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AsstracT. As a generalization of algebras with involution [1], we consider algebras
(A; F U {¢}) with an additional unary operatignof finite degreek. A subdirectly
irreducible algebraX; ¥ U {¢}) is a subdirect product of subdirectly irreducible
algebras A/¢(®); F), ..., (A/¢%(®); ) where® is a certain congruence, is a
divisor of k and¢¢ is the identical mapping. For a congruence modular algebra
(A; ) also the unique smallest congruence Af £ U {¢}) described. Examples
areS-acts with an additional unary operation. In this case more information is given
on the subdirectly irreducible components.
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1. PRELIMINARIES

The purpose of this note is to generalize the notion of involution of universal al-
gebras and to study the structure of subdirectly irreducible universal algebras with
generalized involution, that is, with an additional unary operation of finite degree.

Let V, be a variety of universal algebras;(# U {¢}) with finitary operations
f € ¥ and a unary operatiop: a — ¢(a) subject to the identities

(I) E,= E/l(f/lla cee f,m/l) | f/ll, ey f,m/l € T), A €A,
involving only operations fronf,

(i) B, : @) = a,
wherek > 2 is a fixed integer, thdegree ofy,

(i) Ef : o(f(ar,....an) = f(@(@r - - - ¢(arm))) forall f € 7,
wherer¢ is a permutation oh elements1f the arity of the operatiorf) assigned to
each operatiori € 7.

Each permutation; can be written into a product of disjoint cyclic permutations
c(m)1,...,c(rs)r admitting also cyclic permutations of length 1.

These identities may induce some further ones. The idehtityX(f) is a conse-
quence of (ii), andhis is not trivial if and only if the degrek of ¢ is not a multiple
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of the lengthg(rrf)1, . . ., c(m¢);. The identityf = ¢X(f) may be viewed as gener-
alized commutativityin the case of a binary operatidiix;, X2), cyclic permutation
c(r¢) = (12) = ns and odd degrek = 2¢ + 1 we have

f(x1. %2) = (f (X1, X2)) = @* 1 (F (X1, X2)) = o(f (X1, X2)) = F (X2, Xa),

that is, the commutativity of the operatidn

Moreover, iff :— aandg : a — g(a) are 0-ary and unary operations, then by (iii)
it follows that

e(f):m>a and  ¢(g(a)) = g(e(a)).
In particular, for the zero element 0 and the unity element 1 (if they exist) we have
¢0)=0 and  ¢(1)=1,
and also
p(-a) = —p(a)

for the additive inverse of an elemeant

We are going to scrutinize the interrelations between the vavigtgnd the variety
V of algebrasA; F) subject to the identities (i).

Let us observe that for any algebrg (F U {¢}) and congruenc® € Con(; ¥)
of the algebrak; ¥) € V also

¢(0) = {(¢(a), (b)) | (a,b) € 6}
is a congruence off; ), as seen readily from (iii).
Proposition 1. (a) Let (A; ¥ U {¢}) € V, and® € Con(A; 7). Then® = ¢(0O) if
and only if® € Con(A; F U {¢}).
(b) The latticeCon(A; F U {¢}) is a sublattice of the lattic€on(A; ¥).
() If ©® € Con(A; F), thenp(®) V --- v K@) and(®) A - -- A ¢¥(®) belong to
Con(A; 7 U {¢}).

Proor. The statements correspond to those of [1, Proposition 3.1] and their proofs
are straightforward. O

As a motivation for the subsequent investigations we give an example.

Example.Let G be an abelian group, and consider the direct sumG & G. On
A we define a unary operatianby

e(a,b) = (b,a+b) (Va,be G).
Since
o((@,b)+(c,d) =(b+d,a+b+c+d)=¢(ab)+¢(cd),

the operation fulfils the requirement of condition (iii). One readily sees thaisfan
elementary 2-group, then

¢3(a,b) = (a+ 2b,2a+ 3b) = (a, b),
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so the degree af is 3. Clearly, (0G) defines a congruence of(+),
¢(0,G) ={(a,a)|ac G}

gives the diagonal congruence Afand ¢?(0,G) is the congruence determined by
(G,0). If |G| = 2, then all the three factors of\[(+) by these congruences are sub-
directly irreducible, andA; +) is a subdirect product of these factors. Nevertheless,
(A; {+, o)) itself is subdirectly irreducible.

For elementary 3,5-, 7—, 11- groups, the degree af is 8, 20, 16, 10, respec-
tively. If G is a cyclic group of 4 elements or a direct sum of such groups, then the
degree ofp is 12.

2. SUBDIRECT DECOMPOSITIONS

As seenin [1], a subdirectly irreducible algebfa  U{p}) with involution¢ (that
is the degree of is k = 2) is either subdirectly irreducible as an algebda¥) € V
or a certain subdirect product of two subdirectly irreducible algebras. aile shall
generalize this result, and describe the subdirectly irreducible alg&pa ( {¢}) €
V,, as a subdirect product of subdirectly irreducible algebra¥ @ind see that the
numberd of the subdirect components is a divisor of the dedrebyp.

The smallest congruence of an @&ctill be denoted bywa or briefly by w. We
shall call the unique atom of the lattice of congruences of a subdirectly irreducible
algebra théneartof that algebra. This terminology corresponds to that of ring theory:
the unique atom in the lattice of ideals of a subdirectly irreducible ring used to be
called the heart of that ring.

Theorem 2. If (A; ¥ U{¢p}) is a subdirectly irreducible algebra with heayt, then
there exists a congruen@e Con(A; ) such thaly, £ ® and(A; ¥) is isomorphic
to a subdirect product of subdirectly irreducible algebras

(A/g(©); F), (AP @); F), ..., (A/9(O); F), (1)
whered is the least positive integer such theft(®) = @. The heart of{A/¢'(®); )
iSxi = (xe V ¢'(0))/¢'(0) for eachi = 1,...,d. The isomorphism betwe¢A; 7)
and the subdirect produ<®id:1(A/(,oi (®); ¥) is given by the correspondence

ar— ([a]go((a), s [a]god(G))) (Va € A),
where[a] i) stands for they' (©)-coset represented laye A.

Proor. If (A; F) is subdirectly irreducible, theth = 1 and® = w = p(w) = ¢(®)
does the job.

Suppose, next, that\(¥) is not subdirectly irreducible. Singg, € Con(A; 7),
there exists a congruen@ € Con(A; ¥) such thaiw # © # ¢(0©), x, £ © and
by an appropriate choice @ it can be achieved (Zorn’s Lemma) thak/@; F)
is subdirectly irreducible and in this case the heartAfd; ) is obviouslyy: =
(x, V ©)/0. Letd be the smallest integer such théf(®) = ©. Such an integed
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does exist, and must dividek, the degree ap. Moreover, by (i) alsoA/¢' (®); F)
is subdirectly irreducible with heayt; for everyi = 1,...,d. Sincey, ¢ ©® and
0(@) A P?(O) A - A @4(®) is in Con@; F U {¢}), we conclude that

¢(©) A *(®) A -+ A pY(0) = w.

Thus, @; ¥) has the desired subdirect product representation.
The last assertion is obvious. O

In the next two theorems we shall use the assumption that the congruence lattice
of the algebraA; #) is modular. This is always so for groups, rings, and in many
other cases, but in general the congruence lattice of an algebra, in particular of an
S-act, need not be modular.

Remark.In [1, Theorem 3.2]t has to be assumed that the congruence lattice of
(A; ) is modular(this was used on line 8 of its proof). This inaccuracy, however,
does not fect the further results of [1].

Theorem 3. Let (A; ¥ U {¢}) be an algebra as in Theorem 2. (K; ¥) is con-
gruence modular angt, A ® = w, theny, is an atom in Con(A; ¥) and there is
a one-to-one correspondence betweenxh&osets of A, ¥) and they-cosets of
(A/¢'(®); ) given by the correspondence

[aly, — [[alge)lu-
which can be expressed also in terms of relations as
a’(tpb [ [a]¢i(®)Xi[b]¢i(®).

Proor. If d = 1, then there is nothing to prove.

Suppose thatl > 1, and letk € Con(A; ) be a congruence such that< y,.
Then eithek < ® andk < y, A ©® = w, 0r® < « v O. In the latter case, taking into
account thaty(, v ©)/0 is the heart of 4/0; ), we havey, v ® < x v ® whence
kV 0O =y, V0. Now, the sublatticéw, «, x,, O, x, V ®} is not modular unless = w.
This proves that,, is an atom in Cor¥; 7).

In view of the relationy, A ® = w, a moment’s reflection shows the validity of the
further statements. O

Theorem 4. Let(A; ¥ U {¢}) be an algebra as in Theorem 2.(&; ¥) is congru-
ence modular angl, A © # w, then
(1) AL i1 0re A 91(0)) is an atom inCon(a; %),
(2) \/idzl(/\id;ej:]_(X? A ‘PJ(G))) = Xes
3) Aot (ke A 91©)) A VAL (A s (e A £4(0))) = .

Proor. (1) It sufices to prove the statement foe d. SinceA/® is subdirectly
irreducible with hearty, v ©)/0, the congruencg, A © covers® in Con(A; F).
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Let us consider a congruence& Con(A; ) such thaf, A ® < k < x,,. Thenk £ ©
and by the subdirectly irreducibility o%/® we have

XoVO<KkVO<L), VO,
thatis,x vV ©® = y, v ©. Thus by < x,, the modularity of Cond; ¢) yields

Xo=WoVO)Ax, =(kVO)Ax,=kV (O AY),) =k,
showing thajy,, coversy, A O.
Next, we consider a congruenee Con(A; F) such that
d-1

wWw*ETEL /\(,w A <pi(®)).
i=1

Sincey,, coversy, A ©, byt # w = AL (v, A ¢'(©)) we haver V (y, A ©) = x,. If
T A?¢j21@¢ A ¢1(©)) then{w, T, /\id;ej=1(/\/<ﬁ A ¢1(®)), x, A O, x,} is a non-modular
sublattice in Con4; #). This contradiction proves the assertion in (1).

(2) Sincey, A © # w ande(VL, (v, A ¢1(@))) = VL (v, A ¢'(®)), the assertion
holds.

(3) Assume that the expression in (3) is not equal Then, by (1), it equals
AL -1 (¥e A ¢1(©)), Hence by ii) we have

d d d
A oné@©)<\/ [ A CANAC)

i%j=1 izj=1{j#k=1

= Xo-

This, however, contradicts(x,) = x- O

Restricting the considerations to an algeb%a %) the congruences of which are
determined by certain subalgebras (ideals, normal subgroups, etc.)AhEn s
congruence modular. We shall use the language and notions of ring theory, and denote
the unique minimal ideal (i. e., theear)) of (A; ¥ U {¢}) by H,, and writel for the
ideal determined by the congrun@ Then Theorems 3 and 4 have the following
meaning.

Corollary 5. If H,Al = 0, thenH, is an atom in the lattice of ideals G&; ) and
H,, is isomorphic to the hea(H, + ¢'(1))/¢'(1) of (A/¢'(1); F) for eachi = 1,...d.

If Ho A1 #0, thenﬂid#j:l(Hgo N ¢'(1)) is an atom in the lattice of ideals GA; F)
foreachi = 1,...,d, andH, is isomorphic to the direct sum of these ideals.

3. Sacts

An S-act A over a semigrous is a setA with scalar multiplicationsa (s € S,
a € A) subject to the rules(ta) = (sf)a. A one-element subact is callecsmk We
call anS-actA simplg if it has only two congruences: the all congruengcend the
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equality congruencers. Recall that arS-act isstrongly connected A = Safor
every elemen& € A. For details the reader may consult [2].

An S-actAis, in fact, an algebraX; S) where each elemetof the semigrous
iS a unary operatios: a+ sa ae€ A, subject to the identity

(sta = s(ta) (Ys,te S, Yae A).

Having one more operatiop on A subject to conditions (ii) and (iii) of Sec. 1, the
(S, p)-act (A; S U {¢}) satisfies the identity

o(sd) = slp(@)  (¥seS, Vae A),

in other wordsy is an automorphism of th&-act A of orderk.

Let (A : S U {¢}) be a subdirectly irreducibleS(p)-act with hearfy,,, and|A] > 1
Beside the decomposition Theorems 2, 3 and 4 we can say more on the structure of
the S, ¢)-actAin terms of theS-actA.

First, we make some obserations.

Let us consider the intersectidh = N(C,; | 2 € A) of all (S, ¢)-subactsC, of
A with |C| > 1. If the corresponding Rees congruepegeto B is w, thenA is not
subdirectly irreducible, a contradiction. Hengg < og, and soy, is a partition of
B and each elemert € A\ B forms ay,-coset.The sefT of all (S, ¢)-sinks ofAis
an S, ¢)-subact, and so eith¢f| < 1 orB € T. SinceA is a subdirectly irreducible
(S, p)-act, the seT cannot have more than 2 elements. By the minimaliti of the
latter case onlyB| = |T| = 2 is possible.

Thus,there exists a unique smallg8§, ¢)-subactB of A with |B| > 1, and one of
the following cases may occur.

Case 1y, = ta.

X # ta and

Case 2.There is no §, ¢)-sink in B.

Case 3.There is exactly ones, ¢)-sink in B.

Case 4.B consists of two §, ¢)-sinks.

Next, we discuss these cases.

Case 1.The subdirectly irreducibleS, ¢)-act A is simple. ¢ From Theorem 2 we
infer that® = w. Sincep(w) = w, it follows thatd = 1 and that thes-act A is
subdirectly irrecducible by Theorem 3. Thusis a simpleS-act which may possess
oneS-sink

Case 2.LetC be a non-emptg-subact oB. SinceB does not contairy, ¢)-sinks,
necessarily

CupC)U---UTC)=B
and

CneC)n---ned1C) = .
Let j; be the least integer such thain ¢/1(C) # @. If such an integef; does not
exist, thenC is disjoint to eachy'(C) for everyi = 1,...,d — 1, and so is/'(C) to
eachy!(C) wherei # j € {1,...,d}. Further, letj, be the next integer such that
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C N ¢/1(C) N ¢¥2(C) # @, and so on. In this way we get integersQ < jo < --- <
d — 1 such that _ ‘
D=Cn¢*(C)n---n¢'(C) + o,

and the number is maximal. One readily sees that

DNng'(D)# @ if i=j1 and jo=2j1,..., jr=rji, d=( +1)j1.
By the same token we see tHan ¢'(D) # @ ifand only ifi = jsfor some divisors
of d. Now D n ¢'(D) = @ for everyi ¢ {js,2j2,...,d}. HenceD, ¢(D),..., ¢t "1(D)
are disjointS-subacts. Since

D = ¢!(D) = /(D) = --- = ¢ (D),
we conclude thaB is the disjoint union, that ighe coproduct

B=DL¢MD)LI...L1¢* (D).

By the minimality of B the disjoint componentB, ¢(D), ..., ¢11"1(D) are strongly
connecteds-acts. Observe thatls(a) e D for everya € D, but¢' need not be the
identical mapping. Thus, in CasetBe(S, ¢)-subactB is a coproduct of; S-subacts
D, ¢(D), - -- U ¢I17}(D), and each component is a strongly conne@eslibact

Case 3We can proceed as in Case 2, but now all the intersections contain the sink
{0} and so for anys-subaciC of at least two elements and for

D=Cng(C)n---Nel"(C)

the (S, ¢)-subactB is the0-disjoint union of theS-subactD, ¢(D), .. ., ¢1"(D) and
D = Safor every elemera € D \ {0}.
Case 4 Now y, is the Rees congruence determinedby
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