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Abstract. We give some topological properties of the generalized Clarke subdifferential which is
an extension of the notion of the Clarke subdifferentiability [5]. Potential advantages of general-
ized Clarke subdifferential over other concepts of subdifferentiability might be related to the fact
that it offers a rich calculus and applications. It allows us, for example, to present a convenient
test for the weak metric regularity of mappings non-necessarily strictly Fréchet differentiable.
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1. AN INTRODUCTION TO GENERALIZED CLARKE SUBDIFFERENTIABILITY

We shall be working in binormed space .E;k � k1;k � k2/ such that .E;k � k2/ is
a Banach space and, for some c > 0, the condition k � k1 � ck � k2 holds.

Let U be an open set of .E;k � k1), and let h2 be a k � k2 locally Lipschitz real
function around xx 2 U .

Let v any vector in E. The Clarke generalized directional derivative of h2 at xx
in the direction v with respect to the norm k � k2, denoted h0;22 .xx;v/, is defined as
follows:

h
0;2
2 .xx;v/D limsup

x0!k�k2 xx; t#0

h2.x
0C tv/�h2.x

0/

t
:

The Clarke subdifferential of h2 at xx with respect to the norm k�k2, denoted @20h2.xx/,
is the subset of .E;k � k2/0 given by

@20h2.xx/D f� 2 .E;k � k2/
0
W h
0;2
2 .xx;v/� h�;vi 8v 2Eg:

According to [5], the generalized Clarke subdifferential of h2 at xx with respect to the
pair of norms .k � k1;k � k2/, denoted @1;20 h2.xx/, is the subset of .E;k � k2/0 given by

@
1;2
0 h2.xx/D f� 2 .E;k � k2/

0
W h
0;1
2 .xx;v/� h�;vi 8v 2Eg:
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Notice that the Clarke subdifferential @20h2.xx/ is smaller than the generalized Clarke
subdifferential @1;20 h2.xx/. More precisely, we have @20h2.xx/ � @

1;2
0 h2.xx/ and also

@10h2.xx/� @
1;2
0 h2.xx/.

If moreover, h2 is locally Lipschitz around xx with respect to the norm k � k1, then
@20h2.xx/D @

1
0h2.xx/D @

1;2
0 h2.xx/.

In particular, if we take k � k1 D k �k2, then @20h2.xx/D @
1
0h2.xx/D @

1;2
0 h2.xx/.

Thus, the generalized Clarke subdifferential is a generalized version of the Clarke
subdifferential.

Let us note that h0;12 .xx; �/ is the support function of the generalized Clarke sub-
differential @1;20 h2.xx/ viewed as subset of .E;k � k2/0. Finally, note that even if
h
0;1
2 .xx; :/ is the support function of the Clarke subdifferential @10h2.xx/, the gener-

alized Clarke subdifferential @1;20 h2.xx/ does not necessarily coincide with @10h2.xx/,
because @10h2.xx/ is not, in general, weak�-closed in ..E;k � k2/0;��..E;k � k2/0;E//.

We refer to [1–6] for more details on the notions mentioned.

2. BASIC PROPERTIES OF GENERALIZED CLARKE SUBDIFFERENTIAL

Assume that all the hypothesis of the above paragraph are satisfied.

2.1. Topological properties of generalized Clarke subdifferential

Our goals in this paragraph is to give some topological properties of generalized
Clarke subdifferential. For this, we introduce the notion of locally Lipschitzian map-
pings with respect to the pair of norms.

We say that h2 is .k � k1;k � k2/ locally Lipschitzian around xx if for some nonnega-
tive scalar K, one has

jh2.y/�h2.y
0/j �Kky�y0k2

for all y;y0 close to xx with respect to the norm k � k1.
The following summarizes some basic properties of the generalized Clarke subd-

ifferential.

Proposition 1. Let @1;20 h2.xx/ be a nonempty, convex, closed subset of the space
..E;k:k2/

0;��..E;k:k2/
0;E//. Moreover, if h2 is .k � k1;k � k2/ locally Lipschitzian

around xx, then @1;20 h2.xx/ is weakly�-compact in ..E;k:k2/0;��..E;k:k2/0;E//.

Proof. The set @1;20 h2.xx/ is nonempty, because @20h2.xx/ � @
1;2
0 h2.xx/. The con-

vexity and the closeness of @1;20 h2.xx/ are trivially fulfilled.
Assume now that h2 is .k�k1;k�k2/ locally Lipschitzian around xx. Then, @1;20 h2.xx/

is bounded in ..E;k � k2/0;k � k.E;k�k2/0/. Therefore, using the Alaoglu theorem, we
deduce the weak�-compactness of @1;20 h2.xx/.

The assertion below reiterates that the pair of multifunctions .@20h2;@
1;2
0 h2/ is

closed from .U;k � k1/ to ..E;k � k2/0;��..E;k � k2/0;E// in the following sense: if
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xi and �i are sequences in U and .E;k � k2/0 such that �i 2 @20h2.xi /, xi converges
to x with respect to the norm k � k1, and �i converges to � in the weak topology
��..E;k � k2/

0;E/, then � 2 @1;20 h2.x/. �

Proposition 2. The pair of multifunctions .@20h2;@
1;2
0 h2/ is closed from .U;k:k1/

to ..E;k:k2/0;��..E;k:k2/0;E//.

Proof. Let xi and �i be sequences in U and .E;k � k2/0 such that �i 2 @20h2.xi /,
xi converges to x with respect to the norm k � k1, and �i converges to � in the weak
topology � �..E;k � k2/0;E/.

Let any v 2 E be given. Then h�i ;vi converges to h�;vi.One has h0;22 .xi ;v/ �

h�i ;vi, which implies that h0;12 .xi ;v/� h�i ;vi.
By the upper semicontinuity of h0;12 with respect to the norm k �k1, we deduce that

h
0;1
2 .x;v/� h�;vi. Since v is arbitrary, � belongs to @1;20 h2.x/. �

Remark 1. If h2 is .k�k1;k�k2/ locally Lipschitzian around xx. Then, � 2 @1;20 h2.xx/

if and only if h0;12 .xx;v/� h�;vi 8v 2E.

2.2. Relation to Taylor derivatives and generalized subderivatives

The main result of this section will be that if h2 is .k�k1;k�k2/ locally Lipschitzian
around xx, then @1;20 h2.xx/ is reduced to a singleton if and only if h2 is .k � k1;k � k2/
strictly Taylor differentiable at xx.

By B1, respectively, B2, we denote the unit ball in .E;k �k1/, respectively, the unit
ball in .E;k � k2/.

Let h be a map acting from U into a Banach space .Y;k � k/, and let x 2 U . We
shall say that h is .k �k1;k �k2/ strictly Taylor differentiable at a point x if there exists
a continuous linear operator from .E;k � k2/ to .Y;k � k/ denoted rh.x/ such that for
each v, the condition

lim
x0!k�k1x; t#0

h.x0C tv/�h.x0/

t
Drh.x/v

holds, where the convergence is uniform for v in compact sets in .E;k:k2/. Note that
ours is a Hadamard-type strict derivative.

Let us remark that if h is a .k �k1;k �k2/ strictly Taylor differentiable at x, then h is
not necessarily k � k1 strictly differentiable at x. But if k � k1 is equivalent to the norm
k � k2, then h is necessarily k � k1-strictly differentiable at x.

So the notion of strict differentiability in terms of Taylor strengthens and general-
izes the elegant notion of Hadamard-strict differentiability.

Proposition 3. Let L be a continuous linear operator from .E;k � k2/ to .Y;k � k/,
and let x 2 U . The following assertions are equivalent:

(i) h is .k � k1;k � k2/ strictly Taylor differentiable at x and rh.x/D L;
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(ii) h is .k � k1;k � k2/ locally Lipschitzian around x, and for each v in E one has

lim
x0!k�k1x; t#0

h.x0C tv/�h.x0/

t
D Lv:

Proof. Assume (i). The equality in (ii) holds by assumption, so to prove (ii) it
suffices to show that h is .k �k1;k �k2/ locally Lipschitzian around x. If this is not the
case, there exist sequences fxng and fx0ng converging to x with respect to the norm
k � k1 such that xn and x0n lie in xC 1

n
B1 and

kh.xn/�h.x
0
n/k> nkxn�x

0
nk2:

Let us define tn > 0 and vn via x0n D xnC tnvn and kvnk2 D n�
1
2 . It follows that

tn! 0.
Let V consists of the points in the sequence fvng together with 0. Note that V is

compact in .E;k � k2/, so that by definition of rh.x/ for any " there exists n0 such
that, for all n� n0, for all v 2 V , one hash.xnC tnv/�h.xn/tn

�rh.x/v

< ":
But this is impossible since when v D vn, the term tn

�1.h.xnC tnv/�h.xn// has
norm exceeding n

1
2 by construction. Thus, (ii) holds.

We now posit (ii). Let V any compact subset of .E;k � k2/ and " any positive
number. In view of (ii), there exists for each v in V a number ı.v/ such thath.x0C tv/�h.x0/t

�rh.x/v

< "
for all x0 2 xC ı.v/B1 and t 2 �0;ıŒ;. Since the norm of

h.x0C tv0/�h.x0/

t
�
h.x0C tv/�h.x0/

t

is bounded above by kkv�v0k2 (where K is a .k � k1;k � k2/ Lipschitz constant for h
and where x0 is sufficiently k � k1 near x and t is sufficiently near 0), we deduce from
the last inequality that for a suitable redefinition of ı.v/, one hash.x0C tv0/�h.x0/t

�Lv0
< 2"

for all x0 in xCı.v/B1, v0 in vCı.v/B2, and t in �0;ıŒ. A finite number of the k �k2-
open sets fvC ı.v/B2 W v 2 V g will cover V , say, those that correspond to v1,...,vn.
If we set ı0 Dmin1�i�n ı.vi /, it follows then thath.x0C tv0/�h.x0/t

�Lv0
< 2"

for any v 2 V , for all x0 2 xC ı0B1 and t 2 �0;ı0Œ . Thus, h is .k � k1;k � k2/ strictly
Taylor differentiable at x and rh.x/D L, and the proof is complete. �
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Now we can prove the main result of this section.

Theorem 1. Assume that h2 is .k � k1;k � k2/ locally Lipschitzian around xx. Then
@
1;2
0 h2.xx/ is reduced to a singleton f�g if and only if h2 is .k �k1;k �k2/ strictly Taylor

differentiable at xx. In this case, � Drh2.xx/.
In particular, if k �k1Dk�k2 then @10h2.xx/ is reduced to a singleton f�g if and only

if h2 is k � k1 strictly differentiable at xx.

Proof. Suppose first that h2 is .k �k1;k �k2/ strictly Taylor differentiable at xx, then
h
0;1
2 .xx;v/Drh2.xx/v. Therefore, @1;20 h2.xx/ is reduced to a singleton frh2.xx/g.

To prove the converse, it suffices to show that the condition of Proposition 3 holds
if @1;20 h2.xx/ is reduced to a singleton f�g. We begin by showing that h0;12 .xx;v/ D

h�;vi for each v.
Let v 2E (note that h0;12 .xx;v/� h�;vi/. By the Hahn-Banach theorem there exists

�0 2 .E;k � k1/
0 majorized by h0;12 .xx; �/ and agreeing with h0;12 .xx; �/ at v. Since h2 is

.k � k1;k � k2/ locally Lipschitzian around xx, then �0 2 .E;k � k2/0. It follows then that
�0 2 @

1;2
0 h2.xx/. Consequently, � D �0. Therefore, h0;12 .xx;v/D h�;vi.

We now calculate

liminf
x0!k�k1 xx; t#0

h2.x
0C tv/�h2.x

0/

t
D� limsup

x0!k�k1 xx; t#0

h2.x
0/�h2.x

0C tv/

t

D� limsup
x0!k�k1 xx; t#0

h2.x
0C tv� tv/�h2.x

0C tv/

t

D�h
0;1
2 .xx;�v/

D�h�;�vi

D h�;vi

D h
0;1
2 .xx;v/

D limsup
x0!k�k1 xx; t#0

h2.x
0C tv/�h2.x

0/

t
:

This establishes the limit condition of Proposition 3 and completes the proof. �

Example 1. Let ˝ a bounded domain in R2, E D W 1;2
0 .˝/ the Sobolev space

with the usual norm k � k2 D k � kW 1;2
0 .˝/

. Let also p and " such that 0 < " < 1,
"C 2 < p <1. Set k � k1 D k � kLp.˝/. Note that .E;k � k2/ is a separable Banach
space.

Since W 1;2
0 .˝/ ,! Lp.˝/, it follows that .E;k � k1;k � k2/ is a binormed space

such that k � k1 � ck � k2 for some c > 0.
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Set g.u/D juj"C2 and consider the functional G defined on E by

G.x/D

Z
˝

g.x.s//ds:

Then G is k � k2 twice Fréchet differentiable at every x 2E and

G.1/.x/hD

Z
˝

g0.x.s//h.s/ds;

G.2/.x/.h1;h2/D

Z
˝

g00.x.s//h1.s/h2.s/ds:

We assert thatG is .k�k1;k�k2/ strictly differentiable at every x 2E. Indeed, suppose
by the contrary that there exist x 2E, " > 0, x0m 2E, and hm 2E such that x0m! x

in .E;k � k1/, hm! 0 in .E;k � k1/ and jr.x0m;hm/j> "khmk2, where

r.x0;h/DG.x0Ch/�G.x0/�G.1/.x/h:

Then,

jr.x0m;hm/j D

ˇ̌̌̌Z
˝

Z 1

0

�
g0.x0m.s/C thm.s//�g

0.x.s//
�
hm.s/dtds

ˇ̌̌̌
:

Let p0 > 1 such that 1
p
C

1
p0
D 1. Since p > "C2 then p > p0."C1/. Thus, x0m! x

in .E;k�kLp0."C1/.˝// and hm! 0 in .E;k�kLp0."C1/.˝//. Without loss of generality
we can suppose that there exists Z1 2 Lp

0."C1/.˝/ such that

jx0m.s/jC jhm.s/j �Z1.s/; hm.s/! 0; x0m.s/! x.s/

almost everywhere on ˝. Using the Hölder inequality, we obtain

jr.x0m;hm/j �

�Z
˝

Z 1

0

jg0.x0m.s/C thm.s//�g
0.x.s//jp

0

dtds

� 1
p0

khmkLp.˝/:

Consequently,

jr.x0m;hm/j � c

�Z
˝

Z 1

0

jg0.x0m.s/C thm.s//�g
0.x.s//jp

0

dtds

� 1
p0

khmk2:

But this contradicts the fact that jr.x0m;hm/j> "khmk2, becauseZ
˝

Z 1

0

jg0.x0m.s/C thm.s//�g
0.x.s//jp

0

dtds! 0;

by the dominated convergence theorem.
Let us remark thatG is not k �k1 Fréchet differentiable at any point x 2E. Indeed,

let ˛m !1 and dm !1 such that jg.dm/j � ˛mjdmjp. By the countable addi-
tivity of the Lebesgue measure there exist C > 0 and ˝ 0 �˝ such that �.˝ 0/ > 0,
dist.˝ 0;@˝/ > 0, and jx.s/j � C for all s 2˝ 0.
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In this case, put D D maxfg.u/ W juj � C g <1. Choose ˝m � ˝ 0 such that
�.˝m/D jdmj

�pj˛mj
� 1

2 for large m.
Let hm be defined by the relation

hm.s/D

(
dm�x.s/ for s 2˝m;

0 for s 2˝ n˝m:

It then follows that khmk1! 0 and

jG.xChm/�G.x/j � ˛mjdmj
p�.˝m/�D�.˝m/D j˛mj

1
2 �D�.˝m/!1:

Let km 2 C10 .˝/ such that kkm�hmk1! 0. Then kkmk1! 0, but G.xCkm/�
G.x/!1, because the Lebesgue integral is absolutely continuous. Therefore, G is
not k � k1 Fréchet differentiable at x and consequently, G is not k � k1 strictly Fréchet
differentiable at x.

Thus, applying Theorem 1, we conclude that @1;20 G.x/D @20G.x/D frG.x/g.
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