General quasilinearization method for systems of differential equations with a singular matrix

T. Jankowski

GENERAL QUASILINEARIZATION METHOD FOR SYSTEMS OF DIFFERENTIAL EQUATIONS WITH A SINGULAR MATRIX

T. JANKOWSKI

[Received: August 26, 2005]

Abstract

The method of quasilinearization coupled with the method of lower and upper solutions has been very useful in providing an analytical approach to obtaining approximate solutions of non-linear differential equations. In this paper, it is applied to systems of non-linear differential equations with a singular matrix. Sequences of approximate solutions are convergent to the solution and the convergence is quadratic or semiquadratic.

Mathematics Subject Classification: 34A45
Keywords: quasilinearization, monotone iterations, quadratic and semiquadratic convergence

1. Introduction

Let $y_{0}, z_{0} \in C^{1}\left(J, \mathbb{R}^{m}\right)$ with $y_{0}(t) \leq z_{0}(t), y_{0}^{\prime}(t) \leq z_{0}^{\prime}(t)$ on J and define the following set

$$
\Omega=\left\{(t, u, v): y_{0}(t) \leq u \leq z_{0}(t), \quad y_{0}^{\prime}(t) \leq v \leq z_{0}^{\prime}(t), \quad t \in J, u, v \in \mathbb{R}^{m}\right\} .
$$

In this paper, the vectorial inequalities mean that the same inequalities hold between their corresponding components.

Assume that A is a singular square matrix of order m and $f \in C\left(\Omega, \mathbb{R}^{m}\right)$. In this paper we shall study the following system of differential equations

$$
\begin{equation*}
A x^{\prime}(t)=f\left(t, x(t), x^{\prime}(t)\right), \quad t \in J=[0, b] \tag{1.1}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
x(0)=x_{0} \in \mathbb{R}^{m} . \tag{1.2}
\end{equation*}
$$

The method of quasilinearization offers an approach for obtaining approximate solutions to non-linear differential equations. It has been generalized in recent years by Lakshmikantham and various coauthors to apply to a wide variety of problems, (see, for example, [5-12] and $[3,4])$. In this paper, we apply this technique to problems of type (1.1)-(1.2). We show that it is possible to construct monotone sequences that converge to the solution if f is replaced by $f+g$ with $f+\Phi$ convex and $g+\Psi$ concave
for some convex function Φ and for some concave function Ψ. This convergence is quadratic or semiquadratic. This paper generalizes the results of [4]. If f does not depend on the third variable with a unit matrix in the place of A, then problem (1.1)(1.2) is considered in [8].

2. Assumptions

In the place of (1.1)-(1.2), we consider the system of differential equations of the form:

$$
\begin{align*}
A x^{\prime}(t) & =f\left(t, x(t), x^{\prime}(t)\right)+g\left(t, x(t), x^{\prime}(t)\right) \equiv \mathscr{F}\left(t, x, x^{\prime}\right), \quad t \in J, \\
x(0) & =x_{0} \in \mathbb{R}^{m} \tag{2.1}
\end{align*}
$$

where $J=[0, b]$ and $f, g \in C\left(J \times \mathbb{R}^{m} \times \mathbb{R}^{m}, \mathbb{R}^{m}\right)$. Note that problem (2.1) is identical with the problem

$$
\begin{aligned}
x^{\prime}(t) & =(A+B)^{-1}\left[\mathscr{F}\left(t, x, x^{\prime}\right)+B x^{\prime}(t)\right], \quad t \in J, \\
x(0) & =x_{0}
\end{aligned}
$$

provided that B is an $m \times m$ matrix such that $(A+B)^{-1}$ exists.
A function $v \in C^{1}(J, \mathbb{R})$ is said to be a lower solution of problem (2.1) if

$$
v^{\prime}(t) \leq(A+B)^{-1}\left[\mathscr{F}\left(t, v(t), v^{\prime}(t)\right)+B v^{\prime}(t)\right], \quad t \in J, \quad v(0) \leq x_{0}
$$

and an upper solution of (2.1) if the inequalities in these relations are reversed.
Let us introduce the following assumptions:
H_{1}. There exists a square matrix B of order m such that the matrix $A+B$ is non-singular and $(A+B)^{-1} B \geq 0$; moreover, for $f, g \in C\left(\Omega, \mathbb{R}^{m}\right)$, function $\mathscr{F}=f+g$ satisfies the Lipschitz condition with respect to the last variable, so for $u, \alpha, \bar{\alpha} \in \mathbb{R}^{m}$ such that $y_{0}(t) \leq u \leq z_{0}(t), y_{0}^{\prime}(t) \leq \alpha, \bar{\alpha} \leq z_{0}^{\prime}(t)$ on J, the condition

$$
\left|(A+B)^{-1}[\mathscr{F}(t, u, \alpha)-\mathscr{F}(t, u, \bar{\alpha})]\right| \leq(A+B)^{-1} B|\alpha-\bar{\alpha}|
$$

holds, where $|\alpha|=\left(\left|\alpha_{1}\right|, \ldots,\left|\alpha_{m}\right|\right)^{T}$ for $\alpha \in \mathbb{R}^{m}$.
$H_{2} . f_{x}, g_{x}, \Phi, \Phi_{x}, \Phi_{y}, \Psi, \Psi_{x}, \Psi_{y} \in C\left(\Omega, \mathbb{R}^{m}\right)$; here x and y denote the second and third variable, respectively.
H_{3}. The matrices $(A+B)^{-1} F_{x},(A+B)^{-1} \Phi_{x}$ are non-decreasing with respect to the second variable, and $(A+B)^{-1} G_{x},(A+B)^{-1} \Psi_{x}$ are non-increasing with respect to the second variable on Ω with $F=f+\Phi, G=g+\Psi$.
$H_{4} .(A+B)^{-1} F_{x},(A+B)^{-1} \Phi_{x}$ are non-decreasing in the third variable, and $(A+$ $B)^{-1} G_{x},(A+B)^{-1} \Psi_{x}$ are non-increasing in the third variable on Ω.
$H_{5} .(A+B)^{-1} V\left(t, y_{0}, z_{0}\right) \geq 0, t \in J$ for some function V defined later $[(A+$ $B)^{-1} V\left(t, y_{0}, z_{0}\right) \geq 0$ means that the entries of the matrix $(A+B)^{-1} V\left(t, y_{0}, z_{0}\right)$ are non-negative].
H_{6}. There exist $m \times m$ matrices $C_{1}, C_{2}, C_{3}, C_{4}$ with non-negative entries such that

$$
\begin{aligned}
& \qquad\left|(A+B)^{-1}\left[f_{x}(t, u, v)-f_{x}(t, \bar{u}, \bar{v})\right]\right| \leq C_{1} \sum_{i=1}^{m}\left[\left|u_{i}-\bar{u}_{i}\right|+\left|v_{i}-\bar{v}_{i}\right|\right] \\
& \qquad\left|(A+B)^{-1}\left[g_{x}(t, u, v)-g_{x}(t, \bar{u}, \bar{v})\right]\right| \leq C_{2} \sum_{i=1}^{m}\left[\left|u_{i}-\bar{u}_{i}\right|+\left|v_{i}-\bar{v}_{i}\right|\right] \\
& \qquad\left|(A+B)^{-1}\left[\Phi_{x}(t, u, v)-\Phi_{x}(t, \bar{u}, \bar{v})\right]\right| \leq C_{3} \sum_{i=1}^{m}\left[\left|u_{i}-\bar{u}_{i}\right|+\left|v_{i}-\bar{v}_{i}\right|\right] \\
& \quad\left|(A+B)^{-1}\left[\Psi_{x}(t, u, v)-\Psi_{x}(t, \bar{u}, \bar{v})\right]\right| \leq C_{4} \sum_{i=1}^{m}\left[\left|u_{i}-\bar{u}_{i}\right|+\left|v_{i}-\bar{v}_{i}\right|\right] \\
& \text { for } y_{0}(t) \leq u \leq z_{0}(t), y_{0}^{\prime}(t) \leq v, \bar{v} \leq z_{0}^{\prime}(t), t \in J \text { with } u, \bar{u}, v, \bar{v} \in \mathbb{R}^{m}
\end{aligned}
$$

3. Main results

The next lemma is a special case of Theorem 1.1.4 from [8].
Lemma 1. Assume that $s_{i j}(t) \geq 0, t \in J$ for $i \neq j$, where $S=\left[s_{i j}\right]$ is a continuous square matrix of order m. Let $p \in C^{1}\left(J, \mathbb{R}^{m}\right)$ and

$$
\begin{gathered}
p^{\prime}(t) \leq S(t) p(t), \quad t \in J, \\
p(0) \leq 0=[\underbrace{0, \ldots, 0}_{m}]^{T} .
\end{gathered}
$$

Then $p(t) \leq 0$ on J.
Lemma 2. Let assumptions H_{1} and H_{3} be satisfied. Then, for $u, v, \bar{u}, \bar{v} \in \mathbb{R}^{m}$ such that $y_{0}(t) \leq u \leq \bar{u} \leq z_{0}(t), y_{0}^{\prime}(t) \leq v \leq \bar{v} \leq z_{0}^{\prime}(t)$, $t \in J$, we have

$$
\begin{aligned}
(A+B)^{-1}[\mathscr{F}(t, u, v)-\mathscr{F}(t, \bar{u}, \bar{v})] \leq & (A+B)^{-1}\left\{\left[-F_{x}(t, u, v)-G_{x}(t, \bar{u}, v)\right.\right. \\
& \left.\left.+\Phi_{x}(t, \bar{u}, v)+\Psi_{x}(t, u, v)\right](\bar{u}-u)+B(\bar{v}-v)\right\} .
\end{aligned}
$$

Proof. The mean value theorem and assumption H_{1} yield

$$
\begin{aligned}
(A+B)^{-1}[& \mathscr{F}(t, u, v)-\mathscr{F}(t, \bar{u}, \bar{v})] \\
& =(A+B)^{-1}[\mathscr{F}(t, u, v)-\mathscr{F}(t, \bar{u}, v)+\mathscr{F}(t, \bar{u}, v)-\mathscr{F}(t, \bar{u}, \bar{v})] \\
\leq & (A+B)^{-1}\left\{\left[\int_{0}^{1} \mathscr{F}_{x}(t, s u+(1-s) \bar{u}, v) d s\right](u-\bar{u})+B(\bar{v}-v)\right\} \\
= & (A+B)^{-1}\left\{\int _ { 0 } ^ { 1 } \left[F_{x}(t, s u+(1-s) \bar{u}, v)+G_{x}(t, s u+(1-s) \bar{u}, v)\right.\right. \\
& \left.\left.\quad-\Phi_{x}(t, s u+(1-s) \bar{u}, v)-\Psi_{x}(t, s u+(1-s) \bar{u}, v)\right] d s(u-\bar{u})+B(\bar{v}-v)\right\} .
\end{aligned}
$$

Hence, we have the assertion of Lemma 2, by using assumption H_{3}.
Now we are in a position to prove the following result:
Theorem 1. Assume that $f, g \in C\left(\Omega, \mathbb{R}^{m}\right)$, and
(i) $y_{0}, z_{0} \in C^{1}\left(J, \mathbb{R}^{m}\right)$ are lower and upper solutions of problem (2.1) and such that $y_{0}(t) \leq z_{0}(t)$ and $y_{0}^{\prime}(t) \leq z_{0}^{\prime}(t)$ on J,
(ii) Assumptions $H_{1}-H_{6}$ hold with

$$
V(t, y, z)=F_{x}\left(t, y, y^{\prime}\right)+G_{x}\left(t, z, z^{\prime}\right)-\Phi_{x}\left(t, z, z^{\prime}\right)-\Psi_{x}\left(t, y, y^{\prime}\right) .
$$

(iii) Problem (2.1) has at most one solution.

Then, there exist monotone sequences $\left\{y_{n}\right\},\left\{z_{n}\right\}$ which converge uniformly on J to the unique solution x of problem (2.1). Moreover, the convergence is quadratic with respect to u and it is semiquadratic with respect to u^{\prime} for $u=y_{n}$ and $u=z_{n}$.

Proof. Let y_{n+1} and z_{n+1} be the solutions of the linear initial value problems

$$
\begin{aligned}
y_{n+1}^{\prime}(t) & =(A+B)^{-1}\left\{\mathscr{F}\left(t, y_{n}, y_{n}^{\prime}\right)+B y_{n}^{\prime}(t)+V\left(t, y_{n}, z_{n}\right)\left[y_{n+1}(t)-y_{n}(t)\right]\right\}, \\
y_{n+1}(0) & =x_{0},
\end{aligned}
$$

and

$$
\begin{aligned}
z_{n+1}^{\prime}(t) & =(A+B)^{-1}\left\{\mathscr{F}\left(t, z_{n}, z_{n}^{\prime}\right)+B z_{n}^{\prime}(t)+V\left(t, y_{n}, z_{n}\right)\left[z_{n+1}(t)-z_{n}(t)\right]\right\}, \\
z_{n+1}(0) & =x_{0},
\end{aligned}
$$

for $n=0,1, \ldots$ Note that the sequences $\left\{y_{n}\right\},\left\{z_{n}\right\}$ are well defined.
First of all, we shall prove that

$$
\begin{array}{ll}
y_{0}(t) \leq y_{1}(t) \leq z_{1}(t) \leq z_{0}(t), & t \in J, \\
y_{0}^{\prime}(t) \leq y_{1}^{\prime}(t) \leq z_{1}^{\prime}(t) \leq z_{0}^{\prime}(t), & t \in J . \tag{3.1}
\end{array}
$$

Let us put $p=y_{0}-y_{1}$, so $p(0) \leq 0$. Then we see that

$$
\begin{aligned}
& p^{\prime}(t) \leq(A+B)^{-1}\left\{\mathscr{F}\left(t, y_{0}, y_{0}^{\prime}\right)+B y_{0}^{\prime}(t)-\mathscr{F}\left(t, y_{0}, y_{0}^{\prime}\right)-B y_{0}^{\prime}(t)\right. \\
&\left.-V\left(t, y_{0}, z_{0}\right)\left[y_{1}(t)-y_{0}(t)\right]\right\}=(A+B)^{-1} V\left(t, y_{0}, z_{0}\right) p(t), \quad t \in J .
\end{aligned}
$$

Assumption H_{5} and Lemma 1 yield $p(t) \leq 0$ on J proving that $y_{0}(t) \leq y_{1}(t)$ on J. Since $(A+B)^{-1} V\left(t, y_{0}, z_{0}\right) \geq 0$, and $p(t) \leq 0$ on J, then $p^{\prime}(t) \leq 0$, so $y_{0}^{\prime}(t) \leq y_{1}^{\prime}(t)$ on J. By the same way we can show that $z_{1}(t) \leq z_{0}(t)$ and $z_{1}^{\prime}(t) \leq z_{0}^{\prime}(t), t \in J$. Put
$p=y_{1}-z_{1}$. Then, by Lemma 2 and assumption H_{4}, we have

$$
\begin{aligned}
p^{\prime}(t)= & (A+B)^{-1}\left\{\mathscr{F}\left(t, y_{0}, y_{0}^{\prime}\right)-\mathscr{F}\left(t, z_{0}, z_{0}^{\prime}\right)+B\left[y_{0}^{\prime}(t)-z_{0}^{\prime}(t)\right]\right. \\
& \left.+V\left(t, y_{0}, z_{0}\right)\left[y_{1}(t)-y_{0}(t)-z_{1}(t)+z_{0}(t)\right]\right\} \\
\leq & (A+B)^{-1}\left\{\left[-F_{x}\left(t, y_{0}, y_{0}^{\prime}\right)-G_{x}\left(t, z_{0}, y_{0}^{\prime}\right)+\Phi_{x}\left(t, z_{0}, y_{0}^{\prime}\right)\right.\right. \\
& \left.+\Psi_{x}\left(t, y_{0}, y_{0}^{\prime}\right)\right]\left[z_{0}(t)-y_{0}(t)\right]+B\left[z_{0}^{\prime}(t)-y_{0}^{\prime}(t)\right] \\
& \left.+V\left(t, y_{0}, z_{0}\right)\left[y_{1}(t)-y_{0}(t)-z_{1}(t)+z_{0}(t)\right]+B\left[y_{0}^{\prime}(t)-z_{0}^{\prime}(t)\right]\right\} \\
= & (A+B)^{-1}\left\{\left[G_{x}\left(t, z_{0}, z_{0}^{\prime}\right)-G_{x}\left(t, z_{0}, y_{0}^{\prime}\right)+\Phi_{x}\left(t, z_{0}, y_{0}^{\prime}\right)\right.\right. \\
& \left.\left.-\Phi_{x}\left(t, z_{0}, z_{0}^{\prime}\right)\right]\left[z_{0}(t)-y_{0}(t)\right]+V\left(t, y_{0}, z_{0}\right) p(t)\right\} \\
\leq & (A+B)^{-1} V\left(t, y_{0}, z_{0}\right) p(t)
\end{aligned}
$$

with $p(0)=0$. Hence, we have $p(t) \leq 0$, and then $p^{\prime}(t) \leq 0$ on J which shows that $y_{1}(t) \leq z_{1}(t), y_{1}^{\prime}(t) \leq z_{1}^{\prime}(t), t \in J$. This means that (3.1) holds.

In the next step we need to show that y_{1} and z_{1} are lower and upper solutions of problem (2.1), respectively. By Lemma 2 and assumptions H_{3} and H_{4}, we obtain

$$
\begin{aligned}
y_{1}^{\prime}(t)= & (A+B)^{-1}\left\{\mathscr{F}\left(t, y_{0}, y_{0}^{\prime}\right)+B y_{0}^{\prime}(t)+V\left(t, y_{0}, z_{0}\right)\left[y_{1}(t)-y_{0}(t)\right]\right\} \\
\leq & (A+B)^{-1}\left\{\mathscr{F}\left(t, y_{1}, y_{1}^{\prime}\right)+B y_{1}^{\prime}(t)+\left[-F_{x}\left(t, y_{0}, y_{0}^{\prime}\right)-G_{x}\left(t, y_{1}, y_{0}^{\prime}\right)\right.\right. \\
& \left.\left.+\Phi_{x}\left(t, y_{1}, y_{0}^{\prime}\right)+\Psi_{x}\left(t, y_{0}, y_{0}^{\prime}\right)\right]\left[y_{1}(t)-y_{0}(t)\right]+V\left(t, y_{0}, z_{0}\right)\left[y_{1}(t)-y_{0}(t)\right]\right\} \\
= & (A+B)^{-1}\left\{\mathscr{F}\left(t, y_{1}, y_{1}^{\prime}\right)+B y_{1}^{\prime}(t)+\left[G_{x}\left(t, z_{0}, z_{0}^{\prime}\right)-G_{x}\left(t, y_{1}, y_{0}^{\prime}\right)\right.\right. \\
& \left.\left.+\Phi_{x}\left(t, y_{1}, y_{0}^{\prime}\right)-\Phi_{x}\left(t, z_{0}, z_{0}^{\prime}\right)\right]\left[y_{1}(t)-y_{0}(t)\right]\right\} \\
\leq & (A+B)^{-1}\left[\mathscr{F}\left(t, y_{1}, y_{1}^{\prime}\right)+B y_{1}^{\prime}(t)\right],
\end{aligned}
$$

and

$$
\begin{aligned}
z_{1}^{\prime}(t)= & (A+B)^{-1}\left\{\mathscr{F}\left(t, z_{0}, z_{0}^{\prime}\right)+B z_{0}^{\prime}(t)+V\left(t, y_{0}, z_{0}\right)\left[z_{1}(t)-z_{0}(t)\right]\right\} \\
\geq & (A+B)^{-1}\left\{\mathscr{F}\left(t, z_{1}, z_{1}^{\prime}\right)+B z_{1}^{\prime}(t)+\left[F_{x}\left(t, z_{1}, z_{1}^{\prime}\right)+G_{x}\left(t, z_{0}, z_{1}^{\prime}\right)\right.\right. \\
& \left.\left.-\Phi_{x}\left(t, z_{0}, z_{1}^{\prime}\right)-\Psi_{x}\left(t, z_{1}, z_{1}^{\prime}\right)\right]\left[z_{0}(t)-z_{1}(t)\right]+V\left(t, y_{0}, z_{0}\right)\left[z_{1}(t)-z_{0}(t)\right]\right\} \\
= & (A+B)^{-1}\left\{\mathscr{F}\left(t, z_{1}, z_{1}^{\prime}\right)+B z_{1}^{\prime}(t)+\left[F_{x}\left(t, z_{1}, z_{1}^{\prime}\right)-F_{x}\left(t, y_{0}, y_{0}^{\prime}\right)\right.\right. \\
& +G_{x}\left(t, z_{0}, z_{1}^{\prime}\right)-G_{x}\left(t, z_{0}, z_{0}^{\prime}\right)+\Phi_{x}\left(t, z_{0}, z_{0}^{\prime}\right)-\Phi_{x}\left(t, z_{0}, z_{1}^{\prime}\right) \\
& \left.\left.+\Psi_{x}\left(t, y_{0}, y_{0}^{\prime}\right)-\Psi_{x}\left(t, z_{1}, z_{1}^{\prime}\right)\right]\left[z_{0}(t)-z_{1}(t)\right]\right\} \\
\geq & (A+B)^{-1}\left[\mathscr{F}\left(t, z_{1}, z_{1}^{\prime}\right)+B z_{1}^{\prime}(t)\right]
\end{aligned}
$$

which shows that y_{1} and z_{1}, respectively, are lower and upper solutions of problem (2.1). Let us assume that

$$
\begin{aligned}
& y_{k-1}(t) \leq y_{k}(t) \leq z_{k}(t) \leq z_{k-1}(t), \quad t \in J, \\
& y_{k-1}^{\prime}(t) \leq y_{k}^{\prime}(t) \leq z_{k}^{\prime}(t) \leq z_{k-1}^{\prime}(t), \quad t \in J,
\end{aligned}
$$

and let y_{k}, z_{k} be lower and upper solutions of problem (2.1) for some $k \geq 1$. We shall prove that

$$
\begin{align*}
& y_{k}(t) \leq y_{k+1}(t) \leq z_{k+1}(t) \leq z_{k}(t), \quad t \in J \\
& y_{k}^{\prime}(t) \leq y_{k+1}^{\prime}(t) \leq z_{k+1}^{\prime}(t) \leq z_{k}^{\prime}(t), \quad t \in J \tag{3.2}
\end{align*}
$$

Put $p=y_{k}-y_{k+1}$. Then

$$
\begin{aligned}
& p^{\prime}(t) \leq(A+B)^{-1}\left\{\mathscr{F}\left(t, y_{k}, y_{k}^{\prime}\right)+B y_{k}^{\prime}(t)-\mathscr{F}\left(t, y_{k}, y_{k}^{\prime}\right)-B y_{k}^{\prime}(t)\right. \\
&\left.\quad-V\left(t, y_{k}, z_{k}\right)\left[y_{k+1}(t)-y_{k}(t)\right]\right\}=(A+B)^{-1} V\left(t, y_{k}, z_{k}\right) p(t)
\end{aligned}
$$

with $p(0)=0$. Note that, by assumptions $H_{3}-H_{5}$,

$$
\begin{aligned}
(A+B)^{-1} V\left(t, y_{k}, z_{k}\right)= & (A+B)^{-1}\left[F_{x}\left(t, y_{k}, y_{k}^{\prime}\right)+G_{x}\left(t, z_{k}, z_{k}^{\prime}\right)-\Phi_{x}\left(t, z_{k}, z_{k}^{\prime}\right)\right. \\
& \left.-\Psi_{x}\left(t, y_{k}, y_{k}^{\prime}\right)\right] \\
\geq & (A+B)^{-1}\left[F_{x}\left(t, y_{0}, y_{0}^{\prime}\right)+G_{x}\left(t, z_{0}, z_{0}^{\prime}\right)-\Phi_{x}\left(t, z_{0}, z_{0}^{\prime}\right)\right. \\
& \left.-\Psi_{x}\left(t, y_{0}, y_{0}^{\prime}\right)\right] \\
= & (A+B)^{-1} V\left(t, y_{0}, z_{0}\right) \geq 0, \quad t \in J
\end{aligned}
$$

Hence, by Lemma $1, p(t) \leq 0, p^{\prime}(t) \leq 0, t \in J$, which shows that $y_{k}(t) \leq y_{k+1}(t)$ and $y_{k}^{\prime}(t) \leq y_{k+1}^{\prime}(t), t \in J$. Using the same argument we can prove that $z_{k+1}(t) \leq z_{k}(t)$, $z_{k+1}^{\prime}(t) \leq z_{k}^{\prime}(t), t \in J$.

Let $p=y_{k+1}-z_{k+1}$. Then $p(0)=0$. Using Lemma 2 and assumption H_{4}, we get

$$
\begin{aligned}
p^{\prime}(t)= & (A+B)^{-1}\left\{\mathscr{F}\left(t, y_{k}, y_{k}^{\prime}\right)-\mathscr{F}\left(t, z_{k}, z_{k}^{\prime}\right)+B\left[y_{k}^{\prime}(t)-z_{k}^{\prime}(t)\right]\right. \\
& \left.+V\left(t, y_{k}, z_{k}\right)\left[y_{k+1}(t)-y_{k}(t)-z_{k+1}(t)+z_{k}(t)\right]\right\} \\
\leq & (A+B)^{-1}\left\{\left[-F_{x}\left(t, y_{k}, y_{k}^{\prime}\right)-G_{x}\left(t, z_{k}, y_{k}^{\prime}\right)+\Phi_{x}\left(t, z_{k}, y_{k}^{\prime}\right)\right.\right. \\
& \left.+\Psi_{x}\left(t, y_{k}, y_{k}^{\prime}\right)\right]\left[z_{k}(t)-y_{k}(t)\right] \\
& \left.+V\left(t, y_{k}, z_{k}\right)\left[y_{k+1}(t)-y_{k}(t)-z_{k+1}(t)+z_{k}(t)\right]\right\} \\
= & (A+B)^{-1}\left\{\left[G_{x}\left(t, z_{k}, z_{k}^{\prime}\right)-G_{x}\left(t, z_{k}, y_{k}^{\prime}\right)+\Phi_{x}\left(t, z_{k}, y_{k}^{\prime}\right)\right.\right. \\
& \left.\left.-\Phi_{x}\left(t, z_{k}, z_{k}^{\prime}\right)\right]\left[z_{k}(t)-y_{k}(t)\right]+V\left(t, y_{k}, z_{k}\right) p(t)\right\} \\
\leq & (A+B)^{-1} V\left(t, y_{k}, z_{k}\right) p(t), \quad t \in J .
\end{aligned}
$$

This proves that $y_{k+1}(t) \leq z_{k+1}(t)$, and $y_{k+1}^{\prime}(t) \leq z_{k+1}^{\prime}(t), t \in J$, so relation (3.2) holds. Hence, by induction, for all n, we have

$$
\begin{aligned}
& y_{0}(t) \leq y_{1}(t) \leq \cdots \leq y_{n}(t) \leq z_{n}(t) \leq \cdots \leq z_{1}(t) \leq z_{0}(t), \quad t \in J \\
& y_{0}^{\prime}(t) \leq y_{1}^{\prime}(t) \leq \cdots \leq y_{n}^{\prime}(t) \leq z_{n}^{\prime}(t) \leq \cdots \leq z_{1}^{\prime}(t) \leq z_{0}^{\prime}(t), \quad t \in J .
\end{aligned}
$$

Employing standard techniques (using the Arzeli theorem and the Lebesgue theorem), it can be shown that $y_{n} \rightarrow y, y_{n}^{\prime} \rightarrow y^{\prime}, z_{n} \rightarrow z, z_{n}^{\prime} \rightarrow z^{\prime}, y, z \in C^{1}\left(J, \mathbb{R}^{m}\right)$, where y and z are solutions of problem (2.1). Hence, by assumption (iii), we have $y=z=x$ on J is the unique solution of (2.1).

The order of convergence of sequences $\left\{y_{n}\right\},\left\{z_{n}\right\},\left\{y_{n}^{\prime}\right\},\left\{z_{n}^{\prime}\right\}$ is considered in the next part of our considerations. For this purpose, we put

$$
p_{n+1}=x-y_{n+1} \geq 0, \quad q_{n+1}=z_{n+1}-x \geq 0 \quad \text { on } \quad J
$$

and note that $p_{n+1}(0)=q_{n+1}(0)=0$ for $n \geq 0$. Using the integral mean value theorem and assumptions H_{1}, H_{3}, H_{6}, we get

$$
\begin{aligned}
p_{n+1}^{\prime}(t)= & (A+B)^{-1}\left\{\mathscr{F}\left(t, x, x^{\prime}\right)+B x^{\prime}(t)-\mathscr{F}\left(t, y_{n}, x^{\prime}\right)+\mathscr{F}\left(t, y_{n}, x^{\prime}\right)\right. \\
& \left.-\mathscr{F}\left(t, y_{n}, y_{n}^{\prime}\right)-V\left(t, y_{n}, z_{n}\right)\left[y_{n+1}(t)-x(t)+x(t)-y_{n}(t)\right]-B y_{n}^{\prime}(t)\right\} \\
\leq & (A+B)^{-1}\left\{\left[\int_{0}^{1} \mathscr{F}_{x}\left(t, s x+(1-s) y_{n}, x^{\prime}\right) d s\right] p_{n}(t)+2 B\left|p_{n}^{\prime}(t)\right|\right. \\
& \left.+V\left(t, y_{n}, z_{n}\right)\left[p_{n+1}(t)-p_{n}(t)\right]\right\} \\
= & (A+B)^{-1}\left\{\int _ { 0 } ^ { 1 } \left[F_{x}\left(t, s x+(1-s) y_{n}, x^{\prime}\right)+G_{x}\left(t, s x+(1-s) y_{n}, x^{\prime}\right)\right.\right. \\
& \left.-\Phi_{x}\left(t, s x+(1-s) y_{n}, x^{\prime}\right)-\Psi_{x}\left(t, s x+(1-s) y_{n}, x^{\prime}\right)\right] d s p_{n}(t) \\
& \left.+2 B\left|p_{n}^{\prime}(t)\right|+V\left(t, y_{n}, z_{n}\right)\left[p_{n+1}(t)-p_{n}(t)\right]\right\} \\
\leq & (A+B)^{-1}\left\{\left[F_{x}\left(t, x, x^{\prime}\right)-F_{x}\left(t, y_{n}, y_{n}^{\prime}\right)+G_{x}\left(t, y_{n}, x^{\prime}\right)-G_{x}\left(t, z_{n}, z_{n}^{\prime}\right)\right.\right. \\
& \left.+\Phi_{x}\left(t, z_{n}, z_{n}^{\prime}\right)-\Phi_{x}\left(t, y_{n}, x^{\prime}\right)+\Psi_{x}\left(t, y_{n}, y_{n}^{\prime}\right)-\Psi_{x}\left(t, x, x^{\prime}\right)\right] p_{n}(t) \\
& \left.+V\left(t, y_{n}, z_{n}\right) p_{n+1}(t)+2 B\left|p_{n}^{\prime}(t)\right|\right\} \\
\leq & \left\{\left(C_{1}+C_{2}+2 C_{3}+2 C_{4}\right) \sum_{i=1}^{m} p_{n i}(t)\right. \\
& +\left(C_{2}+C_{3}+C_{4}\right) \sum_{i=1}^{m}\left[q_{n i}(t)+\left|q_{n i}^{\prime}(t)\right|\right] \\
& \left.+\left(C_{1}+C_{3}+C_{4}\right) \sum_{i=1}^{m}\left|p_{n i}^{\prime}(t)\right|\right\} p_{n}(t) \\
& +(A+B)^{-1}\left\{2 B\left|p_{n}^{\prime}(t)\right|+V\left(t, y_{n}, z_{n}\right) p_{n+1}(t)\right\} .
\end{aligned}
$$

Note that

$$
\begin{align*}
& \sum_{i=1}^{m} p_{n i}(t) p_{n}(t) \leq \frac{m}{2} p_{n}^{2}(t)+\frac{1}{2} W p_{n}^{2}(t) \\
& \sum_{i=1}^{m} q_{n i}(t) p_{n}(t) \leq \frac{m}{2} p_{n}^{2}(t)+\frac{1}{2} W q_{n}^{2}(t) \tag{3.3}
\end{align*}
$$

where $p_{n}^{2}=\left[p_{1, n}^{2}, \ldots, p_{m, n}^{2}\right]^{T}, W=\left[w_{i j}\right], w_{i j}=1, i, j=1, \ldots, m$. This and previous calculations give

$$
\begin{equation*}
p_{n+1}^{\prime}(t) \leq K p_{n+1}(t)+A_{1} p_{n}^{2}(t)+A_{2} q_{n}^{2}(t)+A_{3}\left|p_{n}^{\prime}(t)\right|^{2}+A_{4}\left|q_{n}^{\prime}(t)\right|^{2}+A_{5}\left|p_{n}^{\prime}(t)\right| \tag{3.4}
\end{equation*}
$$

with $(A+B)^{-1} f_{x} \leq K_{1},(A+B)^{-1} g_{x} \leq K_{2}, K=K_{1}+K_{2}$ on Ω. Here, K_{1}, K_{2} are $m \times m$ non-negative matrices and

$$
\begin{aligned}
A_{1}= & \frac{1}{2}\left(C_{1}+C_{2}+2 C_{3}+2 C_{4}\right)(m I+W)+\left(C_{2}+C_{3}+C_{4}\right) m \\
& +\left(C_{1}+C_{3}+C_{4}\right) \frac{m}{2} \\
A_{2}= & \frac{1}{2}\left(C_{2}+C_{3}+C_{4}\right) W \\
A_{3}= & \frac{1}{2}\left(C_{1}+C_{3}+C_{4}\right) W \\
A_{4}= & A_{2} \\
A_{5}= & 2(A+B)^{-1} B
\end{aligned}
$$

There is no loss of generality assuming that K^{-1} exists such that $k_{i j} \geq 0$, where $k_{i j}$ represents the components of this matrix. Hence, for $t \in J$, we have

$$
p_{n+1}(t) \leq \int_{0}^{t} e^{K(t-s)}\left[A_{1} p_{n}^{2}(s)+A_{2} q_{n}^{2}(s)+A_{3}\left|p_{n}^{\prime}(s)\right|^{2}+A_{4}\left|q_{n}^{\prime}(s)\right|^{2}+A_{5}\left|p_{n}^{\prime}(s)\right|\right] d s
$$

This implies

$$
\begin{align*}
& \max _{t \in J}\left\|p_{n+1}(t)\right\| \leq B_{1} \max _{t \in J}\left\|p_{n}(t)\right\|^{2}+B_{2} \max _{t \in J}\left\|q_{n}(t)\right\|^{2}+B_{3} \max _{t \in J}\left\|p_{n}^{\prime}(t)\right\|^{2} \\
&+B_{4} \max _{t \in J}\left\|q_{n}^{\prime}(t)\right\|^{2}+B_{5} \max _{t \in J}\left\|p_{n}^{\prime}(t)\right\| \tag{3.5}
\end{align*}
$$

where $\|v\|^{2}=\left[\left|v_{1}\right|^{2}, \ldots,\left|v_{m}\right|^{2}\right]^{T}, v \in \mathbb{R}^{m}$, and

$$
A_{0}=K^{-1} e^{K b}, \quad B_{i}=A_{0} A_{i}
$$

for $i=\overline{1,5}$. Combining (3.4) and (3.5) we obtain

$$
\begin{aligned}
\max _{t \in J}\left\|p_{n+1}^{\prime}(t)\right\| \leq \bar{A}_{1} \max _{t \in J}\left\|p_{n}(t)\right\|^{2}+\bar{A}_{2} \max _{t \in J} \| & \left\|q_{n}(t)\right\|^{2}+\bar{A}_{3} \max _{t \in J}\left\|p_{n}^{\prime}(t)\right\|^{2} \\
& +\bar{A}_{4} \max _{t \in J}\left\|q_{n}^{\prime}(t)\right\|^{2}+\bar{A}_{5} \max _{t \in J}\left\|p_{n}^{\prime}(t)\right\|
\end{aligned}
$$

with $\bar{A}_{i}=A_{i}+K B_{i}, i=\overline{1,5}$.

Similarly we have

$$
\begin{aligned}
q_{n+1}^{\prime}(t)= & (A+B)^{-1}\left\{\mathscr{F}\left(t, z_{n}, z_{n}^{\prime}\right)+B z_{n}^{\prime}(t)-\mathscr{F}\left(t, x, z_{n}^{\prime}\right)\right. \\
& \left.+\mathscr{F}\left(t, x, z_{n}^{\prime}\right)-\mathscr{F}\left(t, x, x^{\prime}\right)+V\left(t, y_{n}, z_{n}\right)\left[q_{n+1}(t)-q_{n}(t)\right]-B x^{\prime}(t)\right\} \\
\leq & (A+B)^{-1}\left\{\left[\int_{0}^{1} \mathscr{F}_{x}\left(t, s z_{n}+(1-s) x, z_{n}^{\prime}\right) d s\right] q_{n}(t)+2 B\left|q_{n}^{\prime}(t)\right|\right. \\
& \left.+V\left(t, y_{n}, z_{n}\right)\left[q_{n+1}(t)-q_{n}(t)\right]\right\} \\
\leq & (A+B)^{-1}\left\{\left[F_{x}\left(t, z_{n}, z_{n}^{\prime}\right)-F_{x}\left(t, y_{n}, y_{n}^{\prime}\right)+G_{x}\left(t, x, z_{n}^{\prime}\right)-G_{x}\left(t, z_{n}, z_{n}^{\prime}\right)\right.\right. \\
& \left.+\Phi_{x}\left(t, z_{n}, z_{n}^{\prime}\right)-\Phi_{x}\left(t, x, z_{n}^{\prime}\right)+\Psi_{x}\left(t, y_{n}, y_{n}^{\prime}\right)-\Psi_{x}\left(t, z_{n}, z_{n}^{\prime}\right)\right] q_{n}(t) \\
& \left.+V\left(t, y_{n}, z_{n}\right) q_{n+1}(t)+2 B\left|q_{n}^{\prime}(t)\right|\right\} \\
\leq & \left\{\left(C_{1}+C_{2}+2 C_{3}+2 C_{4}\right) \sum_{i=1}^{m} q_{n i}(t)\right. \\
& \left.+\left(C_{1}+C_{3}+C_{4}\right) \sum_{i=1}^{m}\left[p_{n i}(t)+\left|p_{n i}^{\prime}(t)\right|+\left|q_{n i}^{\prime}(t)\right|\right]\right\} q_{n}(t) \\
& +K q_{n+1}(t)+A_{5}\left|q_{n}^{\prime}(t)\right| \\
\leq & D_{1} p_{n}^{2}(t)+D_{2} q_{n}^{2}(t)+D_{1}\left|p_{n}^{\prime}(t)\right|^{2}+D_{1}\left|q_{n}^{\prime}(t)\right|^{2}+K q_{n+1}(t)+A_{5}\left|q_{n}^{\prime}(t)\right|
\end{aligned}
$$

where

$$
\begin{aligned}
D_{1} & =\frac{1}{2}\left(C_{1}+C_{3}+C_{4}\right) W \\
D_{2} & =\frac{3}{2} m\left(C_{1}+C_{3}+C_{4}\right)+\frac{1}{2}\left(C_{1}+C_{2}+2 C_{3}+2 C_{4}\right)(m I+W)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\max _{t \in J}\left\|q_{n+1}(t)\right\| \leq \bar{B}_{1} \max _{t \in J}\left\|p_{n}(t)\right\|^{2}+\bar{B}_{2} \max _{t \in J} \| & \left\|q_{n}(t)\right\|^{2}+\bar{B}_{1} \max _{t \in J}\left\|p_{n}^{\prime}(t)\right\|^{2} \\
& +\bar{B}_{1} \max _{t \in J}\left\|q_{n}^{\prime}(t)\right\|^{2}+\bar{B}_{3} \max _{t \in J}\left\|q_{n}^{\prime}(t)\right\|
\end{aligned}
$$

where $\bar{B}_{1}=A_{0} D_{1}, \bar{B}_{2}=A_{0} D_{2}$, and $\bar{B}_{3}=B_{5} A$.
Combining this with the last relation for q_{n+1}^{\prime} we get

$$
\begin{aligned}
\max _{t \in J}\left\|q_{n+1}^{\prime}(t)\right\| \leq \bar{L}_{1} \max _{t \in J}\left\|p_{n}(t)\right\|^{2}+\bar{L}_{2} \max _{t \in J} \| & q_{n}(t)\left\|^{2}+\bar{L}_{1} \max _{t \in J}\right\| p_{n}^{\prime}(t) \|^{2} \\
& +\bar{L}_{1} \max _{t \in J}\left\|q_{n}^{\prime}(t)\right\|^{2}+\bar{L}_{3} \max _{t \in J}\left\|q_{n}^{\prime}(t)\right\|,
\end{aligned}
$$

with $\bar{L}_{1}=D_{1}+K \bar{B}_{1}, \bar{L}_{2}=D_{2}+K \bar{B}_{2}$, and $\bar{L}_{3}=A_{5}+K \bar{B}_{3}$. This completes the proof.

Let us introduce the following assumptions:
H_{17} (i) $(A+B)^{-1} F_{x}$ is non-decreasing in the third variable on Ω and $V_{1}=$ $F_{x}\left(t, y, y^{\prime}\right)$, or
(ii) $(A+B)^{-1} F_{x}$ is non-increasing in the third variable on Ω and $V_{1}=$ $F_{x}\left(t, y, z^{\prime}\right)$.
H_{27} (i) $(A+B)^{-1} G_{x}$ is non-increasing in the third variable on Ω and $V_{2}=$ $G_{x}\left(t, z, z^{\prime}\right)$, or
(ii) $(A+B)^{-1} G_{x}$ is non-decreasing in the third variable on Ω and $V_{2}=$ $G_{x}\left(t, z, y^{\prime}\right)$.
H_{37} (i) $(A+B)^{-1} \Phi_{x}$ is non-decreasing in the third variable on Ω and $V_{3}=$ $\Phi_{x}\left(t, z, z^{\prime}\right)$, or
(ii) $(A+B)^{-1} \Phi_{x}$ is non-increasing in the third variable on Ω and $V_{3}=$ $\Phi_{x}\left(t, z, y^{\prime}\right)$.
H_{47} (i) $(A+B)^{-1} \Psi_{x}$ is non-increasing in the third variable on Ω and $V_{4}=$ $\Psi_{x}\left(t, y, y^{\prime}\right)$, or
(ii) $(A+B)^{-1} \Psi_{x}$ is non-decreasing in the third variable on Ω and $V_{4}=$ $\Psi_{x}\left(t, y, z^{\prime}\right)$.

The set of all assumptions from H_{17} to H_{47} will be denoted by H_{7}. Since in any assumptions $H_{17}-H_{47}$ we have two cases (i) or (ii), so we have 16 possibilities for constructing assumption H_{7}. Note that if we choose case (i) in any assumptions $H_{17}-$ H_{47}, then assumption H_{7} is identical with assumption H_{4}.

Now we can formulate the following
Theorem 2. Assume that the assumptions of Theorem 1 are satisfied with assumption H_{7} instead of H_{4} and for

$$
V=V_{1}+V_{2}-V_{3}-V_{4}
$$

Then the conclusion of Theorem 1 is true.
Proof. Since the proof can be constructed on the basis of the proof of the previous theorem, we shall only indicate the necessary changes. We should create assumption H_{7}. Let H_{7} be produced from assumptions H_{17} (ii), H_{27} (ii), H_{37} (ii), and H_{47} (ii). Note that the sequences $\left\{y_{n}\right\},\left\{z_{n}\right\}$ are constructed as before with

$$
V(t, y, z)=F_{x}\left(t, y, z^{\prime}\right)+G_{x}\left(t, z, y^{\prime}\right)-\Phi_{x}\left(t, z, y^{\prime}\right)-\Psi_{x}\left(t, y, z^{\prime}\right)
$$

Based on the assumption

$$
(A+B)^{-1} V\left(t, y_{0}, z_{0}\right) \geq 0
$$

and Lemma 1, it is quite easy to show that $y_{0}(t) \leq y_{1}(t), y_{0}^{\prime}(t) \leq y_{1}^{\prime}(t), z_{1}(t) \leq z_{0}(t)$ and $z_{1}^{\prime}(t) \leq z_{0}^{\prime}(t)$ on J. If we put $p=y_{1}-z_{1}$, then, by Lemma 2 and assumptions
$H_{17}(i i), H_{47}(i i)$, we have

$$
\begin{aligned}
p^{\prime}(t) \leq & (A+B)^{-1}\left\{\left[-F_{x}\left(t, y_{0}, y_{0}^{\prime}\right)-G_{x}\left(t, z_{0}, y_{0}^{\prime}\right)+\Phi_{x}\left(t, z_{0}, y_{0}^{\prime}\right)\right.\right. \\
& \left.+\Psi_{x}\left(t, y_{0}, y_{0}^{\prime}\right)\right]\left[z_{0}(t)-y_{0}(t)\right]+B\left[z_{0}^{\prime}(t)-y_{0}^{\prime}(t)\right] \\
& \left.+V\left(t, y_{0}, z_{0}\right)\left[y_{1}(t)-y_{0}(t)-z_{1}(t)+z_{0}(t)\right]+B\left[y_{0}^{\prime}(t)-z_{0}^{\prime}(t)\right]\right\} \\
= & (A+B)^{-1}\left\{\left[F_{x}\left(t, y_{0}, z_{0}^{\prime}\right)-F_{x}\left(t, y_{0}, y_{0}^{\prime}\right)+\Psi_{x}\left(t, y_{0}, y_{0}^{\prime}\right)\right.\right. \\
& \left.-\Psi_{x}\left(t, y_{0}, z_{0}^{\prime}\right)\right]\left[z_{0}(t)-y_{0}(t)\right] \\
& \left.+V\left(t, y_{0}, z_{0}\right) p(t)\right\} \leq(A+B)^{-1} V\left(t, y_{0}, z_{0}\right) p(t), \\
p(0)= & 0 .
\end{aligned}
$$

Hence, by Lemma 1, we have $p(t) \leq 0$, and therefore $p^{\prime}(t) \leq 0$ on J which shows that $y_{1}(t) \leq z_{1}(t), y_{1}^{\prime}(t) \leq z_{1}^{\prime}(t), t \in J$. It means that (3.1) holds.

In the next step we need to show that y_{1} and z_{1} are lower and upper solutions of problem (2.1), respectively. Note that, using Lemma 2 and assumptions H_{3} and H_{7}, we get

$$
\begin{aligned}
y_{1}^{\prime}(t) \leq & (A+B)^{-1}\left\{\mathscr{F}\left(t, y_{1}, y_{1}^{\prime}\right)+B y_{1}^{\prime}(t)+\left[-F_{x}\left(t, y_{0}, y_{0}^{\prime}\right)-G_{x}\left(t, y_{1}, y_{0}^{\prime}\right)\right.\right. \\
& \left.\left.+\Phi_{x}\left(t, y_{1}, y_{0}^{\prime}\right)+\Psi_{x}\left(t, y_{0}, y_{0}^{\prime}\right)\right]\left[y_{1}(t)-y_{0}(t)\right]+V\left(t, y_{0}, z_{0}\right)\left[y_{1}(t)-y_{0}(t)\right]\right\} \\
= & (A+B)^{-1}\left\{\mathscr{F}\left(t, y_{1}, y_{1}^{\prime}\right)+B y_{1}^{\prime}(t)+\left[F_{x}\left(t, y_{0}, z_{0}^{\prime}\right)-F_{x}\left(t, y_{0}, y_{0}^{\prime}\right)\right.\right. \\
& +G_{x}\left(t, z_{0}, y_{0}^{\prime}\right)-G_{x}\left(t, y_{1}, y_{0}^{\prime}\right)+\Phi_{x}\left(t, y_{1}, y_{0}^{\prime}\right)-\Phi_{x}\left(t, z_{0}, y_{0}^{\prime}\right)+\Psi_{x}\left(t, y_{0}, y_{0}^{\prime}\right) \\
& \left.\left.-\Psi_{x}\left(t, y_{0}, z_{0}^{\prime}\right)\right]\left[y_{1}(t)-y_{0}(t)\right]\right\} \leq(A+B)^{-1}\left[\mathscr{F}\left(t, y_{1}, y_{1}^{\prime}\right)+B y_{1}^{\prime}(t)\right],
\end{aligned}
$$

and

$$
\begin{aligned}
z_{1}^{\prime}(t) \geq & (A+B)^{-1}\left\{\mathscr{F}\left(t, z_{1}, z_{1}^{\prime}\right)+B z_{1}^{\prime}(t)+\left[F_{x}\left(t, z_{1}, z_{1}^{\prime}\right)+G_{x}\left(t, z_{0}, z_{1}^{\prime}\right)\right.\right. \\
& \left.\left.-\Phi_{x}\left(t, z_{0}, z_{1}^{\prime}\right)-\Psi_{x}\left(t, z_{1}, z_{1}^{\prime}\right)\right]\left[z_{0}(t)-z_{1}(t)\right]+V\left(t, y_{0}, z_{0}\right)\left[z_{1}(t)-z_{0}(t)\right]\right\} \\
= & (A+B)^{-1}\left\{\mathscr{F}\left(t, z_{1}, z_{1}^{\prime}\right)+B z_{1}^{\prime}(t)+\left[F_{x}\left(t, z_{1}, z_{1}^{\prime}\right)-F_{x}\left(t, y_{0}, z_{0}^{\prime}\right)\right.\right. \\
& +G_{x}\left(t, z_{0}, z_{1}^{\prime}\right)-G_{x}\left(t, z_{0}, y_{0}^{\prime}\right)+\Phi_{x}\left(t, z_{0}, y_{0}^{\prime}\right)-\Phi_{x}\left(t, z_{0}, z_{1}^{\prime}\right) \\
& \left.\left.+\Psi_{x}\left(t, y_{0}, z_{0}^{\prime}\right)-\Psi_{x}\left(t, z_{1}, z_{1}^{\prime}\right)\right]\left[z_{0}(t)-z_{1}(t)\right]\right\} \\
\geq & (A+B)^{-1}\left[\mathscr{F}\left(t, z_{1}, z_{1}^{\prime}\right)+B z_{1}^{\prime}(t)\right],
\end{aligned}
$$

which shows that y_{1} and z_{1} are lower and upper solutions of problem (2.1), respectively.

By induction in n, we can show that

$$
\begin{aligned}
& y_{0}(t) \leq y_{1}(t) \leq \cdots \leq y_{n}(t) \leq z_{n}(t) \leq \cdots \leq z_{1}(t) \leq z_{0}(t), \quad t \in J, \\
& y_{0}^{\prime}(t) \leq y_{1}^{\prime}(t) \leq \cdots \leq y_{n}^{\prime}(t) \leq z_{n}^{\prime}(t) \leq \cdots \leq z_{1}^{\prime}(t) \leq z_{0}^{\prime}(t), \quad t \in J
\end{aligned}
$$

for all n.

Employing standard techniques, it is easy to conclude that $y_{n} \rightarrow y, y_{n}^{\prime} \rightarrow y^{\prime}, z_{n} \rightarrow$ $z, z_{n}^{\prime} \rightarrow z^{\prime}, y, z \in C^{1}\left(J, \mathbb{R}^{m}\right)$, where y and z are solutions of problem (2.1). Hence, by assumption (iii), we have $y=z=x$ on J is the unique solution of (2.1).

To show the quadratic and semiquadratic convergence, we set

$$
p_{n+1}=x-y_{n+1} \geq 0, \quad q_{n+1}=z_{n+1}-x \geq 0
$$

on J. Note that $p_{n+1}(0)=q_{n+1}(0)=0$ for $n \geq 0$. The beginning for p_{n+1}^{\prime} is the same as in the proof of Theorem 1, so

$$
\begin{aligned}
p_{n+1}^{\prime}(t) \leq & (A+B)^{-1}\left\{\int _ { 0 } ^ { 1 } \left[F_{x}\left(t, s x+(1-s) y_{n}, x^{\prime}\right)+G_{x}\left(t, s x+(1-s) y_{n}, x^{\prime}\right)\right.\right. \\
& \left.-\Phi_{x}\left(t, s x+(1-s) y_{n}, x^{\prime}\right)-\Psi_{x}\left(t, s x+(1-s) y_{n}, x^{\prime}\right)\right] d s p_{n}(t) \\
& \left.+2 B\left|p_{n}^{\prime}(t)\right|+V\left(t, y_{n}, z_{n}\right)\left[p_{n+1}(t)-p_{n}(t)\right]\right\} .
\end{aligned}
$$

Now, using the same argument as in the proof of Theorem 1, we can prove that

$$
\begin{aligned}
\max _{t \in J}\left\|p_{n+1}(t)\right\| \leq \alpha_{1} \max _{t \in J}\left\|p_{n}(t)\right\|^{2}+\alpha_{2} \max _{t \in J} \| & \left\|q_{n}(t)\right\|^{2}+\alpha_{3} \max _{t \in J}\left\|p_{n}^{\prime}(t)\right\|^{2} \\
& +\alpha_{4} \max _{t \in J}\left\|q_{n}^{\prime}(t)\right\|^{2}+\alpha_{5} \max _{t \in J}\left\|p_{n}^{\prime}(t)\right\|
\end{aligned}
$$

and

$$
\begin{aligned}
\max _{t \in J}\left\|p_{n+1}^{\prime}(t)\right\| \leq \bar{\alpha}_{1} \max _{t \in J}\left\|p_{n}(t)\right\|^{2}+\bar{\alpha}_{2} \max _{t \in J} \| & \left\|q_{n}(t)\right\|^{2}+\bar{\alpha}_{3} \max _{t \in J}\left\|p_{n}^{\prime}(t)\right\|^{2} \\
& +\bar{\alpha}_{4} \max _{t \in J}\left\|q_{n}^{\prime}(t)\right\|^{2}+\bar{\alpha}_{5} \max _{t \in J}\left\|p_{n}^{\prime}(t)\right\|
\end{aligned}
$$

where

$$
\begin{aligned}
& \delta_{1}=\frac{1}{2} C_{1}(2 m I+W)+\frac{1}{2} C_{2}(3 m I+W)+\frac{1}{2}\left(C_{3}+C_{4}\right)(5 m I+2 W), \\
& \delta_{2}=\frac{1}{2}\left(C_{2}+C_{3}+C_{4}\right) W \\
& \delta_{3}=\frac{1}{2}\left(C_{3}+C_{4}\right) W \\
& \delta_{4}=\frac{1}{2}\left(C_{1}+C_{2}+C_{3}+C_{4}\right) W \\
& \delta_{5}=A_{5}
\end{aligned}
$$

and $\alpha_{i}=A_{0} \delta_{i}, \bar{\alpha}_{i}=\delta_{i}+K \alpha_{i}, i=\overline{1,5}$, with A_{0} and K defined as in the proof of Theorem 1.

Similarly, we can show that

$$
\begin{aligned}
& \max _{t \in J}\left\|q_{n+1}(t)\right\| \leq \beta_{1} \max _{t \in J}\left\|p_{n}(t)\right\|^{2}+\beta_{2} \max _{t \in J}\left\|q_{n}(t)\right\|^{2}+\beta_{3} \max _{t \in J}\left\|p_{n}^{\prime}(t)\right\|^{2} \\
&+\beta_{4} \max _{t \in J}\left\|q_{n}^{\prime}(t)\right\|^{2}+\beta_{5} \max _{t \in J}\left\|q_{n}^{\prime}(t)\right\|
\end{aligned}
$$

and

$$
\begin{aligned}
& \max _{t \in J}\left\|q_{n+1}^{\prime}(t)\right\| \leq \bar{\beta}_{1} \max _{t \in J}\left\|p_{n}(t)\right\|^{2}+\bar{\beta}_{2} \max _{t \in J}\left\|q_{n}(t)\right\|^{2}+\bar{\beta}_{3} \max _{t \in J}\left\|p_{n}^{\prime}(t)\right\|^{2} \\
&+\bar{\beta}_{4} \max _{t \in J}\left\|q_{n}^{\prime}(t)\right\|^{2}+\bar{\beta}_{5} \max _{t \in J}\left\|q_{n}^{\prime}(t)\right\|
\end{aligned}
$$

with

$$
\begin{aligned}
\eta_{1} & =\frac{1}{2}\left(C_{1}+2 C_{3}+C_{4}\right) W \\
\eta_{3} & =\eta_{4}=\frac{1}{2}\left(C_{2}+C_{3}+C_{4}\right) W \\
\eta_{5} & =A_{5} \\
\eta_{2} & =\frac{1}{2} C_{1}(2 m I+W)+\frac{1}{2} C_{2}(3 m I+W)+\frac{1}{2}\left(C_{3}+C_{4}\right)(5 m I+W)
\end{aligned}
$$

and

$$
\beta_{i}=A_{0} \eta_{i}, \quad \bar{\beta}_{i}=\eta_{i}+K \beta_{i}
$$

for $i=\overline{1,5}$.
It is now easy to construct the proofs of the assertions corresponding to the remaining cases of assumption H_{7} following the proof of Theorem 1 and the proof given above. We omit the details. The proof of this theorem is therefore complete.

Remark 1. Note that if v is a lower solution of problem (2.1) and $(A+B)^{-1} \geq 0$, then v satisfies the relation

$$
A v^{\prime}(t) \leq \mathscr{F}\left(t, v(t), v^{\prime}(t)\right), \quad t \in J, \quad v(0) \leq x_{0}
$$

Here, $(A+B)^{-1} \geq 0$ means that some entries of $(A+B)^{-1}$ may be equal to zero.

References

[1] Bellman, R.:Methods of Nonlinear Analysis, Vol. II, Academic Press, New York, 1973.
[2] Bellman, R. and Kalaba, R.: Quasilinearization and Nonlinear Boundary Value Problems, American Elsevier, New York, 1965.
[3] Jankowski, T.: Generalization of the method of quasilinearization for differential problems with a parameter, Dynam. Systems and Appl., 8 (1999), 53-72.
[4] Jankowski, T.: Systems of differential equations with a singular matrix, Commun. Appl. Anal., 6 (2002), 209-218.
[5] Ladde, G.S., Lakshmikantham, V. and Vatsala, A. S.: Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman, 1985.
[6] Lakshmikantham, V. and Vatsala, A. S.: The method of generalized quasilinearization and its applications, Neural, Parallel and Scientific Computations, 7 (1999), 119-140.
[7] Lakshmikantham, V., Leela, S., and Sivasundaram, S.: Extensions of the method of quasilinearization, J. Optimization Theory Appl., 87 (1995), 379-401.
[8] Lakshmikantham, V. and Vatsala, A. S.: Generalized Quasilinearization for Nonlinear Problems, Kluwer Academic Publishers, Derdrecht, 1998.
[9] Lakshmikantham, V., Leela, S., and McRae, F. A.: Improved generalized quasilinearization method, Nonlinear Anal., 24 (1995), 1627-1637.
[10] Lakshmikantham, V. and Shahzad, N.: Further generalization of generalized quasilinearization method, J. Appl. Math. Stoch. Anal., 7 (1994), 545-552.
[11] Lakshmikantham, V. and Malek, S.: Generalized quasilinearization, Nonlinear World, 1 (1994), 59-63.
[12] Vajravelu, K. and Vatsala, A. S.: Extended method of quasilinearization for systems of nonlinear differential equations, Appl. Anal., 74 (2000), 333-349.

Author's address

T. Jankowski:

Gdansk University of Technology, Department of Differential Equations, 11/12 Narutowicz St., 80-952 Gdańsk, Poland

E-mail address: tjank@mifgate.mif.pg.gda.pl

