THEOREM

In [8], Gadjiev and Orhan proved the following Bohman–Korovkin type statistical
approximation theorem.

Theorem A. If a sequence of positive linear operatorsAn WCB .Œa;b�/!B.Œa;b�/

satisfies the conditions

st� lim
n
kAnei � eik D 0 fori D 0;1;2;

then, for any function f 2 CB .Œa;b�/, we have

st� lim
n
kAnf �f k D 0;

where B.Œa;b�/ is the space of all real-valued functions bounded on Œa;b�.

We note that the above theorem is given for statistical convergence, but it also
stands for A-statistical convergence. To obtain our main result we need the next
lemma.



64 C. RADU

Lemma 1. Let A WD .akn/k;n2N be a non-negative regular summability matrix
and let the operators zLn;� be defined by (2.12) such that the following conditions
hold

(1) the sequence
�
k z nk

�
n2N is bounded,

(2) stA� limn k z nk D 0.
Then the following identities hold:

stA� lim
n



zLn;�ei � ei

D 0 for i D 0;1;2: (3.1)

Proof. From (2.12) and (2.3) it follows that�
zLn;�e0

�
.x/D

X
j2In

un;j
�
�.x/

�
; x 2 Œ0;b� :

Since e0
�
�.x/

�
D e0.x/D 1 for all x 2 Œ0;b�, we obtainˇ̌̌�

zLn;�e0
�
.x/� e0.x/

ˇ̌̌
D

ˇ̌̌ X
j2In

un;j
�
�.x/

�
� e0.x/

ˇ̌̌
�




X
j2In

un;j � e0




:
Now using the above relation and (2.7), we get (3.1) for i D 0.

By the definition (2.12) of the operator zLn;� we have�
zLn;�e1

�
.x/D

X
j2In

un;j
�
�.x/

�
xn;j

X
s2Jj

vj;s.x/yj;s

Cx
X
j2In

un;j
�
�.x/

� X
s2Jj

vj;s.x/

�x
X
j2In

un;j
�
�.x/

�
xn;j

X
s2Jj

vj;s.x/:

Using (2.3) and (2.4) we obtain�
zLn;�e1

�
.x/D x

X
j2In

un;j
�
�.x/

�
; x 2 Œ0;b� :

Hence, we getˇ̌̌�
zLn;�e1

�
.x/� e1.x/

ˇ̌̌
D

ˇ̌̌
x
X
j2In

un;j
�
�.x/

�
� e1.x/

ˇ̌̌
D jxj

ˇ̌̌ X
j2In

un;j
�
�.x/

�
� e0.x/

ˇ̌̌
� b




X
j2In

un;j � e0




:
Since for a given " > 0 we have

T1 WD
n
n 2N W



zLn;�e1� e1

� "o� nn 2N W



X
j2In

un;j � e0




� "
b

o
WD T2;
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we get X
T1

akn �
X
T2

akn:

Taking k!1, we obtain (3.1) for i D 1.
By (2.3)–(2.5), (2.11), and an elementary calculus it follows that�
zLn;�e2

�
.x/D

X
j2In

un;j
�
�.x/

�
x2n;j j .x/Cx

2
X
j2In

un;j
�
�.x/

�
D

X
j2In

un;j
�
�.x/

�
xn;j z n.x/Cx

2
X
j2In

un;j
�
�.x/

�
:

Let M WD supn2N

˚
k z nk

	
. Thenˇ̌̌�

zLn;�e2
�
.x/� e2.x/

ˇ̌̌
�

ˇ̌̌
z n.x/

�X
j2In

un;j
�
�.x/

�
xn;j � e1

�
�.x/

��ˇ̌̌
C
ˇ̌
�.x/ z n.x/

ˇ̌
C

ˇ̌̌
x2
�X
j2In

un;j
�
�.x/

�
� e0.x/

�ˇ̌̌
�M




X
j2In

un;jxn;j � e1




Cb

 z n

Cb2


X
j2In

un;j � e0




:
Let us set K WDmax

˚
M;b2

	
. Then

zLn;�e2� e2

�K�


X

j2In

un;jxn;j � e1




C

 z n

C


X
j2In

un;j � e0




�: (3.2)

For a given " > 0, we put

U WD
n
n 2N W




X
j2In

un;jxn;j � e1




C

 z n

C


X
j2In

un;j � e0




� "

K

o
;

U1 WD
n
n 2N W




X
j2In

un;jxn;j � e1




� "

3K

o
;

U2 WD
n
n 2N W



 z n

� "

3K

o
;

and

U3 WD
n
n 2N W




X
j2In

un;j � e0




� "

3K

o
:

It is obvious that U � U1[U2[U3. Inequality (3.2) implies thatX
nWk zLn;�e2�e2k�"

akn �
X
n2U

akn �
X
n2U1

aknC
X
n2U2

aknC
X
n2U3

akn:
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Passing to the limit as k!1, we complete the proof. �

Remark 1. If the non-negative regular summability matrix A is the Cesáro matrix
of order one, then the A-statistical convergence reduces to the statistical convergence
[5, 7]. Consequently, Lemma 1 also stands for statistical convergence.

Using the above lemma and Theorem A, we obtain the following result.

Theorem 1. Let A WD .akn/k;n2N be a non-negative regular summability matrix
and let the operators zLn;� be defined by (2.12). If the conditions of Lemma 1 hold,
then for any function f 2 CB .Œ0;b�/ we have

stA� lim
n



zLn;�f �f 

D 0:
4. EXAMPLE

In what follows we present a particular sequence of positive linear operators of
the form (2.12) which is statistically convergent with respect to the sup-norm to the
approximated function but it is not uniformly convergent.

Let

zln W
D
Œ0;1� ;f0; : : : ;ng ;

j

n
;un;j .x/

E
; .n;j / 2N�f0; : : : ;ng ; x 2 Œ0;1�

be such that

un;j .x/D Cjn
�
�n.x/

�j �
1��n.x/

�n�j
; x 2 Œ0;1� ;

and

�n D

(
e1 if lgn …N0;

ne1 if lgn 2N0

for all .n;j / 2N�f0; : : : ;ng. It is clear that taking �nD e1 for all n 2N, zln becomes
the nth Bernstein polynomial.

We must should now check that .un;j / satisfies conditions (2.2), (2.7)–(2.9). It is
obvious that (2.2) and (2.7) are fulfilled. By using an elementary calculus, we obtainˇ̌̌̌ nX

jD0

un;j .x/
j

n
� e1.x/

ˇ̌̌̌
D
ˇ̌
�n.x/� e1.x/

ˇ̌
D 0

for all n with the property lgn …N0. Letting " > 0 we obtain�
n 2N W




 nX
jD0

un;j
j

n
� e1




� "�D ˚n 2N W lgn 2N0

	
;

and (2.8) is thus satisfied.
It remains only to verify (2.9). Indeed,
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jD0

un;j .x/

�
j

n

�2
� e2.x/

ˇ̌̌̌
D

ˇ̌̌̌
�n.x/

n
C
n�1

n

�
�n.x/

�2
� e2.x/

ˇ̌̌̌

D

ˇ̌̌x
n
C
n�1

n
x2�x2

ˇ̌̌
�
x

n
�
1

n

for all n with the property lgn …N0. Letting " > 0 we get�
n 2N W




 nX
jD0

un;j

�
j

n

�2
� e2




� "�� nn 2N W lgn 2N0 and
1

n
� "

o
and, therefore, (2.9) is also satisfied.

Choosing

ln D sn W
D
Œ0;1/ ;N0;

j

n
;e�nx

.nx/j

j Š
I
e1

n

E
; .n;j / 2N�N0; x 2 Œ0;1/

(the Favard–Szász–Mirakjan operators), we are able to define the operators zLn;� by
putting

�
zLn;�f

�
.x/D

nX
jD0

1X
sD0

Cjn
�
�n
�
�.x/

��j �
1��n

�
�.x/

��n�j
� e�jx

.jx/s

s
f

�
s

n
C

�
1�

j

n

�
x

�
(4.1)

for all x � 0, f 2 CB .RC/, and n 2 N, where �W Œ0;1/! Œ0;1� is a continuous
function.

On the basis of Lemma 1 and Theorem 1 we deduce that the sequence of operators
.zLn;�f / defined by (4.1) is A-statistically convergent to f for any function f 2
CB.D/, where D is a compact interval on the positive semiaxis.
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