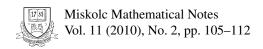


Miskolc Mathematical Notes Vol. 11 (2010), No 2, pp. 105-112

 ${\rm HU~e\text{-}ISSN~1787\text{-}2413}$ DOI: 10.18514/MMN.2010.164

On fuzzy α -continous multifunctions

Khaled M. A. Al-Hamadi and S. B. Nimse



ON FUZZY α-CONTINUOUS MULTIFUNCTIONS

KHALED M. A. AL-HAMADI AND S. B. NIMSE

Received 24 August, 2006

Abstract. In this paper we use fuzzy α -sets in order to obtain certain characterizations and properties of upper (or lower) fuzzy α -continuous multifunctions.

2000 Mathematics Subject Classification: 54A40

Keywords: fuzzy α -open, fuzzy α -continuous, fuzzy multifunction

1. Introduction

In 1968 Chang [3] introduced fuzzy topological spaces by using fuzzy sets [12]. Since then several workers have contributed to this area: various types of functions play a significant role in the theory of classical point set topology. A great number of papers dealing with such functions have appeared, and a good many of them have been extended to the setting of multifunctions.

In 1988 Neubrunn [6] and others [9]] introduced the concept of α -continuous multifunctions. Njasted [7] and Mashhour [4] introduced α -open (α -closed) sets, respectively. Bin Shahna in [2] defined these concepts in the fuzzy setting. In this paper our purpose is to define upper (lower) fuzzy α -continuous multifunctions and to obtain several characterizations of upper (lower) fuzzy α -continuous multifunctions.

Fuzzy sets on a universe X will be denoted by μ, ρ, η , etc. Fuzzy points will be denoted by x_{ϵ} , y_{ν} , etc. For any fuzzy points x_{ϵ} and any fuzzy set μ , we write $x_{\epsilon} \in \mu$ iff $\epsilon \leq \mu(x)$. A fuzzy point x_{ϵ} is called quasi-coincident with a fuzzy set ρ , denoted by $x_{\epsilon} \neq \rho$, iff $\epsilon + \rho(x) > 1$.

A fuzzy set μ is called quasi-coincident with a fuzzy set ρ , denoted by $\mu \neq \rho$, iff there exists a $x \in X$ such that $\mu(x) + \rho(x) > 1$. [10, 11]

In this paper we use the concept of fuzzy topological space as introduced in [3]. By int (μ) and cl (μ) , we mean the interior of μ and the closure of μ , respectively.

Let (X, τ) be a topological space in the classical sense and (Y, ν) be a fuzzy topological space. $F: X \to Y$ is called a fuzzy multifunction iff for each $x \in X, F(x)$ is a fuzzy set in Y. [8]

Let $F: X \to Y$ be a fuzzy multifunction from a fuzzy topological space X to a fuzzy topological space Y. For any fuzzy set $\mu \le X$, $F^+(\mu)$ and $F^-(\mu)$ are defined by $F^+(\mu) = \{x \in X : F(x) \le \mu\}$, $F^-(\mu) = \{x \in X : F(x)q\mu\}$. [5]

2. Fuzzy α -continuous multifunction

Definition 1. Let (X, τ) be a fuzzy topological space and let $\mu \leq X$ be a fuzzy set. Then it is said that:

- (i) μ is fuzzy α -open set [2] if $\mu \leq$ int cl int μ .
- (ii) μ is fuzzy α -closed set [2] if $\mu \ge cl$ int cl μ .
- (iii) μ is fuzzy semiopen set [1] if $\mu \leq$ cl int μ .
- (iv) μ is fuzzy preopen set [2] if $\mu \leq$ int cl μ .

Definition 2. Let $F: X \to Y$ be a fuzzy multifunction from a fuzzy topological space (X, τ) to a fuzzy topological space (Y, ν) . Then it is said that F is :

- (1) Upper fuzzy α -continuous at $x_{\epsilon} \in X$ iff for each fuzzy open set μ of Y containing $F(x_{\epsilon})$, there exists a fuzzy α -open set ρ containing x_{ϵ} such that $\rho \leq F^{+}(\mu)$.
- (2) Lower fuzzy α -continuous at $x_{\epsilon} \in X$ iff for each fuzzy open set μ of Y such that $x_{\epsilon} \in F^{-}(\mu)$ there exists a fuzzy α -open set ρ containing x_{ϵ} such that $\rho \leq F^{-}(\mu)$.
- (3) Upper (lower) fuzzy α -continuous iff it has this property at each point of X.

We know that a net $(x_{\epsilon_{\alpha}}^{\alpha})$ in a fuzzy topological space (X, τ) is said to be eventually in the fuzzy set $\rho \leq X$ if there exists an index $\alpha_0 \in J$ such that $x_{\epsilon_{\alpha}}^{\alpha} \in \rho$ for all $\alpha \geq \alpha_0$.

The following theorem states some characterizations of upper fuzzy α -continuous multifunction.

Definition 3. A sequence (x_{ϵ_n}) is said to α -converge to a point X if for every fuzzy α -open set μ containing x_{ϵ} there exists an index n_0 such that for $n \geq n_0$, $x_{\epsilon_n} \in \mu$. This is denoted by $x_{\epsilon_n} \to_{\alpha} x_{\epsilon}$.

Theorem 1. Let $F: X \to Y$ be a fuzzy multifunction from a fuzzy topological (X, τ) to a fuzzy topological space (Y, ν) . Then the following statements are equivalent:

- (i) F is upper fuzzy α -continuous.
- (ii) For each $x_{\epsilon} \in X$ and for each fuzzy open set μ such that $x_{\epsilon} \in F^+(\mu)$ there exists a fuzzy α -open set ρ containing x_{ϵ} such that $\rho \leq F^+(\mu)$.
- (iii) $F^+(\mu)$ is a fuzzy α -open set for any fuzzy open set $\mu \leq Y$.
- (iv) $F^{-}(\mu)$ is a fuzzy α -closed set for any fuzzy open set $\mu \leq Y$.
- (v) For each $x_{\epsilon} \in X$ and for each net $(x_{\epsilon_{\alpha}}^{\alpha})$ which α -converges to x_{ϵ} in X and for each fuzzy open set $\mu \leq Y$ such that $x_{\epsilon} \in F^{+}(\mu)$, the net $(x_{\epsilon_{\alpha}}^{\alpha})$ is eventually in $F^{+}(\mu)$.

Proof. (i)⇔(ii) this statement is obvious.

(i) \Leftrightarrow (iii). Let $x_{\epsilon} \in F^+(\mu)$ and let μ be a fuzzy open set. It follows from (i) that there exists a fuzzy α -open set $\rho_{x_{\epsilon}}$ containing x_{ϵ} such that $\rho_{x_{\epsilon}} \leq F^+(\mu)$. It follows that $F^+(\mu) = \bigvee_{x_{\epsilon} \in F^+(\mu)} \rho_{x_{\epsilon}}$ and hence $F^+(\mu)$ is fuzzy α -open.

The converse can be shown easily.

- (iii) \Rightarrow (iv) Let $\mu \leq Y$ be a fuzzy open set. We have that $Y \setminus \mu$ is a fuzzy open set. From (iii), $F^+(Y \setminus \mu) = X \setminus F^-(\mu)$ is a fuzzy α -open set. Then it is obtained that $F^-(\mu)$ is a fuzzy α -closed set.
- (i) \Rightarrow (v). Let $(x_{\epsilon_{\alpha}}^{\alpha})$ be a net which α -converges to x_{ϵ} in X and let $\mu \leq Y$ be any fuzzy open set such that $x_{\epsilon} \in F^+(\mu)$. Since F is an upper fuzzy α -continuous multifunction, it follows that there exists a fuzzy α -open set $\rho \leq X$ containing x_{ϵ} such that $\rho \leq F^+(\mu)$. Since $(x_{\epsilon_{\alpha}}^{\alpha})$ α -converges to x_{ϵ} , it follows that there exists an index $\alpha_0 \in J$ such that $(x_{\epsilon_{\alpha}}^{\alpha}) \in \rho$ for all $\alpha \geq \alpha_0$ from here, we obtain that $x_{\epsilon_{\alpha}}^{\alpha} \in \rho \leq F^+(\mu)$ for all $\alpha \geq \alpha_0$. Thus the net $(x_{\epsilon_{\alpha}}^{\alpha})$ is eventually in $F^+(\mu)$.
- (v) \Rightarrow (i). Suppose that is not true. There exists a point x_{ϵ} and a fuzzy open set μ with $x_{\epsilon} \in F^+(\mu)$ such that $\rho \not\leq F^+(\mu)$ for each fuzzy α -open set $\rho \leq X$ containing x_{ϵ} . Let $x_{\epsilon_{\rho}} \in \rho$ and $x_{\epsilon} \notin F^+(\mu)$ for each fuzzy α -open set $\rho \leq X$ containing x_{ϵ} . Then for the α -neighborhood net $(x_{\epsilon_{\rho}})$, $x_{\epsilon_{\rho}} \to_{\alpha} x_{\epsilon}$, but $(x_{\epsilon_{\rho}})$ is not eventually in $F^+(\mu)$. This is a contradiction. Thus, F is an upper fuzzy α -continuous multifunction. \square

Remark 1. For a fuzzy multifunction $F: X \to Y$ from a fuzzy topological (X, τ) to a fuzzy topological space (Y, ν) , the following implication holds: Upper fuzzy continuous \Longrightarrow Upper fuzzy α -continuous.

The following example show that the reverse need not be true.

Example 1. Let $X = \{x, y\}$ with topologies $\tau = \{X, \phi, \mu\}$ and $\nu = \{X, \phi, \rho\}$, where the fuzzy sets μ, ρ are defined as:

$$\mu(x) = 0.3, \ \mu(y) = 0.6$$

 $\rho(x) = 0.7, \ \rho(y) = 0.4$

A fuzzy multifunction $F:(X,\tau)\to (Y,\nu)$ given by $x_\epsilon\to F(x_\epsilon)=\{x_\epsilon\}$ is upper α -continuous, but it is not upper continuous.

The following theorem states some characterizations of a lower fuzzy α -continuous multifunction.

Theorem 2. Let $F: X \to Y$ be a fuzzy multifunction from a fuzzy topological (X, τ) to a fuzzy topological space (Y, ν) . Then the following statements are equivalent.

- (i) F is lower fuzzy α -continuous.
- (ii) For each $x_{\epsilon} \in X$ and for each fuzzy open set μ such that $x_{\epsilon} \in F^{-}(\mu)$ there exists a fuzzy α -open set ρ containing x_{ϵ} such that $\rho \leq F^{-}(\mu)$.
- (iii) $F^{-}(\mu)$ is a fuzzy α -open set for any fuzzy open set $\mu \leq Y$,

- (iv) $F^+(\mu)$ is a fuzzy α -closed set for any fuzzy open set $\mu \leq Y$,
- (v) For each $x_{\epsilon} \in X$ and for each net $(x_{\epsilon_{\alpha}}^{\alpha})$ which α -converges to x_{ϵ} in X and for each fuzzy open set $\mu \leq Y$ such that $x_{\epsilon} \in F^{-}(\mu)$, the net $(x_{\epsilon_{\alpha}}^{\alpha})$ is eventually in $F^{-}(\mu)$.

Proof. It can be obtained similarly as Theorem 1.

Theorem 3. Let $F: X \to Y$ be a fuzzy multifunction from a fuzzy topological (X, τ) to a fuzzy topological space (Y, v) and let F(X) be endowed with subspace fuzzy topology. If F is an upper fuzzy α -continuous multifunction, then $F: X \to F(X)$ is an upper fuzzy α -continuous multifunction.

Proof. Since F is an upper fuzzy α -continuous, $F(X \wedge F(X)) = F^+(\mu) \wedge F^+(F(X)) = F^+(\mu)$ is fuzzy α -open for each fuzzy open subset μ of Y. Hence $F: X \to F(X)$ is an upper fuzzy α -continuous multifunction.

Definition 4. Suppose that $(X, \tau), (Y, \nu)$ and (Z, ω) are fuzzy topological spaces. It is known that if $F_1: X \to Y$ and $F_2: Y \to Z$ are fuzzy multifunctions, then the fuzzy multifunction F_1 or $F_2: X \to Z$ is defined by $(F_1 \circ F_2)(x_{\epsilon}) = F_2(F_1(x_{\epsilon}))$ for each $x_{\epsilon} \in X$.

Theorem 4. Let (X,τ) , (Y,v) and (Z,ω) be fuzzy topological space and let $F: X \to Y$ and $G: Y \to Z$ be fuzzy multifunction. If $F: X \to Y$ is an upper (lower) fuzzy continuous multifunction and $G: Y \to Z$ is an upper (lower) fuzzy α -continuous multifunction. Then G o $F: X \to Z$ is an upper (lower) fuzzy α -continuous multifunction.

Proof. Let $\lambda \leq Z$ be any fuzzy open set. From the definition of G o F, we have (G o $F)^+(\lambda) = F^+(G^+(\lambda))((G \circ F)^-(\lambda) = F^-(G^-(\lambda)))$, since G is an upper (lower) fuzzy α -continuous, it follows that $G^+(\lambda)(G^-(\lambda))$ is a fuzzy open set. Since F is an upper (lower) fuzzy continuous, it follows that $F^+(G^+(\lambda))(F^-(G^-(\lambda)))$ is a fuzzy α -open set, this shows that G o F is an upper (lower) fuzzy α -continuous. \square

Theorem 5. Let $F: X \to Y$ be a fuzzy multifunction from a fuzzy topological (X, τ) to a fuzzy topological space (Y, v). If F is a lower(upper) fuzzy α -continuous multifunction and $\mu \leq X$ is a fuzzy set, then the restriction multifunction $F|_{\mu}: \mu \to Y$ is an lower (upper) fuzzy α -continuous multifunction.

Proof. Suppose that $\beta \leq Y$ is a fuzzy open set. Let $x_{\epsilon} \in \mu$ and let $x_{\epsilon} \in F^{-}|_{\mu}(\beta)$. Since F is a lower fuzzy α -continuous multifunction, if follows that there exists a fuzzy open set $x_{\epsilon} \in \rho$ such that $\rho \leq F^{-}(\beta)$. From here we obtain that $x_{\epsilon} \in \rho \wedge \mu$ and $\rho \wedge \mu \leq F|_{\mu}(\beta)$. Thus, we show that the restriction multifunction $F|_{\mu}$ is lower fuzzy α -continuous multifunction.

The proof for the case of the upper fuzzy α -continuity of the multifunction $F|_{\mu}$ is similar to the above.

Theorem 6. Let $F: X \to Y$ be a fuzzy multifunction from a fuzzy topological (X, τ) to a fuzzy topological space (Y, ν) , let $\{\lambda_{\gamma} : \gamma \in \Phi\}$ be a fuzzy open cover of X. If the restriction multifunction $F_{\gamma} = F_{\lambda_{\gamma}}$ is lower (upper) fuzzy α -continuous multifunction for each $\gamma \in \Phi$, then F is lower (upper) fuzzy α -continuous multifunction.

Proof. Let $\mu \leq Y$ be any fuzzy open set. Since F_{γ} is lower fuzzy α -continuous for each γ , we know that $F_{\gamma}^{-}(\mu) \leq int_{\lambda_{\gamma}}(F_{\gamma}^{-}(\mu))$ and from here $F^{-}(\mu) \wedge \lambda_{\gamma} \leq int_{\lambda_{\gamma}}(F^{-}(\mu) \wedge \lambda_{\gamma})$ and $F^{-}(\mu) \wedge \lambda_{\gamma} \leq int(F^{-}(\mu)) \wedge \lambda_{\gamma}$. Since $\{\lambda_{\gamma} : \gamma \in \Phi\}$ is a fuzzy open cover of X. It follows that $F^{-}(\mu) \leq int(F^{-}(\mu))$. Thus, we obtain that F is lower(upper) fuzzy α -continuous multifunction.

The proof of the upper fuzzy α -continuity of F is similar to the above.

Definition 5. Suppose that $F: X \to Y$ is a fuzzy multifunction from a fuzzy topological space X to a fuzzy topological space Y. The fuzzy graph multifunction $G_F: X \to X \times Y$ of F is defined as $G_F(x_{\epsilon}) = \{x_{\epsilon}\} \times F(x_{\epsilon})$.

Theorem 7. Let $F: X \to Y$ be a fuzzy multifunction from a fuzzy topological (X,τ) to a fuzzy topological space (Y,v). If the graph function of F is lower(upper) fuzzy α -continuous multifunction, then F is lower(upper) fuzzy α -continuous multifunction.

Proof. For the fuzzy sets $\beta \leq X$, $\eta \leq Y$, we take

$$(\beta \times \eta)(z, y) = \begin{cases} 0 & \text{if } z \notin \beta \\ \eta(y) & \text{if } z \in \beta \end{cases}$$

Let $x_{\epsilon} \in X$ and let $\mu \in Y$ be a fuzzy open set such that $x_{\epsilon} \in F^{-}(\mu)$. We obtain that $x_{\epsilon} \in G_{F}^{-}(X \times \mu)$ and $X \times \mu$ is a fuzzy open set. Since fuzzy graph multifunction G_{F} is lower fuzzy α -continuous, it follows that there exists a fuzzy α -open set $\rho \leq X$ containing x_{ϵ} such that $\rho \leq G_{F}^{-}(X \times \mu)$. From here, we obtain that $\rho \leq F^{-}(\mu)$. Thus, F is lower fuzzy α -continuous multifunction.

The proof of the upper fuzzy α -continuity of F is similar to the above.

Theorem 8. Suppose that (X, τ) and $(X_{\alpha}, \tau_{\alpha})$ are fuzzy topological space where $\alpha \in J$. Let $F: X \to \prod_{\alpha \in J} X_{\alpha}$ be a fuzzy multifunction from X to the product space $\prod_{\alpha \in J} X_{\alpha}$ and let $P_{\alpha}: \prod_{\alpha \in J} X_{\alpha} \to X_{\alpha}$ be the projection multifunction for each $\alpha \in J$ which is defined by $P_{\alpha}((x_{\alpha})) = \{x_{\alpha}\}$. If F is an upper (lower) fuzzy α -continuous multifunction, then P_{α} o F is an upper (lower) fuzzy α -continuous multifunction for each $\alpha \in J$.

Proof. Take any $\alpha_o \in J$. Let μ_{α_o} be a fuzzy open set in (X_α, τ_α) . Then $(P_{\alpha_o} \circ F)^+(\mu_{\alpha_o}) = F^+(P_{\alpha_o}^+(\mu_{\alpha_o})) = F^+(\mu_{\alpha_o} \times \prod_{\alpha \neq \alpha_o} X_\alpha)$ (resp., $(P_{\alpha_o} \circ F)^-(\mu_{\alpha_o}) = F^-(P_{\alpha_o}^-(\mu_{\alpha_o})) = F^-(\mu_{\alpha_o} \times \prod_{\alpha \neq \alpha_o} X_\alpha)$).

Since F is upper (lower) fuzzy α -continuous multifunction and since $\mu_{\alpha_o} \times \prod_{\alpha \neq \alpha_o} X_{\alpha}$ is a fuzzy open set, it follows that $F^+(\mu_{\alpha_o} \times \prod_{\alpha \neq \alpha_o} X_{\alpha})$ (resp., $F^-(\mu_{\alpha_o} \times \prod_{\alpha \neq \alpha_o} X_{\alpha})$) is fuzzy α - open in (X, τ) . It shows that P_{α_o} o F is upper (lower) fuzzy α -continuous multifunction.

Hence, we obtain that P_{α} o F is an upper (lower) fuzzy α -continuous multi function for each $\alpha \in J$.

Theorem 9. Suppose that for each $\alpha \in J$, $(X_{\alpha}, \tau_{\alpha})$ and $(Y_{\alpha}, \nu_{\alpha})$ are fuzzy topological spaces. Let $F_{\alpha}: X_{\alpha} \to Y_{\alpha}$ be a fuzzy multifunction for each $\alpha \in J$ and let $F: \prod_{\alpha \in J} X_{\alpha} \to \prod_{\alpha \in J} Y_{\alpha}$ be defined by $F((x_{\alpha})) = \prod_{\alpha \in J} F_{\alpha}(x_{\alpha})$ from the product space $\prod_{\alpha \in J} X_{\alpha}$ to product space $\prod_{\alpha \in J} Y_{\alpha}$. If F is an upper (lower) fuzzy α -continuous multifunction, then each F_{α} is an upper (lower) fuzzy α -continuous multifunction for each $\alpha \in J$.

Proof. Let $\mu_{\alpha} \leq Y_{\alpha}$ be a fuzzy open set. Then $\mu_{\alpha} \times \prod_{\alpha \neq \beta} Y_{\beta}$ is a fuzzy open set. Since F is an upper (lower) fuzzy α -continuous multifunction, it follows that $F^+(\mu_{\alpha} \times \prod_{\alpha \neq \beta} Y_{\beta}) = F^+(\mu_{\alpha}) \times \prod_{\alpha \neq \beta} X_{\beta}$, $(F^-(\mu_{\alpha} \times \prod_{\alpha \neq \beta} Y_{\beta}) = F^-(\mu_{\alpha}) \times \prod_{\alpha \neq \beta} X_{\beta})$ is a fuzzy α -open set. Consequently, we obtain that $F^+(\mu_{\alpha})$ $(F^-(\mu_{\alpha}))$ is a fuzzy α -open set. Thus, we show that F_{α} is an upper (lower) fuzzy α -continuous multifunction.

Theorem 10. Suppose that (X_1, τ_1) , (X_2, τ_2) , (Y_1, v_1) and (Y_2, v_2) are fuzzy topological spaces and $F_1: X_1 \to Y_1$, $F_2: X_2 \to Y_2$ are fuzzy multifunctions and suppose that if $\eta \times \beta$ is fuzzy α -open set then η and β are fuzzy α -open sets for any fuzzy sets $\eta \leq Y_1$, $\beta \leq Y_2$. Let $F_1 \times F_2: X_1 \times X_2 \to Y_1 \times Y_2$ be a fuzzy multifunction which is defined by $(F_1 \times F_2)(x_\epsilon, y_\nu) = F_1(x_\epsilon) \times F_2(y_\nu)$. If $F_1 \times F_2$ is an upper (lower) fuzzy α -continuous multifunction, then F_1 and F_2 are upper (lower) fuzzy α -continuous multifunctions.

Proof. We know that $(\mu^* \times \beta^*)(x_{\epsilon}, y_{\nu}) = min\{\mu^*(x), \beta^*(y)\}$ for any fuzzy sets μ^*, β^* and for any fuzzy point x_{ϵ}, y_{ν} .

Let $\mu \times \beta \leq Y_1 \times Y_2$ be a fuzzy open set. It known that $(F_1 \times F_2)^+(\mu \times \beta) = F_1^+(\mu) \times F_2^+(\beta)$. Since $F_1 \times F_2$ is an upper fuzzy α -continuous multifunction, it follows that $F_1^+(\mu) \times F_2^+(\beta)$ is a fuzzy α -open set. From here, $F_1^+(\mu)$ and $F_2^+(\beta)$ are fuzzy α -open sets. Hence, it is obtain that F_1 and F_2 are upper fuzzy α -continuous multifunctions.

The proof of the lower fuzzy α -continuity of the multifunctions F_1 and F_2 is similar to the above.

Theorem 11. Suppose that (X, τ) , (Y, ν) and (Z, ω) are fuzzy topological spaces and $F_1: X \to Y$, $F_2: X \to Z$ are fuzzy multifunction and suppose that if $\eta \times \beta$ is a fuzzy α -open set, then η and β are fuzzy α -open sets for any fuzzy sets $\eta \leq Y$, $\beta \leq Z$. Let $F_1 \times F_2: X \to Y \times Z$ be a fuzzy multifunction which is defined by

 $(F_1 \times F_2)(x_{\epsilon}) = F_1(x_{\epsilon}) \times F_2(x_{\epsilon})$. If $F_1 \times F_2$ is an upper (lower) fuzzy α -continuous multifunction, then F_1 and F_2 are upper (lower) fuzzy α -continuous multifunctions.

Proof. Let $x_{\epsilon} \in X$ and let $\mu \leq Y$, $\beta \leq Z$ be fuzzy α -open sets such that $x_{\epsilon} \in F_1^+(\mu)$ and $x_{\epsilon} \in F_2^+(\beta)$. Then we obtain that $F_1(x_{\epsilon}) \leq \mu$ and $F_2(x_{\epsilon}) \leq \beta$ and from here, $F_1(x_{\epsilon}) \times F_2(x_{\epsilon}) = (F_1 \times F_2)(x_{\epsilon}) \leq \mu \times \beta$. We have $x_{\epsilon} \in (F_1 \times F_2)^+(\mu \times \beta)$. Since $F_1 \times F_2$ is an upper fuzzy α -continuous multifunction, it follows that there exist a fuzzy α -open set ρ containing x_{ϵ} such that $\rho \leq (F_1 \times F_2)^+(\mu \times \beta)$. We obtain that $\rho \leq F_1^+(\mu)$ and $\rho \leq F_2^+(\beta)$. Thus we obtain that F_1 and F_2 are fuzzy α -continuous multifunctions.

The proof of the lower fuzzy α -continuity of the multifunctions F_1 and F_2 is similar to the above.

Lemma 1 ([2]). A fuzzy set in fuzzy topological space X is a fuzzy α -open set if and only if it is fuzzy semiopen and fuzzy preopen.

Theorem 12. Let $F: X \to Y$ be a fuzzy multifunction from a fuzzy topological (X, τ) to a fuzzy topological space (Y, v). Then F is an upper fuzzy α -continuous if and only if it is an upper fuzzy semicontinuous and upper fuzzy precontinuous.

Proof. Let F be upper fuzzy semicontinuous and upper fuzzy precontinuous, and let μ be a fuzzy open set in Y. Then $F^+(\mu)$ is fuzzy semiopen and fuzzy preopen, it follows from lemma 1 that $F^+(\mu)$ is a fuzzy α -open set, and hence F is an upper fuzzy α -continuous multifunction. The converse is immediate.

Theorem 13. Let $F: X \to Y$ be a fuzzy multifunction from a fuzzy topological space (X, τ) to a fuzzy topological space (Y, v). Then F is a lower fuzzy α -continuous if and only if it is lower fuzzy semicontinuous and lower fuzzy precontinuous.

<i>Proof.</i> Similar to that of Theorem 12 and is omitted.	Proof. S	lar to that of Theoren	12 and is omitted		
---	----------	------------------------	-------------------	--	--

REFERENCES

- [1] K. K. Azad, "On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity," *J. Math. Anal. Appl.*, vol. 82, no. 1, pp. 14–32, 1981.
- [2] A. S. Bin Shahna, "On fuzzy strong semicontinuity and fuzzy precontinuity," *Fuzzy Sets and Systems*, vol. 44, no. 2, pp. 303–308, 1991.
- [3] C. L. Chang, "Fuzzy topological spaces," J. Math. Anal. Appl., vol. 24, pp. 182–190, 1968.
- [4] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deep, "On precontinuous and weak precontinuous mappings," *Proc. Math. Phys. Soc. Egypt*, vol. 53, pp. 47–53, 1982.
- [5] M. N. Mukherjee and S. Malakar, "On almost continuous and weakly continuous fuzzy multifunctions," *Fuzzy Sets and Systems*, vol. 41, no. 1, pp. 113–125, 1991.
- [6] T. Neubrunn, Strongly quasi-continuous multivalued mappings, ser. Research and Exposition in Mathematics. Berlin: Heldermann, 1988, vol. 16.
- [7] O. Njåstad, "On some classes of nearly open sets," Pacific J. Math., vol. 15, pp. 961–970, 1965.
- [8] N. S. Papageorgiou, "Fuzzy topology and fuzzy multifunctions," J. Math. Anal. Appl., vol. 109, no. 2, pp. 397–425, 1985.

- [9] V. Popa and T. Noiri, "On upper and lower α-continuous multifunctions," *Math. Slovaca*, vol. 43, no. 4, pp. 477–491, 1993.
- [10] P. M. Pu and Y. M. Liu, "Fuzzy topology. i. neighborhood structure of a fuzzy point and mooresmith convergence," *J. Math. Anal. Appl.*, vol. 76, no. 2, pp. 571–599, 1980.
- [11] P.-M. Pu and Y. M. Liu, "Fuzzy topology. ii. product and quotient spaces," *J. Math. Anal. Appl.*, vol. 77, no. 1, pp. 20–37, 1980.
- [12] L. A. Zadeh, "Fuzzy sets," Inform. and Control, vol. 8, pp. 338–353, 1965.

Authors' addresses

Khaled M. A. Al-Hamadi

Dept. of Mathematics, University of Pune *E-mail address:* abusuliman88@yahoo.com

S. B. Nimse

Dept. of Mathematics, University of Pune *E-mail address:* nacasca@rediffmail.com