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Abstract. This paper deals with the fine limits of generalized potential-type operators with non-
isotropic kernels defined for functions on R” satisfying appropriate conditions.
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1. INTRODUCTION

Let A1,A2,..., A, be positive numbers with [A| = A1 + A2 +---4+ A, and || x]||} =
1

(Jx1 %1 +...+ Ixn|ll7)%‘, x € R™. The expression ||x — y||1, where x, y € R", is
called the A-distance or non-isotropic distance between x and y. This distance is
an important concept in the theory of partial differential equations and imbedding
theorems. Some problems with the A-distance were examined in [6, 7].

It can be seen that A-distance becomes the ordinary Euclidean distance |x — y| for
Aj = % j =1,2,...,n. The A-distance has the following properties.

Using the inequality (a + )" < 2™ (a™ + b™), m > 1, we obtain

lx=yla = Ma(lxlia+ 1yl (1.1)

(145 )4 :
where My =2\ " Amin/ 7 and Apin = min(A1,A2,...4,).

Several authors have investigated the properties of classical Riesz potentials and
their generalizations. For example, taking some appropriate conditions on the kernel
depending on Euclidean distance type of K (|x — y|), Gadjiev [3] proved a variant of
the Hardy-Littlewood—Sobolev theorem. He also gave the properties of convergence
almost everywhere. In [1], a theorem similar to results of [3] was proved for potential-
type integrals with kernel depending on the A-distance.

Some results on potential-type integral operators and Riesz potentials given by
generalized shift operators can be found in [2,4,5]. Various generalizations of the
Riesz potentials are given in [10].
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A potential-type integral operator depending on the A-distance and defined for
non-negative measurable functions f on R” is given by the equality

LH@ = [ Kllx=yln) /01y,

where K is the kernel function satisfying the following conditions (see [1]):

(K1) K is a non-negative continuous and decreasing function on semiaxis [0, 00)
and lim; ¢ K () = oo,
A

(K2) L(r)= [*K(2BMyt ") 2H=3=141 < o0 for 0 < § <2|A|, B € (0. 1) and

0<r<a.

We know that (L f) (x) # oo if and only if

/RHK(ﬁ(lJrIIyIIA))f(y)dy, (1.2)

where 8 € (0, 1). Hence it is seen that (L f) (x) # oo when f is integrable on R”.
Note that (1) is equivalent to

[ K (Bllx—yl2) f0)dy
R"—B; (x,1)

for every x € R”?, and B € (0, 1), where B (x,1)is A-ball centered at x with radius
1. Thatis By(x,1) ={y e R* : |[x — y|x < 1}.

In what follows, we investigate the fine limits of generalized potential-type integral
operators with non-isotropic kernels L f at xo € R”. Our results are generalizations
of the corresponding results for classical Riesz potentials given in [9, 11].

To obtain a general result, we assume the condition

| o omu(ly=solF)dy <oc. (13)

where xo € R” and ¢,(r) is positive monotone function on interval (0, 00) having
the following properties:
(91) ¢p(r) is of the form rP¢(r), where 1 < p < 0o and ¢ is a positive non-
decreasing function on interval (0, 00).
(¢2) There exists Aysuch that (2r) < A1¢(r) whenever r > 0.

Throughout this paper, let w(r) be a positive non-increasing function on (0, co0)
satisfying the condition:

(w1) There exists Ay > 0 such that A;lw(r) <w(2r) < Arw(r) whenever r > 0.

In this paper we will use some ideas from [9, 11]. By the symbol M, we denote a
positive constant whose value may change depending on the context.
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2. PRELIMINARY LEMMAS
First we collect properties which follow from conditions (1) and (¢2).

Lemma 2.1. The function ¢ satisfies the doubling condition, that is, there exists
Az > 1 such that

o(r) <epQ@r) < Aszp(r) forr >0.

Lemma 2.2. For any y > 0, there exists A4(y) > 1 such that

AZI()/)(/?(F) <o) < A4()@(r), whenever r > 0.

3. THE ESTIMATE OF Lf

We write (Lf)(x) = L1(x)+ La(x)+ L3(x) for x € R —{xo}, where
Lw=[ o Kl S0

Lo = [ K (Ix = vll2) F()dy,
B (x0,2M) || x—x0ll2)—Ba(x, | x—xo0llx/2M})

La = [ K (lx=yl) F()dy.
B (x,llx—xollr/2M})
Using (1.1), then for any x, y € R”

1
lx=ylix = Elly —xollx =[x —xoll-

It is obvious that, if y € R" — B (xo, 2Mj ||x — x0l|1), then || x — y||; > ﬁﬂy —

Xo || 1 Taking into account L (x), we have the inequality

Li(x) <M K (Blly —xoll2) f(»)dy (3.1
R”—B; (x0,2My | x—x0ll 1)

forany B = 53~ € (0,1). For y € Bj (x0, 2M; ||x —xo[|2) — Ba(x, | x —xol|2/2M3),
since ||y — x|y > ﬁ”x—xoﬂl, we have similarly

La(x) < K (Bllx—xoll,) /B FO)dy (32)

2 (x0,2M | x—x0llA)—Bx(x, |l x—x0llx/2M})

forany g = ﬁ €(0,1).
Let us begin with the Holder type inequality.
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Lemma 3.1. Let p > 1, § > 0, and f be a non-negative measurable function on
A
R™. IF0 < 2M ||x —xo||; < 2Mya " < 1, then

/ K (Blly —xoll2) fF()dy
R"—B) (x0,2M} || x—x0ll2)

o KBlly—xoll2) f(¥)dy + ML (||x—x0||)%f1“)

< \/
R"—Bj (x0,2Mjza 1)

1

+MR1(||X—X0||)%|M)(/13( -, 2,’\)¢p(f(y))U)(”y—x0”A2|)‘l)dy) ’
A (X0, 2a n

1
2|A| 77 2|7l

where Ry(r) = (fra K? (Z,BM;LIT) [(p(t_l)w(t)]% tzm_ldt) PUifO<2MyrTn <
1and Ri(r) = Rl((ZMA)_ﬁ) in the other cases.

Proof. Without loss of generality we assume that f = 0 outside of Bj (x¢,2M)a %).

‘We have

[ K Blly —xoll) f0)dy = / K Blly —xoll) £y
n—Bj (x0,2M) |lx—xoll 1) A(y)

< /{ gy K B =20l )i

yEAW); fF()>ly—xoll, **!

yeA®); FM<ly—xoll, 2"

+f{ —dp KBy =) S0y = L+ L

2[A|

where A(y) = By (xo,2Mja » )— By (x0,2M, ||x —x0||;). Consider the integral
L1:. From Holder’s inequality, we obtain

N =

Lu) < ( /U ( )fp(yw(f(y))w(ny—xon;'"“)dy)
y

< [ K(ﬂuy—xom)"’[w(f(y))w(ny—xonjnl)] Tav|
U®)

_bn
where £+ & = Land U (v) = {y € 40): /() > Iy = xoll, **'}.
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_én
Since ¢ is a non-decreasing function, we have ¢(f(y)) > ¢(|ly —xoll, 241y and

_bn —n
therefore, Lemma 2.2 implies ¢(||y — xol| P> Mo(|ly —xoll, 21y Thus,

Lll(x)EM(/U( )%(f(y))w(ny—xouﬁ)dy)”
y

1
7

P’ P

/ —__n_ _n_ P
. /U K @ly=sol)” [go(ny—xo||f*'>w(||y—xo||;*)} dy
y

(3.3)

The right hand side integral with respect to y may be easily calculated. Namely,
passing to generalized spherical coordinates by transformation

y1 = xo1 + (t cos0;)?*1

Y2 = Xo2 + (¢ sin 6 cos 92)212 ,

Yn = Xon + (sinf; sin 6, . ..sin@n—l)ﬂn ’

where 6;, j =1,2,...,n, are the coordinates of the point & on unit sphere. We can
see that the Jacobian of this transformation r21*1=12, (6), where £2; (6) depends on
angles 01,6,,...,6,_10only0<0,...,0,—2 <m, 0<6,_1 <2m and
n—1 J
_ 2|Al= 3 Ax—1
2,(0)=2" 1_[ (cosej)M’ ! (sin6;) k=1 .
j=1

Here the integral [g,—i £2;(6)d0 is finite, where S n=1 is the unit ball in R”. Conse-
quently, from (3.3) we have

1
n_ =2
(@M;)?a 7

Lii(x)=M / ; . KP (,Bt%) [(p(t_l)w(t)]_%/ 214,

T S
(M) 2T | x—xo || 7

N|=

x(/ ¢p(f(y))w(||y—xo||;'"“)dy) G4
Uu®)
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Let us now consider the integral L1,. By passing to generalized spherical coordi-
nates, we get

—ns
Lo@ = [ Kdy=xlly -l ay
A(y)
=ML (le—xollj'*'), (3.5)
where L (r) is defined in the condition (K3). Relations (3.4) and (3.5) give the de-
sired conclusion. 0

Lemma 3.2. Let f be a non-negative measurable function on R*. If 0 < 2M ||x —
Xollx < 1land 0 <8 <2|A|, then there exists a positive M such that

N =

La(x) < MRy —xo]2) ( /B oo (SN (Y —xon;'"*)dy)

2 (x0,2M || x—x0ll 1)

+ M lx —xo] 347,
where .
20A1\  2(A] 207 _2|Al 7
Rz(r)=K(,Bt n )r nop’ [(p(r n )w(r)] .
Proof. 1t follows from (3.2) that
La(x) < K (Bllx —xoll) / FO)dy
B(x)
< K (Bllx - xoll2) / FO)dy
{yeBx); fF(»)>lx—x0l;%}
+ f £yt =t Lo1(x) + Laa (),
{yeBx); fF(»)=<lx—x0l;%}

where B(x) = By (x0, 2My || x —xol[1) — Ba(x, [[x —xoll1/2M}).
Let us first consider L. Since ¢ is a non-decreasing function, by Lemma 3.1, we
get
-1 1
Lo1(x) < M [o([x—xol;")] 7 K(ﬂllx—xolla)/B( )f(y) [p(f (y)]7 dy.
X

From Hoélder’s inequality, we obtain

Lor () < Mg (I —xol71)] 7 K (Bllx — xoll)

d 7 p d ’
X(/;A(XO,ZMAHX—)COHA) y) (/B(x) TOP TNy )

N =

1 1
where > + > 1.
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Therefore, because w is a non-increasing function, it follows that

2|71

_1 |
Loi(x) = M [¢(llx=xol7")] 7 K (Blx—xollx) llx —xoll (3.6)

1

< ( / ¢p(f(y))dy)”
B(x)
2|1

1
< M — -1 _ ﬁ DK o - P
<M (e (lx—xolly") wllx—xol ;") (Bllx —xoll2) llx —xoll;

N =

X (/ ¢p (S (Dw(|y _XOH{M)CZY) : (3.7
B (x0,2M ||x—x0ll1)

On the other hand, we have

Lo <K (Blx—soll) [ I —xoll5dy
Bj (x0,2M) | x—x0ll1)
Al—6
< MK (Blx —xoll2) llx —xol 347, (3.8)
We have the desired conclusion from (3.7) and (3.8). Il

Lemma 3.3. Let f be a non-negative measurable function on R". If § > 0, then
there exists a positive M such that

N =

Lato) < MR (vl 7 [

(lx—xoll2/2M3) 241
+M/ x—xo0llx A Kp/ (zﬂMxt%)tzw—S—ldt
0

oo (S Ow(ly —xonj'"*')dy)

A (x, Ix—xo0lla/2M))

1
2/Al 7

where R3(r) = (p*(r)a)(r)_%and (p*(r) — (f()r KP/ (tT) [(p(t_l)]_%/ l‘zm_ldt)

Proof. By change of variable, we have

Ls(x) = / Kyl f(x 4+ y)dy.
B, (0,||lx—x0llA/2M})
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In a way similar to the proof of Lemmas 3.1 and 3.2, we obtain

1

n_ 7
(lx=xoll/2M) 217 o ?

Ly(x)<M /O K? (tT) [w(t‘l)]_%ﬂ"”‘ldz

S

x ( / oo (f(x + y))dy)
B (0,|lx—x0llx/2M})

(lx—xoll/2M3) 241
+M/ K(ﬂzMAz%“)zZW—S—ldz
0
< My* (nx—xoni'*') w (nx—xou;*)

a2
X(/1;)»(%||x—x0||A/2MA)¢p(f(y))w(”y %ol )dy)

(lx—xoll2/2M3) 24T
+/ x—xo|lx A K(ﬂzMAt%)tzm—S—ldt’
0

N =

|-

as required. O

4. FINE LIMIT OF Ry f

We consider the function

R(r) = R1(r) + Ra(r) + R3(r)

2|7l 2|A] 217

= Rl(r)—l—K(ﬁtT)r nop (w(r)w(r_leM))_ll)—i—(p*(r)w(r)_;.

Theorem 4.1. Let p > 1 and f be a non-negative measurable function on R"
satisfying conditions (1.2) and (1.3). If ¢*(1) < o0 and lim, ¢ R(r) = 00, then

Jim [R(lx = xoll)]7 (Lf) (x) = 0.

If R(r) is bounded, then (L) (xo) is finite and (L f) (x) tends to (Lf) (xg) as x —
X0-

Proof. By condition (1.2), the integral

f o K Blly—xolla) f(y)dy
"—Bj(x0,2Mya 1)
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is finite. It follows from (3.1), the condition K, and Lemma 3.1 that

N\ —1
timsup (R(lx=xol;)) " L1(x)

=" (/B;\(xo,ZMAaz'n“)qSP(f(y))w (Ily _XOHJZLM) dy)

Since a is arbitrary, we see that the integral in the left-hand side of the last estimate
is equal to zero.
In view of Lemmas 3.2 and 3.3 and condition (1.3), we have

[R (llx = xoll)] ! (L2(x) + L3(x)) = 0.

N =

lim
X—>X0
If we combine these results, we have
lim [R([lx —xo[)] ™" (Lf) (x) =0.
X—>X0

If R(r) is bounded, then Lemmas 3.2 and 3.3 imply that L, (x) + L3 (x) tends to
zero at x — xo. Furthermore, in view of Lemma 3.1, we have limsup,._, ,, L1(x) <
o¢. Thus it follows that (L f) (xg) is finite. Hence

Li(x)+ La(x) = / K (lx—yl) fO)dy.

R"—Bj (x,[[x—xo0llx/2M})

Since ||y —xo|) < 2Mf||y —x||; fory € R* — B, (x, ||x —x0l|x»/2M}), we have by
Lebesgue’s dominated convergence theorem

Jim (L1 (6) + La(@) = (Lf) (x0).

However, we also know that limy_x, L3(x) = 0. The proof of Theorem 4.1 is thus
complete. O

Corollary 4.1 ([8,9]). Let p = 2 and ¢* (1) < oo. If f is a non-negative measur-
able function on R" satisfying (1.2) and the condition

| #ols o0y <cc.

then Ly f is continuous on R" with K() =t*™, O <o <n, and A = %, k =
1,2,...,n.

Corollary 4.2 ([1]). Let f be a non-negative measurable function satisfying con-
ditions (1.2) and the condition

| aotr oy <.

then Lo f is continuous on R".
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Proposition 4.1. Letap =n, ¢*(1) <00, xo =0, K (t) =t*7", and
) 202 _1 =%
lim r 7" (w(r))"7 (p(r—")) » =0.
r—0
Then for any positive non-decreasing function a(r) on (0,00) such that
lim a(r) = oo,
r—0

there exists a non-negative measurable function f satisfying (1.2) and (1.3) such that

n n_ _n\\—1
timsup a (|11 ) (w (1513 ) (Il ) " Raf () = o,
X—>X0

1 1
where > + > 1.

Proof. Let (j;) be a sequence of positive integers such that j; +2 < J;4+1 and
_ 1

D — . . —N—Ji
Y;a; " <oo,wherea;(rj) =a; and r; =277/, We set

1
1 Y

FOr=a; ? (007H) " (w7) 7 i =y 1% ez~ 1]

if y € U2, Ba(xi, (2rj)%) — B (x;, (rj)%),otherwise f(y) =0, where x; =
(r;,0,...,0) € R".

Let us now show that f meets all the conditions in the proposition. If we use
Lemmas 2.1 and 2.2, then we have

/ FOrdy =3 a; 7 (9 1) 7 (w(r)) P

_ _ —1
X/ 2|7 217 ||Xi _y”)\a [(p(”xl _y||,11)] d)’
B) (xi,(2r;) 7 )=Bx(x;,(rj) 7 )

1

=M Za,-_"(w(rj_l)yl/(w(rj))‘; /%rj,—zlq“a ((p(l_%))_ltzm_ldl‘
=M Zai_; ;r;]ljl (‘p(rj_l))[l) (w(rj))_fl’}

_1
SME a; " <oo.
i
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_1
Consequently f satisﬁes (1.2). On the other hand, since the values (al. 2 ) and
2|7

(rj7 (e(rih) 7 (w (rj)) ) are bounded, we have

FO) < Mg 7 (wr) ™7 I — vl el — v 1)1
217 -1

sM(go(r,-*))‘f"{r,-” o) F xi -yl

n
—a—1
4

< Mllx;i =yl

Thus, the inequality ¢( f(v)) < ¢(||x; — y||;1) holds.
Now we show that f satisfies (1.3). Using condition (w), we get

/. @(f(y))w(nyu“‘)

< a; go(r / i — y”—ap
Z B (xi, (27'/ ) B (x;, (r,)z‘nM) A
<[l = yITH] 7 dy
i 215 _aial R4
<MZa (p(r p// (Toep ((p([—%)) P t2|/1|—1d[
rj

2r;
< MZa (p(r 5’/ ’ (go(t_l))_” 1 ldt
rj

<M Zai_l <00
i
Finally,
_1 1 _1
Ro f(xi) = a; " (p(ri 1) ”" (w(r)))
_ _ —1
x / oo, 151 =15 el =17
BA(X,,(ZFI) ) B (x;, (r/) n

_1 _1 2 _
> Ma; (ot ) (i) [ (o)

> Ma; ” (o)) 77 (w(ry) 7

Thus we have
1

ai (907)” () Raf(x?) = May

This proves the proposition for j — oo.
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