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Abstract. In this paper, we investigate the existence of a unique solution on a semi-infinite in-
terval for quadratic integral equations with linear modification of the argument in Fréchet spaces
using a nonlinear alternative of Leray-Schauder type for contraction maps in Fréchet spaces.
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1. INTRODUCTION

In this paper, we establish the existence of the unique solution, defined on a semi-
infinite interval J WD Œ0;C1/ for the following quadratic integral equations with a
linear modification of the argument

x.t/D f .t/C .Ax/.t/

Z T

0

u.t; s;x.s/;x.˛s//ds; t 2 J; (1.1)

and

x.t/D f .t/Cg.t;x.t//

Z T

0

u.t; s;x.s/;x.˛s//ds; t 2 J; (1.2)

where f WJ ! R, gWJ �R! R, uWJ �JT �R2! R are given functions, 0 < ˛ < 1,
JT WD Œ0;T �, and AWC.J IR/! C.J IR/ is an appropriate operator. Here C.J IR/
denotes the space of continuous functions xWJ ! R.

Integral equations arise naturally in many applications in describing numerous real
world problems (see, for instance, the books [1, 2, 8, 10, 20] and references therein).
Also quadratic integral equations have many useful applications in describing numer-
ous events and problems of the real world. For example, quadratic integral equations
are often applicable in the theory of radiative transfer, kinetic theory of gases, in
the theory of neutron transport and in the traffic theory. Especially, the so-called
quadratic integral equation of Chandrasekher type can be very often encountered in
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many applications; see for instance the book by Chandrasekher [7] and the research
papers by Banas et al [3], Benchohra and Darwish [4], Darwish [9], Hu et al [14],
Kelley [15], Leggett [17] and Stuart [21] and references therein.

The study of differential equations with a modified argument is relatively new, it
was initiated only in the past thirty years or so. These equations arise in the mod-
elling of problems from the natural and social sciences such as biology, economics
and physics. A special class is represented by the differential equations with affine
modification of the argument which can be differential equations with linear modifi-
cation of the argument or differential equation with delay. For more information and
results concerning these equations, see [6, 11, 13, 16, 18, 19].

More recently, Caballero et al [5] investigated the so-called quadratic integral
equation of the Volterra type with linear modification of the argument, Volterra counter
part of equation (1.1), and proved the existence of monotonic solutions inC.Œ0;1�;R/.
There equation can be considered with connection to the following Cauchy problem
[5, 19]:

x0.t/D u.t; s;x.t/;x.�t//; t 2 Œ0;1�; 0 < � < 1;

x.0/D u0:

In this paper, we investigate the question of unique solvability of equation (1.1)
and (1.2). Motivated by the previous papers considered for integral equations on
a bounded interval, we extend here these results to semi-infinite intervals for a class
of quadratic integral equations. The method we are going to use is to reduce the exis-
tence of the unique solution for the quadratic integral equation (1.1) to the search for
the existence of the unique fixed-point of an appropriate operator on the Fréchet space
C.J IR/ by applying a nonlinear alternative of Leray–Schauder type for contraction
maps due to Frigon and Granas [12].

2. PRELIMINARIES

We introduce notations, definitions, and theorems which are used throughout this
paper.

LetX be a Fréchet space with a family of semi-norms fk �kngn2N. Let Y �X , we
say that Y is bounded if for every n 2N, there exists Mn > 0 such that

kykn �Mn for every y 2 Y:

To X we associate a sequence of Banach spaces f.Xn;k � kn/g as follows: For every
n 2N, we consider the equivalence relation �n defined by the formula

x �n y if and only if kx�ykn D 0 for all x;y 2X:

We denoteXnD .X j�n
;k�kn/ the quotient space, the completion ofXn with respect

to k � kn. To every Y � X , we associate a sequence fY ng of subsets Y n � Xn as
follows: For every x 2X , we denote Œx�n the equivalence class of x of subsetXn and
we defined Y n D fŒx�n W x 2 Y g. We denote SY n, Intn.Y n/, and @nY

n, respectively,
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the closure, the interior and the boundary of Y n with respect to k � k in Xn. We
assume that the family of semi-norms fk � kng verifies

kxk1 � kxk2 � kxk3 � � � � for every x 2X:

Definition 1 ([12]). A function f WX ! X is said to be a contraction if for each
n 2N there exists kn 2 .0;1/ such that

kf .x/�f .y/kn � knkx�ykn for all x;y 2X:

Theorem 2.1 ([12]). Suppose that U is an open subset of a Fréchet space X ,
0 2 U , and F W xU !X is a contraction such that F. xU/ is bounded. Then either,

(C1) F has a unique fixed point in U ; or
(C2) there exist � 2 .0;1/ and u 2 @U with the property uD �F.u/.

3. MAIN THEOREM

In this section, we will study equation (1.1) assuming that the following assump-
tions are satisfied:

(a1) f WJ ! R is a continuous function.
(a2) For each n 2N there exists Ln > 0 such that

j.Ax/.t/� .Axx/.t/j � Lnjx.t/� xx.t/j for each x; xx 2 C.J IR/ and t 2 Œ0;n�:

(a3) There exist nonnegative constants a and b such that

j.Ax/.t/j � aCbjx.t/j

holds for each x 2 C.J IR/ and t 2 J .
(a4) uWJ �JT �R2!R is a continuous function and, for each n 2N, there exists

a constant L�n > 0 such that

ju.t; s;x;y/�u.t; s; xx; xy/j � L�n.jx� xxjC jy� xyj/

holds for all t 2 Œ0;n�, s 2 JT , and x;y; xx; xy 2 R.
(a5) There exists a continuous nondecreasing function  WJ 2! .0;1/ and p 2

C.J IRC/ such that

ju.t; s;x;y/j � p.s/ .jxj; jyj/

for each .t; s/ 2 J � JT and x;y 2 R, and, moreover, there exist constants
Mn 2 J , n 2N, such that

Mn

kf knCT .aCbMn/ .Mn;Mn/p�
> 1 (3.1)

holds for all n 2N, where p� D supfp.s/ W s 2 JT g.
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Theorem 3.1. Let the assumptions (a1)–(a5) be satisfied. If, in addition, the in-
equality

2 .aCb Mn/ L
�
n T CTLn  .Mn;Mn/p

� < 1 (3.2)

holds for all n 2N, then the equation (1.1) has a unique solution.

Proof. For every n 2N, we define in C.J IR/ the semi-norms by the formula

kykn WD supfjy.t/j W t 2 Œ0;n�g:

Then C.J IR/ is a Fréchet space with the family of semi-norms fk � kngn2N.
Transform the problem (1.1) into a fixed-point problem. Consider the operator

F WC.J IR/! C.J IR/ defined by the relation

.F y/.t/D f .t/C .Ay/.t/

Z T

0

u.t; s;y.s/;y.˛s//ds; t 2 J:

Let y be a possible solution of the problem (1.1). For given n 2N and t � n, in
view of (a1), (a2), and (a5), we have

jy.t/j � jf .t/jC j.Ay/.t/j

Z T

0

ju.t; s;y.s/;y.˛s//jds

� jf .t/jC .aCbjy.t/j/

Z T

0

p.s/ .jy.s/j; jy.˛s/j/ds

� kf knCT .aCbkykn/ .kykn;kykn/p
�

and thus
kykn

kf knCT .aCbkykn/ .kykn;kykn/p�
� 1:

From (3.1) it follows that kykn ¤Mn for each n 2N. Now, set

˝ D fy 2 .J IR/ W kykn <Mn for every n 2Ng:

Clearly, ˝ is an open subset of C.J IR/. We shall show that F W x̋ ! C.J IR/ is
a contraction operator. Indeed, consider y; xy 2C.J IR/, for each t 2 Œ0;n� and n 2N,
from (a2)–(a5) we get

j.F y/.t/� .F xy/.t/j

�

ˇ̌̌̌
ˇ.Ay/.t/

Z T

0

u.t; s;y.s/;y.˛s//ds� .Axy/.t/

Z T

0

u.t; s; xy.s/; xy.˛s//ds

ˇ̌̌̌
ˇ

�

ˇ̌̌̌
ˇ.Ay/.t/

Z T

0

u.t; s;y.s/;y.˛s//ds� .Ay/.t/

Z T

0

u.t; s; xy.s/; xy.˛s//ds

ˇ̌̌̌
ˇ

C

ˇ̌̌̌
ˇ.Ay/.t/

Z T

0

u.t; s; xy.s/; xy.˛s//ds� .Axy/.t/

Z T

0

u.t; s; xy.s/; xy.˛s//ds

ˇ̌̌̌
ˇ
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� j.Ay/.t/j

Z T

0

ju.t; s;y.s/;y.˛s//�u.t; s; xy.s/; xy.˛s//jds

Cj.Ay/.t/� .Axy/.t/j

Z T

0

ju.t; s; xy.s/; xy.˛s//jds

� .aCbjy.t/j/ L�n

Z T

0

.jy.s/� xy.s/jC jy.˛s/� xy.˛s/j/ds

CLnjy.t/� xy.t/j

Z T

0

p.s/ .jxy.s/j; jxy.˛s/j/ds

�
�
2.aCbMn/L

�
nT CTLn .Mn;Mn/p

�
�
ky� xykn:

Therefore,

kF y�F xykn �
�
2.aCbMn/L

�
nT CTLn .Mn;Mn/p

�
�
ky� xykn:

So by (3.2) the operator F is a contraction for all n 2N. From the choice of˝ there
is no y 2 @˝ such that y D �F .y/ for some � 2 .0;1/. Then the statement (C2) in
Theorem 2.1 does not hold. A consequence of the Leray–Schauder type nonlinear
alternative from [12] yields that (C1) holds and thus we deduce that the operator F

has a unique fixed-point y in x̋ , which is a solution to Equation (1.1). This completes
the proof. �

Theorem 3.2. Let the following assumptions be satisfied:
(ya1) f WJ ! R is a continuous function.
(ya2) gWJ �R! R is continuous and, for each n 2 N, there exists Ln > 0 such

that

jg.t;x/�g.t; xx/j � Lnjx� xxj for all x; xx 2 R and t 2 Œ0;n�:

(ya3) uWJ �JT �R2!R is a continuous function and, for each n2N, there exists
a constant L�n > 0 such that

ju.t; s;x;y/�u.t; s; xx; xy/j � L�n.jx� xxjC jy� xyj/

holds for all .t; s/ 2 Œ0;n��JT and x;y; xx; xy 2 R.
(ya4) There exists a continuous nondecreasing function  WJ 2! .0;1/ and p 2

C.J IRC/ such that

ju.t; s;x;y/j � p.s/ .jxj; jyj/

for each .t; s/ 2 J �JT and x;y 2 R and, moreover, there exists constants
Mn 2 J , n 2N, such that

Mn

kf knCT .LnMnCmn/ .Mn;Mn/p�
> 1

holds for all n 2N, where p� D supfp.s/ W s 2 JT g and mn D supfg.t;0/ W
t 2 Œ0;n�g.
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If, in addition, the inequality

2.LnMnCmn/TL
�
nCTLn .Mn;Mn/p

� < 1 (3.3)

holds, then Equation (1.2) has a unique solution.

Proof. The proof is similar to those of Theorem 3.1. �

Example 1. Consider the quadratic integral equation of the Urysohn type

x.t/D 1C
jx.t/j

1Cjx.t/j

Z T

0

ts

t3C1

�
x.s/Cx

� s
2

��
ds; t 2 J WD Œ0;C1/: (3.4)

Set f .t/D 1 for each t 2 J ,  .x;y/D xCy for all x;y � 0,

.Ax/.t/D
jx.t/j

1Cjx.t/j
; t 2 J and x 2 C.J IR/;

and
u.t; s;x;y/D

ts

t3C1
.xCy/

for all .t; s/2 J �JT and x;y 2R. It is clear that (3.4) is a particular case of equation
(1.1). Let us show that conditions (a1)–(a5) hold.

For each n 2N, t 2 Œ0;n�, and x; xx 2 C.J IRC/, we have

j.Ax/.t/� .Axx/.t/j D

ˇ̌̌̌
jx.t/j

1Cjx.t/j
�
jxx.t/j

1Cjxx.t/j

ˇ̌̌̌
D

ˇ̌̌̌
jx.t/j� jxx.t/j

.1Cjx.t/j/.1Cjxx.t/j/

ˇ̌̌̌

�
jx.t/� xx.t/j

.1Cjx.t/j/.1Cjxx.t/j/
� jx.t/� xx.t/j:

Hence .a2/ is satisfied with Ln D 1.
For each t 2 J and x 2 C.J IR/, we have

j.Ax/.t/j D

ˇ̌̌̌
jx.t/j

1Cjx.t/j

ˇ̌̌̌
� jx.t/j:

Hence (a3) holds with aD 0 and b D 1.
For each n 2N, .t; s/ 2 Œ0;n��JT , and x;y; xx; xy 2 R, we haveˇ̌

u.t; s;x; xx/�u.t; s;y; xy/
ˇ̌
D

ˇ̌̌̌
ts

t3C1
Œ.xCxx/� .yC xy/�

ˇ̌̌̌
�

ˇ̌̌̌
ts

t3C1
Œ.x�y/C .xx� xy/�

ˇ̌̌̌
�

nT

n3C1
Œjx�yjC jxx� xyj�

� T Œjx�yjC jxx� xyj� :

Hence (a4) is satisfied with L�n D T .
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For each n 2N, .t; s/ 2 Œ0;n��JT , and x;y 2 R, we have

ju.t; s;x;y/j D

ˇ̌̌̌
ts

t3C1
.xCy/

ˇ̌̌̌
� s.jxjC jyj/D s .jxj; jyj/:

To conclude that (a5) holds we shall show that (3.1) is satisfied. Indeed
Mn

kf knCT .aCbMn/ .Mn;Mn/p�
> 1 ”

Mn

1C2T 2M 2
n

> 1

” 2T 2M 2
n �MnC1 < 0:

Notice that the last inequality holds for T such that 1�8T 2 > 0; i. e.,

T <
1

2
p
2
: (3.5)

Hence for T > 0 satisfying (3.5), there exists Mn > 0 satisfying (3.1).
Finally let us show that (3.2) is satisfied.

2.aCbMn/L
�
nT CTLn .Mn;Mn/p

�
�1D 2MnT

2
C2T 2Mn�1

D 4MnT
2
�1:

Hence (3.2) is satisfied for T or Mn satisfying 4MnT
2�1 < 0; i. e., for

0 < T <
1

2
p
Mn

or 0 <Mn <
1
4
T �2 : Consequently, if T satisfies the inequalities

0 < T <min
�

1

2
p
Mn

;
1

2
p
2

�
;

then it follows from Theorem 3.1 that equation (3.4) has a unique solution.
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