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Abstract. Quasi-linear systems governed by p-integrable controls, for 1 < p <1 with the con-
straint kukp � �0 are studied. It is proved that the attainable sets of the system at the instant of
time t are compact subsets of Rn.
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1. INTRODUCTION

In this paper quasi-linear control systems which are nonlinear with respect to phase
state vector, linear with respect to control vector and where control inputs are con-
strained by an integral inequality are studied. It is well known that attainable sets play
an important role in control theory. Many problems of optimization, dynamics, game
theory can be stated and solved in terms of attainable sets. There is already much re-
search on the topological and geometric properties of attainable sets. Linear systems
are well studied and most properties of attainable sets are proved [4,5]. For nonlinear
systems, attainable sets are still an object of active study (see, e. g., [1–3, 6–8]).

Consider a control system whose behavior is described by the differential equation

x0.t/D f .t;x.t//CB.t;x.t//u.t/; x.t0/ 2X0; (1.1)

where x 2 Rn is the n-dimensional phase state vector of the system, u 2 Rr is the
r-dimensional control vector, t 2 Œt0;T � .t0 < T <1/ is the time, f .t;x/ is an n-
dimensional vector function, B.t;x/ is an .n� r/-dimensional matrix function, and
X0 � Rn.

It is assumed that the realizations u.t/, t 2 Œt0;T �, of the control u are restricted
by the constraint Z T

t0

ku.t/kpdt � �
p
0 ; �0 > 0; 1 < p <1; (1.2)
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where k �k denotes the Euclidean norm. It is also assumed that the functions .t;x/ 7!
f .t;x/, .t;x/ 7! B.t;x/ and the set X0 satisfy the following conditions:

(A) The set X0 � Rn is compact;
(B) The functions .t;x/ 7! f .t;x/ and .t;x/ 7! B.t;x/ are continuous with re-

spect to .t;x/ and locally Lipschitz with respect to x, that is, for any bounded
set D � Œt0;T ��Rn, there exist Lipschitz constants Li D Li .D/ 2 .0;1/ ,
i D 1;2, such that

kf .t;x�/�f .t;x�/k � L1kx
�
�x�k;

kB.t;x�/�B.t;x�/k � L2kx
�
�x�k

for any .t;x�/ and .t;x�/ from D;
(C) There exist constants 
i 2 .0;1/ , i D 1;2, such that

kf .t;x/k � 
1.1Ckxk/;

kB.t;x/k � 
2.1Ckxk/

for every .t;x/ 2 Œt0;T ��Rn.

Every function u 2 Lp .Œt0;T �;Rr/, 1 < p <1, satisfying inequality (1.2) is said
to be an admissible control, where Lp .Œt0;T �;Rr/ denotes the space of p-power
integrable functions. By the symbol U we denote the set of all admissible control
functions u.

Let u� 2U. An absolutely continuous function x�W Œt0;T �! Rn which satisfies
the equation

x0�.t/D f .t;x�.t//CB.t;x�.t//u�.t/

a. e. on Œt0;T � and has the property

x�.t0/D x0 2X0 (1.3)

is said to be a solution of system (1.1) with the initial condition (1.3) generated by the
admissible control function u�. By the symbol X.t0;x0/, we denote the set of all so-
lutions of system (1.1) with initial condition x.t0/D x0, generated by all admissible
control functions u 2U. We also put

X.t0;X0/D
˚
x 2X.t0;x0/ W x0 2X0

	
;

X.t I t0;X0/D
˚
x.t/ 2 Rn

W x 2X.t0;X0/
	
:

The set X.t I t0;X0/ is called the attainable set of the system (1.1) with constraint
(1.2) at the instant of time t . It is obvious that the set X.t I t0;X0/ consists of all
x 2 Rn, at which the solutions of the system (1.1) which are generated by all possible
controls u 2U arrive at the instant of time t 2 Œt0;T �.

In this paper we prove that the attainable set X.t I t0;X0/ defined above is a com-
pact subset of Rn for all t 2 Œt0;T �.
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2. PRELIMINARIES

First, let us give a useful inequality which will be used frequently in the following
sections: Z t

t0

.K1CK2ku.�/k/d� �K1.T � t0/CK2.T � t0/
p�1

p �0 (2.1)

for every u 2U and all t 2 Œt0;T �, where K1 and K2 are positive constants. This
inequality can be easily obtained from the Hölder integral inequality [9, p. 122].

The following proposition states that the graphs of the all solutions of system (1.1)
with constraint (1.2) is bounded.

Proposition 1. The inequality

kx.t/k � r

holds for all x 2X.t0;X0/ and t 2 Œt0;T �, where

q D 
1.T � t0/C
2�0.T � t0/
p�1

p ; (2.2)

d� Dmaxfkvk W v 2X0g; (2.3)

and

r D .d�Cq/exp.q/: (2.4)

Proof. Let x 2X.t0;X0/ be any solution of system (1.1). Then there exist x0 2X0

and u 2U such that

x.t/D x0C

Z t

t0

�
f .�;x.�//CB.�;x.�//u.�/

�
d�; t 2 Œt0;T �:

Calculating the norm of both sides, using condition (C), and recalling that d� is given
by (2.3), we obtain,

kx.t/k � d�C
1.T � t0/C
1

Z t

t0

kx.�/kd�C
2

Z t

t0

ku.�/kd�

C
2

Z t

t0

kx.�/kku.�/kd�: (2.5)

Since u 2U, using Hölder’s integral inequality, we findZ t

t0

ku.�/kd� �

�Z t

t0

1
p

p�1d�

�p�1
p
�Z t

t0

ku.�/kpd�

� 1
p

� �0.T � t0/
p�1

p : (2.6)

By virtue of (2.6) and since q D 
1.T � t0/C
2�0.T � t0/
p�1

p , we obtain

kx.t/k � d�CqC

Z t

t0

�

1C
2ku.�/k

�
kx.�/kd�:
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Using Gronwall’s inequality [9, p. 189], we get

kx.t/k � .d�Cq/exp
�Z t

t0

�

1C
2ku.�/k

�
d�

�
:

In view of inequality (2.1), we find

kx.t/k � .d�Cq/exp.q/:

The right hand side of this last inequality is exactly the number r appearing in (2.4),
so it is clear that the inequality

kx.t/k � r

holds for all x 2X.t0;X0/ and all t 2 Œt0;T �. �

Definition. The set

Z.t0;X0/D
˚
.t;x.t// 2 Œt0;T ��Rn

W x 2X.t0;X0/
	

is called the integral funnel of system (1.1) with constraint (1.2).

Proposition 1 yields the following corollaries.

Corollary 1. Graphs of all solutions of system (1.1) are bounded by the cylinder

D D
˚
.t;x/ 2 Œt0;T ��Rn

W kxk � r
	
: (2.7)

In other words, the inclusion Z.t0;X0/�D holds.

Here, r > 0 is defined by the formula (2.4). From now on, D will denote the
cylinder (2.7).

Corollary 2. The set of all solutions X.t0;X0/ of system (1.1) is a uniformly
bounded subset of C.Œt0;T �;Rn/. Furthermore, the attainable sets at the instant of
time t are bounded subsets of Rn for all t 2 Œt0;T �.

Here, C.Œt0;T �;Rn/ denotes the space of continuous functions x W Œt0;T �! Rn

with the norm kxkC Dmaxt2Œt0;T � kx.t/k.

3. COMPACTNESS OF ATTAINABLE SETS

In this section, by means of Ascoli’s theorem [9, p. 109], it is proved that the
attainable set of the system (1.1) with constraint (1.2) is a compact subset of Rn

at the instant of time t 2 Œt0;T �. Since we have already shown that the set of all
solutions is uniformly bounded, we only need to prove its equicontinuity and relative
compactness.

The following proposition states that set of all solutions X.t0;X0/ is an equicon-
tinuous family of functions in C.Œt0;T �;Rn/.

Proposition 2. The set of all solutions X.t0;X0/ of system (1.1) with constraint
(1.2) is an equicontinuous family in C.Œt0;T �;Rn/.



ON THE COMPACTNESS OF THE ATTAINABLE SETS 21

Proof. Let " > 0 and x 2 X.t0;X0/ be any solution of system (1.1). Then there
exist x0 2X0 and u 2U such that the equality

x.t/D x0C

Z t

t0

�
f .�;x.�//CB.�;x.�//u.�/

�
d�

holds for all t 2 Œt0;T �.
Let us choose arbitrary t1; t2 2 Œt0;T �. Without loss of generality we can suppose

that t1 � t2. Therefore,

kx.t1/�x.t2/k D





Z t2

t1

Œf .�;x.�//CB.�;x.�//u.�/�d�






�

Z t2

t1

kf .�;x.�//kd�C

Z t2

t1

kB.�;x.�//kku.�/kd�:

Since the functions f and B are continuous and the set D is compact, we can set

K1 Dmax
˚
kf .t;x/k W .t;x/ 2D

	
;

K2 Dmax
˚
kB.t;x/k W .t;x/ 2D

	
:

Then we obtain

kx.t1/�x.t2/k �K1jt2� t1jCK2

Z t2

t1

ku.�/kd�:

Using Hölder’s integral inequality we get

kx.t1/�x.t2/k �K1jt2� t1jCK2

�Z t2

t1

1
p

p�1d�

�p�1
p
�Z t2

t1

ku.�/kpd�

� 1
p

�K1jt2� t1jCK2�0jt2� t1j
p�1

p

for all t1; t2 2 Œt0;T �. Setting K DmaxfK1;�0K2g, we get

kx.t1/�x.t2/k �Kjt2� t1jCKjt2� t1j
p�1

p

DKjt2� t1j
p�1

p

�
1Cjt2� t1j

1
p

�
�K

�
1C .T � t0/

1
p

�
jt2� t1j

p�1
p

for all t1; t2 2 Œt0;T �. Setting K� DK
�
1C .T � t0/

1
p

�
, we find

kx.t1/�x.t2/k �K�jt2� t1j
p�1

p :

Therefore, if t1 and t2 are such that jt1� t2j< ı."/ with ı."/D ."=K�/
p

p�1 , then the
inequality

kx.t1/�x.t2/k< "

holds. Since the element x 2 X.t0;X0/ is arbitrary, this completes the proof of our
proposition. �
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Combining Corollary 2, Proposition 2, and Ascoli’s theorem, we obtain the fol-
lowing corollary.

Corollary 3. The set of all solutionsX.t0;X0/ of system (1.1) with constraint (1.2)
is a relatively compact subset of C.Œt0;T �;Rn/.�

Proposition 3. The set of all solutions X.t0;X0/ of system (1.1) with constraint
(1.2) is a closed subset of C.Œt0;T �;Rn/.

Proof. Let xk be any sequence in X.t0;X0/ and xk ! x� as k!1. It is neces-
sary to prove that x� 2X.t0;X0/.

Since xk 2 X.t0;X0/ for all k D 1;2; : : : , there exist ck 2 X0 and uk 2U such
that

xk.t/D ckC

Z t

t0

�
f .�;xk.�//CB.�;xk.�//uk.�/

�
d�

holds for all t 2 Œt0;T �. Since X0 � Rn is compact, the sequence fckg
1
kD1

contains
a convergent subsequence. Assume without loss of generality that ck ! c0 2 X0 as
k!1.

In view of the fact that the set of admissible control functions

UD
n
u 2 Lp.Œt0;T �;R

r/ W

Z T

t0

ku.�/kpd� � �
p
0

o
;

where�0 >0 and p 2 .1;1/, is a weakly compact subset ofLp.Œt0;T �;Rr/ and uk 2

U for all k D 1;2; : : : , the sequence fukg
1
kD1

has weakly convergent subsequence.

Suppose without loss of generality that uk

w
! u0 2U as k!1.

By the definition of weak convergence, we haveZ T

t0

�.�/uk.�/d� !

Z T

t0

�.�/u0.�/d�

as k!1 for all � 2 Lq.Œt0;T �;Rr/, where p�1Cq�1 D 1.
Let us denote by x0 the solution of system (1.1) generated by admissible control

u0 2U which starts from the initial point .t0; c0/. Then, for all t 2 Œt0;T �, the value
x0.t/ can be represented in the form

x0.t/D c0C

Z t

t0

�
f .�;x0.�//CB.�;x0.�//u0.�/

�
d�:

�That is, X.t0;X0/ is a subset of C.Œt0;T �;Rn/ with compact closure.
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From here and condition (B) we obtain

kxk.t/�x0.t/k �kck � c0kC

Z t

t0

kf .�;xk.�//�f .�;x0.�//kd�

C





Z t

t0

ŒB.�;xk.�//uk.�/�B.�;x0.�//u0.�/�d�






�kck � c0kCL1

Z t

t0

kxk.�/�x0.�/kd�C

CL2

Z t

t0

kxk.�/�x0.�/kkuk.�/kd�C

C





Z t

t0

B.�;x0.�//
�
uk.�/�u0.�/

�
d�







(3.1)

for all k D 1;2; : : : and t 2 Œt0;T �. Since the function B.�;x0.�//W Œt0;T �! Rn�r is
continuous and ck ! c0, uk

w
! u0 as k !1, it follows that, for all " > 0, there

exists a K."/ > 0 such that the inequality

kck � c0kC





Z t

t0

B.�;x0.�//
�
uk.�/�u0.�/

�
d�





� "; t 2 Œt0;T �

is valid for all k �K."/. Using (3.1), we get

kxk.t/�x0.t/k �

Z t

t0

�
L1CL2kuk.�/k

�
kxk.�/�x0.�/kd�C "

for all k �K."/ and t 2 Œt0;T �. Applying Gronwall’s inequality, we find

kxk.t/�x0.t/k � "exp
�Z t

t0

�
L1CL2kuk.�/k

�
d�

�
for all k �K."/ and t 2 Œt0;T �.

Using (2.1), we obtain

kxk.t/�x0.t/k � "exp
�
L1.T � t0/CL2�0.T � t0/

p�1
p

�
for all k �K."/ and t 2 Œt0;T �. This means that xk! x0 as k!1.

Since the limit is unique, wesee that the solution x� must be equal to x0. Therefore,
x� 2 X.t0;X0/, which implies that the set of all solutions X.t0;X0/ of system (1.1)
is closed. �

Using the closedness of X.t0;X0/, we also obtain

Corollary 4. The attainable set X.t I t0;X0/ of system (1.1) with constraint (1.2)
at the instant of time t is closed subset of Rn for all t 2 Œt0;T �.

Combining all the results stated above, we arrive at the following main theorem.
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Theorem. The set of all solutions X.t0;X0/ and the attainable set X.t I t0;X0/,
at the instant of time t , of system (1.1) with constraint (1.2) are compact subsets of
C.Œt0;T �;Rn/ and Rn, respectively.
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