

Miskolc Mathematical Notes Vol. 9 (2008), No 1, pp. 61-68 HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2008.181

Statistical approximation by some positive linear operators of discrete type

C. Radu

Miskolc Mathematical Notes Vol. 9 (2008), No. 1, pp. 61–68

STATISTICAL APPROXIMATION BY SOME POSITIVE LINEAR OPERATORS OF DISCRETE TYPE

C. RADU

Received 13 September, 2007

Abstract. The aim of this paper is to present a class of linear positive operators of discrete type and its statistical approximation properties obtained by using a Bohman–Korovkin type theorem.

2000 Mathematics Subject Classification: 40A25, 41A36

Keywords: A-statistical convergence, Bohman–Korovkin type theorem, sequence of positive linear operators

1. INTRODUCTION

The study of the statistical convergence for sequences of positive linear operators was attempted in the year 2002 by A. G. Gadjiev and C. Orhan [8]. The research orientation was proved to be extremely fertile, many researchers approaching this subject recently [2–4]. Motivated by this research direction, we construct a general class of positive linear operators of discrete type and study its statistical approximation properties.

In order to construct the operators, we need some notation on A-statistical convergence. Let $A := (a_{kn})_{k,n \in \mathbb{N}}$ be a non-negative regular summability matrix. For a given sequence of real numbers, $x := (x_n)_{n \in \mathbb{N}}$, the sequence $Ax := ((Ax)_k)$ defined by the formula

$$(Ax)_k := \sum_{n=1}^{\infty} a_{kn} x_n$$

is called the A-transform of x whenever the series converges for each $k \in \mathbb{N}$. A sequence x is said to be A-statistically convergent to a real number L if for every $\varepsilon > 0$, one has

$$\lim_{k} \sum_{n:|x_n - L| \ge \varepsilon} a_{kn} = 0.$$

We denote this limit by $st_A - \lim x = L$ (see [6]).

© 2008 Miskolc University Press

C. RADU

2. DEFINITION OF OPERATORS

We set $\mathbb{R}_+ := [0, \infty)$ and $\mathbb{N}_0 := \{0\} \cup \mathbb{N}$. Let *D* be a given interval of the real line. We denote by C(D) the space of all real-valued continuous functions on *D*. For each $n \in \mathbb{N}$ we consider a set of indices I_n and a net on *D* called $(x_{n,j})_{j \in I_n}$. We set $e_i(x) = x^i, i \ge 0, x \in D$. Following [1], let $(l_n)_{n \ge 1}$ be a sequence of positive linear operators of discrete type, defined by the equality

$$(l_n f)(x) = \sum_{j \in I_n} u_{n,j}(x) f(x_{n,j}), \quad x \in D, \ f \in C(D),$$
(2.1)

where $(u_{n,j})_{j \in I_n}$ is a family of continuous functions on *D* satisfying the following conditions

$$u_{n,j}(x) \ge 0, \quad x \in D, \tag{2.2}$$

$$\sum_{j \in I_n} u_{n,j}(x) = e_0(x), \quad x \in D,$$
(2.3)

$$\sum_{j \in I_n} u_{n,j}(x) x_{n,j} = e_1(x), \quad x \in D,$$
(2.4)

$$\sum_{j \in I_n} u_{n,j}(x) x_{n,j}^2 = e_2(x) + \psi_n(x), \quad x \in D,$$
(2.5)

where $\psi_n \in C(D)$.

Under this assumptions the sequence $(l_n)_{n\geq 1}$ can be indicated by the following system

$$l_n: \langle D, I_n, x_{n,j}, u_{n,j}(x); \psi_n \rangle, \quad (n,j) \in \mathbb{N} \times I_n, \ x \in D.$$

$$(2.6)$$

We denote by $C_B(D)$ the space of all continuous functions on D and bounded on the entire line, i. e.,

$$|f(x)| \le M_f$$
 for all $x \in \mathbb{R}$,

where M_f is a constant depending on f. $C_B(D)$ is a Banach space with respect to the supremal norm $\|\cdot\|$.

In [1], compounding two sequences of operators given by (2.6), the author constructed a sequence of positive linear operators $(L_{n,\lambda})_{n\geq 1}$ acting on $C(\mathbb{R}_+)$.

In what follows, we will replace the conditions (2.3)–(2.5) imposed on the sequence $(u_{n,j})_{j \in I_n}$ by the following ones:

$$\operatorname{st}_{A} - \lim_{n} \left\| \sum_{j \in I_{n}} u_{n,j} - e_{0} \right\| = 0,$$
 (2.7)

$$\mathrm{st}_{A} - \lim_{n} \left\| \sum_{j \in I_{n}} u_{n,j} x_{n,j} - e_{1} \right\| = 0, \tag{2.8}$$

$$\mathrm{st}_{A} - \lim_{n} \left\| \sum_{j \in I_{n}} u_{n,j} x_{n,j}^{2} - e_{2} \right\| = 0.$$
(2.9)

A sequence of positive linear operators of the form (2.1) which satisfies the conditions (2.2) and (2.7)–(2.9) will be denoted by

$$\overline{l_n}: \langle D, I_n, x_{n,j}, u_{n,j}(x) \rangle, \quad (n,j) \in \mathbb{N} \times I_n, \ x \in D.$$

$$(2.10)$$

Further on we will consider two sequences of operators of the type (2.10) and (2.6), respectively,

$$\tilde{l}_n: \langle [0,1], I_n, x_{n,j}, u_{n,j}(x) \rangle, \quad (n,j) \in \mathbb{N} \times I_n, \ x \in [0,1],$$

and

$$l_n: \langle [0,b], J_n, y_{n,j}, v_{n,j}(x); \psi_n \rangle, \quad (n,j) \in \mathbb{N} \times J_n, \ x \in [0,b],$$

such that $1 \le b$ and, for any $n \in \mathbb{N}$, there is a function $\tilde{\psi}_n \in C([0, b])$ with the property

$$x_{n,j}\psi_j(x) = \tilde{\psi}_n(x), \quad j \in I_n, \ x \in [0,b].$$
 (2.11)

Let us consider a continuous function $\lambda:[0,b] \to [0,1]$. Now we are ready to introduce the operator $\tilde{L}_{n,\lambda}$ by putting

$$\left(\tilde{L}_{n,\lambda}f\right)(x) = \sum_{j \in I_n} \sum_{s \in J_j} u_{n,j}\left(\lambda(x)\right) v_{j,s}(x) f\left(x_{n,j} y_{j,s} + (1 - x_{n,j})x\right)$$
(2.12)

for all $x \in [0,b]$, $f \in C_B([0,b])$, and $n \in \mathbb{N}$. We observe that these operators are positive and linear.

3. A BOHMAN-KOROVKIN TYPE THEOREM

In [8], Gadjiev and Orhan proved the following Bohman–Korovkin type statistical approximation theorem.

Theorem A. If a sequence of positive linear operators $A_n : C_B([a,b]) \rightarrow B([a,b])$ satisfies the conditions

$$\operatorname{st-lim}_{n} \|A_{n}e_{i}-e_{i}\| = 0 \quad fori = 0, 1, 2,$$

then, for any function $f \in C_B([a,b])$, we have

$$\operatorname{st-\lim}_{n} \|A_n f - f\| = 0,$$

where B([a,b]) is the space of all real-valued functions bounded on [a,b].

We note that the above theorem is given for statistical convergence, but it also stands for *A*-statistical convergence. To obtain our main result we need the next lemma.

Lemma 1. Let $A := (a_{kn})_{k,n \in \mathbb{N}}$ be a non-negative regular summability matrix and let the operators $\tilde{L}_{n,\lambda}$ be defined by (2.12) such that the following conditions hold

(1) the sequence $(\|\tilde{\psi}_n\|)_{n\in\mathbb{N}}$ is bounded,

(2) $\operatorname{st}_A - \lim_n \|\widetilde{\psi}_n\| = 0.$

Then the following identities hold:

$$\mathrm{st}_{A} - \lim_{n} \|\tilde{L}_{n,\lambda} e_{i} - e_{i}\| = 0 \quad for \ i = 0, 1, 2.$$
(3.1)

Proof. From (2.12) and (2.3) it follows that

$$(\widetilde{L}_{n,\lambda}e_0)(x) = \sum_{j \in I_n} u_{n,j}(\lambda(x)), \quad x \in [0,b].$$

Since $e_0(\lambda(x)) = e_0(x) = 1$ for all $x \in [0, b]$, we obtain

$$\left| \left(\widetilde{L}_{n,\lambda} e_0 \right)(x) - e_0(x) \right| = \left| \sum_{j \in I_n} u_{n,j} \left(\lambda(x) \right) - e_0(x) \right| \le \left\| \sum_{j \in I_n} u_{n,j} - e_0 \right\|.$$

Now using the above relation and (2.7), we get (3.1) for i = 0.

By the definition (2.12) of the operator $\tilde{L}_{n,\lambda}$ we have

$$(\tilde{L}_{n,\lambda}e_1)(x) = \sum_{j \in I_n} u_{n,j} (\lambda(x)) x_{n,j} \sum_{s \in J_j} v_{j,s}(x) y_{j,s}$$
$$+ x \sum_{j \in I_n} u_{n,j} (\lambda(x)) \sum_{s \in J_j} v_{j,s}(x)$$
$$- x \sum_{j \in I_n} u_{n,j} (\lambda(x)) x_{n,j} \sum_{s \in J_j} v_{j,s}(x).$$

Using (2.3) and (2.4) we obtain

$$(\widetilde{L}_{n,\lambda}e_1)(x) = x \sum_{j \in I_n} u_{n,j}(\lambda(x)), \quad x \in [0,b].$$

Hence, we get

$$\left| \left(\widetilde{L}_{n,\lambda} e_1 \right)(x) - e_1(x) \right| = \left| x \sum_{j \in I_n} u_{n,j} \left(\lambda(x) \right) - e_1(x) \right|$$
$$= \left| x \right| \left| \sum_{j \in I_n} u_{n,j} \left(\lambda(x) \right) - e_0(x) \right| \le b \left\| \sum_{j \in I_n} u_{n,j} - e_0 \right\|.$$

Since for a given $\varepsilon > 0$ we have

$$T_1 := \left\{ n \in \mathbb{N} : \left\| \widetilde{L}_{n,\lambda} e_1 - e_1 \right\| \ge \varepsilon \right\} \subseteq \left\{ n \in \mathbb{N} : \left\| \sum_{j \in I_n} u_{n,j} - e_0 \right\| \ge \frac{\varepsilon}{b} \right\} := T_2,$$

we get

$$\sum_{T_1} a_{kn} \le \sum_{T_2} a_{kn}.$$

Taking $k \to \infty$, we obtain (3.1) for i = 1.

By (2.3)–(2.5), (2.11), and an elementary calculus it follows that

$$\begin{split} \big(\widetilde{L}_{n,\lambda}e_2\big)(x) &= \sum_{j \in I_n} u_{n,j}\big(\lambda(x)\big) x_{n,j}^2 \psi_j(x) + x^2 \sum_{j \in I_n} u_{n,j}\big(\lambda(x)\big) \\ &= \sum_{j \in I_n} u_{n,j}\big(\lambda(x)\big) x_{n,j} \widetilde{\psi}_n(x) + x^2 \sum_{j \in I_n} u_{n,j}\big(\lambda(x)\big). \end{split}$$

Let $M := \sup_{n \in \mathbb{N}} \{ \| \widetilde{\psi}_n \| \}$. Then

$$\begin{split} \left| \left(\widetilde{L}_{n,\lambda} e_2 \right)(x) - e_2(x) \right| &\leq \left| \widetilde{\psi}_n(x) \left(\sum_{j \in I_n} u_{n,j} \left(\lambda(x) \right) x_{n,j} - e_1 \left(\lambda(x) \right) \right) \right| \\ &+ \left| \lambda(x) \widetilde{\psi}_n(x) \right| + \left| x^2 \left(\sum_{j \in I_n} u_{n,j} \left(\lambda(x) \right) - e_0(x) \right) \right| \\ &\leq M \left\| \sum_{j \in I_n} u_{n,j} x_{n,j} - e_1 \right\| + b \left\| \widetilde{\psi}_n \right\| + b^2 \left\| \sum_{j \in I_n} u_{n,j} - e_0 \right\|. \end{split}$$

Let us set $K := \max{\{M, b^2\}}$. Then

$$\|\tilde{L}_{n,\lambda}e_{2}-e_{2}\| \leq K\left(\|\sum_{j\in I_{n}}u_{n,j}x_{n,j}-e_{1}\|+\|\tilde{\psi}_{n}\|+\|\sum_{j\in I_{n}}u_{n,j}-e_{0}\|\right).$$
 (3.2)

For a given $\varepsilon > 0$, we put

$$U := \left\{ n \in \mathbb{N} : \left\| \sum_{j \in I_n} u_{n,j} x_{n,j} - e_1 \right\| + \left\| \widetilde{\psi}_n \right\| + \left\| \sum_{j \in I_n} u_{n,j} - e_0 \right\| \ge \frac{\varepsilon}{K} \right\},$$
$$U_1 := \left\{ n \in \mathbb{N} : \left\| \sum_{j \in I_n} u_{n,j} x_{n,j} - e_1 \right\| \ge \frac{\varepsilon}{3K} \right\},$$
$$U_2 := \left\{ n \in \mathbb{N} : \left\| \widetilde{\psi}_n \right\| \ge \frac{\varepsilon}{3K} \right\},$$

and

$$U_3 := \Big\{ n \in \mathbb{N} : \Big\| \sum_{j \in I_n} u_{n,j} - e_0 \Big\| \ge \frac{\varepsilon}{3K} \Big\}.$$

It is obvious that $U \subset U_1 \cup U_2 \cup U_3$. Inequality (3.2) implies that

$$\sum_{n:\|\tilde{L}_{n,\lambda}e_2-e_2\|\geq\varepsilon}a_{kn}\leq\sum_{n\in U}a_{kn}\leq\sum_{n\in U_1}a_{kn}+\sum_{n\in U_2}a_{kn}+\sum_{n\in U_3}a_{kn}.$$

Passing to the limit as $k \to \infty$, we complete the proof.

Remark 1. If the non-negative regular summability matrix *A* is the Cesáro matrix of order one, then the *A*-statistical convergence reduces to the statistical convergence [5,7]. Consequently, Lemma 1 also stands for statistical convergence.

Using the above lemma and Theorem A, we obtain the following result.

Theorem 1. Let $A := (a_{kn})_{k,n \in \mathbb{N}}$ be a non-negative regular summability matrix and let the operators $\tilde{L}_{n,\lambda}$ be defined by (2.12). If the conditions of Lemma 1 hold, then for any function $f \in C_B([0,b])$ we have

$$\operatorname{st}_{A} - \lim_{n} \left\| \widetilde{L}_{n,\lambda} f - f \right\| = 0.$$

4. EXAMPLE

In what follows we present a particular sequence of positive linear operators of the form (2.12) which is statistically convergent with respect to the sup-norm to the approximated function but it is not uniformly convergent.

Let

$$\tilde{l}_n: \left< [0,1], \{0, \dots, n\}, \frac{j}{n}, u_{n,j}(x) \right>, \quad (n,j) \in \mathbb{N} \times \{0, \dots, n\}, \ x \in [0,1]$$

be such that

$$u_{n,j}(x) = C_n^j (\phi_n(x))^j (1 - \phi_n(x))^{n-j}, \quad x \in [0,1],$$

and

$$\phi_n = \begin{cases} e_1 & \text{if } \lg n \notin \mathbb{N}_0, \\ ne_1 & \text{if } \lg n \in \mathbb{N}_0 \end{cases}$$

for all $(n, j) \in \mathbb{N} \times \{0, ..., n\}$. It is clear that taking $\phi_n = e_1$ for all $n \in \mathbb{N}$, \tilde{l}_n becomes the *n*th Bernstein polynomial.

We must should now check that $(u_{n,j})$ satisfies conditions (2.2), (2.7)–(2.9). It is obvious that (2.2) and (2.7) are fulfilled. By using an elementary calculus, we obtain

$$\left|\sum_{j=0}^{n} u_{n,j}(x) \frac{j}{n} - e_1(x)\right| = \left|\phi_n(x) - e_1(x)\right| = 0$$

for all *n* with the property $\lg n \notin \mathbb{N}_0$. Letting $\varepsilon > 0$ we obtain

$$\left\{n \in \mathbb{N} : \left\|\sum_{j=0}^{n} u_{n,j} \frac{j}{n} - e_1\right\| \ge \varepsilon\right\} = \left\{n \in \mathbb{N} : \lg n \in \mathbb{N}_0\right\},\$$

and (2.8) is thus satisfied.

It remains only to verify (2.9). Indeed,

$$\left|\sum_{j=0}^{n} u_{n,j}(x) \left(\frac{j}{n}\right)^2 - e_2(x)\right| = \left|\frac{\phi_n(x)}{n} + \frac{n-1}{n}(\phi_n(x))^2 - e_2(x)\right|$$
$$= \left|\frac{x}{n} + \frac{n-1}{n}x^2 - x^2\right| \le \frac{x}{n} \le \frac{1}{n}$$

for all *n* with the property $\lg n \notin \mathbb{N}_0$. Letting $\varepsilon > 0$ we get

$$\left\{n \in \mathbb{N} : \left\|\sum_{j=0}^{n} u_{n,j}\left(\frac{j}{n}\right)^2 - e_2\right\| \ge \varepsilon\right\} \subseteq \left\{n \in \mathbb{N} : \lg n \in \mathbb{N}_0 \text{ and } \frac{1}{n} \ge \varepsilon\right\}$$

and, therefore, (2.9) is also satisfied.

Choosing

$$l_n = s_n : \left\langle [0,\infty), \mathbb{N}_0, \frac{j}{n}, e^{-nx} \frac{(nx)^J}{j!}; \frac{e_1}{n} \right\rangle, \quad (n,j) \in \mathbb{N} \times \mathbb{N}_0, \ x \in [0,\infty)$$

(the Favard–Szász–Mirakjan operators), we are able to define the operators $\tilde{L}_{n,\lambda}$ by putting

$$(\tilde{L}_{n,\lambda}f)(x) = \sum_{j=0}^{n} \sum_{s=0}^{\infty} C_n^j (\phi_n(\lambda(x)))^j (1 - \phi_n(\lambda(x)))^{n-j} \\ \times e^{-jx} \frac{(jx)^s}{s} f\left(\frac{s}{n} + \left(1 - \frac{j}{n}\right)x\right)$$
(4.1)

for all $x \ge 0$, $f \in C_B(\mathbb{R}_+)$, and $n \in \mathbb{N}$, where $\lambda: [0, \infty) \to [0, 1]$ is a continuous function.

On the basis of Lemma 1 and Theorem 1 we deduce that the sequence of operators $(\tilde{L}_{n,\lambda}f)$ defined by (4.1) is A-statistically convergent to f for any function $f \in C_B(D)$, where D is a compact interval on the positive semiaxis.

References

- O. Agratini, "On some new operators of discrete type," in *Proceedings of the Fourth International Conference on Functional Analysis and Approximation Theory, Vol. I (Potenza, 2000)*, no. 68, part I, 2002, pp. 229–243.
- [2] O. Duman, M. K. Khan, and C. Orhan, "A-statistical convergence of approximating operators," *Math. Inequal. Appl.*, vol. 6, no. 4, pp. 689–699, 2003.
- [3] O. Duman and C. Orhan, "Statistical approximation by positive linear operators," *Studia Math.*, vol. 161, no. 2, pp. 187–197, 2004.
- [4] E. Erkuş, O. Duman, and H. M. Srivastava, "Statistical approximation of certain positive linear operators constructed by means of the Chan–Chyan–Srivastava polynomials," *Appl. Math. Comput.*, vol. 182, no. 1, pp. 213–222, 2006.
- [5] H. Fast, "Sur la convergence statistique," Colloquium Math., vol. 2, pp. 241–244 (1952), 1951.
- [6] A. R. Freedman and J. J. Sember, "Densities and summability," *Pacific J. Math.*, vol. 95, no. 2, pp. 293–305, 1981.
- [7] J. A. Fridy, "On statistical convergence," Analysis, vol. 5, no. 4, pp. 301-313, 1985.

C. RADU

[8] A. D. Gadjiev and C. Orhan, "Some approximation theorems via statistical convergence," *Rocky Mountain J. Math.*, vol. 32, no. 1, pp. 129–138, 2002.

Author's address

C. Radu

Babeş–Bolyai University, Faculty of Mathematics and Computer Science, 1 Kogălniceanu St., 400084 Cluj-Napoca, Romania

E-mail address: rcristina@math.ubbcluj.ro