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1. INTRODUCTION

In recent years several authors [2,3,5–10] have given considerable attention to the
Hilbert inequalities and Hilbert type inequalities and their various generalizations.
In particular, in 1988, B. G. Pachpatte [6] proved some new inequalities similar to
Hilbert’s inequality [4, p. 226], The main purpose of this paper is to establish their
inverses.

2. MAIN RESULTS

Our main results are given in the following theorems.

Theorem 1. Let 0 < p � 1;0 < q � 1 and famg and fbng be two nonnegative
sequences of real numbers defined for m D 1;2; : : : ;k and n D 1;2; : : : ; r , where k
and r are the natural numbers and define Am D

Pm
sD1as and Bn D

Pn
tD1 bt : Then
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Proof. By using the following inequality (see [4, p. 39])

rxr�1.x�y/� xr
�yr ; 0 < r � 1;

where x and y are positive real numbers, we obtain that
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From (2) and in view of Hölder’s inequality [4, p. 24], we have
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Using the following inequality [1, p. 15]
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where m> 0, n > 0, h�1C l�1 D 1, and h < 1; we easily get that

n3m�2
� 3n�2m: (5)

Taking the sum on both sides of (3) over n from 1 to r first and then the sum over
m from 1 to k and in view of inequality (5) and using again Hölder’s inequality, we
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obtain
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which completes the proof. �

Remark 1. Inequality (1) is just an inverse of the following Inequality A, which
was proved by Pachpatte [6]:

Inequality A.
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Theorem 2. Let famg ;fbng ;Am;Bn be as defined in Theorem 1. Let fpmg and
fqng be two positive sequences for mD 1;2; : : : ;k and nD 1;2; : : : ; r , where k and
r are natural numbers and put Pm D

Pm
sD1ps;Qn D

Pn
tD1 qt . Let � and  be two

real-valued nonnegative, concave, and supermultiplicative functions� defined on RC.
Then for 3n�2m > 0
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Proof. From the hypotheses and by Jensen’s inequality and Hölder’s inequality,
we obtain
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�f is said to be a supermultiplicative function if f .xy/� f .x/f .y/ for x;y 2 RC WD Œ0;C1/.
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Taking the sum over n from 1 to r first and then the sum overm from 1 to k and using
(5), in view of Hölder’s inequality, we have
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The proof is complete. �

Remark 2. Inequality (6) is just an inverse of the following Inequality B, which
was proved by Pachpatte [6]:



28 ZHAO CHANGJIAN AND MIHÁLY BENCZE

Inequality B.
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Similarly, the following two theorems can also be established.

Theorem 3. Let famg and fbng be as in Theorem 1 and set AmD .1=m/
Pm

sD1as

and Bn D .1=n/
Pn

tD1 bt ; for m D 1;2; : : : ;k and n D 1;2; : : : ; r , where k and r
are natural numbers. Let � and  be two real-valued, nonnegative, and concave
functions defined on RC: Then for 3n�2m > 0;
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Remark 3. Inequality (7) is just an inverse of the following Inequality C, which
was proved by Pachpatte [6]:

Inequality C.
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Theorem 4. Let famg ;fbng ;fpmg ;fqng ;Pm;Qn be as in Theorem 2 and put
AmD .1=pm/

Pm
sD1psas;BnD .1=Qn/

Pn
tD1 qtbt , formD 1;2; : : :k;nD 1;2; : : : ; r;

where k and r are natural numbers. Let � and  be as defined in Theorem 3. Then
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for 3n�2m > 0,
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Remark 4. Inequality (8) is just an inverse of the following Inequality D, which
was proved by Pachpatte [6]:

Inequality D.
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The proofs of Theorems 3 and 4 can be completed by following the same steps as
in the proof of Theorem 2 with suitable changes. Here, we omit the details.
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