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1. INTRODUCTION

In recent years several authors [2,3,5-10] have given considerable attention to the
Hilbert inequalities and Hilbert type inequalities and their various generalizations.
In particular, in 1988, B. G. Pachpatte [6] proved some new inequalities similar to

Hilbert’s inequality [4, p. 226], The main purpose of this paper is to establish their
inverses.

2. MAIN RESULTS

Our main results are given in the following theorems.

Theorem 1. Let 0 < p < 1,0 < g <1 and {an,} and {b,} be two nonnegative
sequences of real numbers defined for m = 1,2,....k andn = 1,2,...,r, where k
and r are the natural numbers and define Ay, = Z’Snzl ag and B, = Z’:=1 b¢. Then
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Proof. By using the following inequality (see [4, p. 39])
rx" N —y)<x"—y", 0<r=<l,

where x and y are positive real numbers, we obtain that
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From (2) and in view of Holder’s inequality [4, p. 24], we have
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Using the following inequality [1, p. 15]
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where m > 0,n>0,h~1 +[71 =1,and & < 1, we easily get that
nm=2>3n—2m. (5)

Taking the sum on both sides of (3) over n from 1 to r first and then the sum over
m from 1 to k and in view of inequality (5) and using again Holder’s inequality, we
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which completes the proof. O

Remark 1. Inequality (1) is just an inverse of the following Inequality A, which

was proved by Pachpatte [6]:

Inequality A.
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Theorem 2. Let {a,},{bn}, Am, Bn be as defined in Theorem 1. Let {py} and
{qn} be two positive sequences form = 1,2,....k andn = 1,2,...,r, where k and
r are natural numbers and put Py, = | ps,On = Y 7_1q¢- Let ¢ and Y be two
real-valued nonnegative, concave, and supermultiplicative functions™ defined on R..
Then for 3n —2m > 0

k
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where

k
M'(k,r) = Z (¢(P'")) (

Proof. From the hypotheses and by Jensen’s inequality and Holder’s inequality,
we obtain
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* f is said to be a supermultiplicative function if f(xy) > f(x) f(y) for x,y € Ry := [0, +00).
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Taking the sum over n from 1 to r first and then the sum over m from 1 to k and using

(5), in view of Holder’s inequality, we have
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The proof is complete.
Remark 2. Inequality (6) is just an inverse of the following Inequality B, which

was proved by Pachpatte [6]:
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Inequality B.
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Similarly, the following two theorems can also be established.

Theorem 3. Let {a,,} and {b,} be as in Theorem I and set Ap, = (1/m)Y_se, as
and By = (1/n) Y.} _ by, form =1,2,... .k and n = 1,2,....r, where k and r
are natural numbers. Let ¢ and  be two real-valued, nonnegative, and concave
functions defined on Ry. Then for 3n —2m > 0,
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Remark 3. Inequality (7) is just an inverse of the following Inequality C, which
was proved by Pachpatte [6]:

Inequality C.
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Theorem 4. Let {am},{bn}.{pm}.{qn}, Pm,Qn be as in Theorem 2 and put
Am - (1/pm) Z:ﬂ=1 psas, Bn - (1/Qn) Z};=1qtb[,f0rm - 1,2,...k,n - 1,2,...,7‘,

where k and r are natural numbers. Let ¢ and  be as defined in Theorem 3. Then
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for3n—2m >0,
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Remark 4. Inequality (8) is just an inverse of the following Inequality D, which
was proved by Pachpatte [6]:

Inequality D.
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The proofs of Theorems 3 and 4 can be completed by following the same steps as
in the proof of Theorem 2 with suitable changes. Here, we omit the details.
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