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Abstract. The purpose of this paper is to state and prove a new lemma generalizing Lemma 3.1
of Arora and Sharma [1] and Proposition 3.2 of Lee and Cho [10]. Some common fixed point
theorems for a type of fuzzy contractive mappings are also established. These theorems extend
and generalize several previous results [3, 14, 21, 22].
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1. INTRODUCTION

Common fixed point theorems have been applied to diverse problems during the
last few decades. These theorems provide techniques for solving a variety of ap-
plied problems in mathematical science and in dynamic programming (see, e. g.,
[4, 15, 16]). Extensions of the Banach contraction principle to multivalued mappings
were initiated independently by Markin [11] and Nadler [13]. Therefore, results on
fixed points of contractive type multivalued mappings have been carried out by many
authors (see, for example, [2, 17, 21]).

The theory of fuzzy sets was investigated by Zadeh [24] in 1965. Some appli-
cations on results in this theory are discussed (see [9, 23]). In 1981, Heilpern [7]
first introduced the concept of fuzzy contractive mappings and proved a fixed point
theorem for these mappings in metric linear spaces. His result is a generalization
of the fixed point theorem for point-to-set maps of Nadler [13]. Later, several fixed
point theorems for types of fuzzy contractive mappings appeared (see, for instance,
[1, 18–20]).

In this paper, we state and prove a new lemma generalizing Lemma 3.1 of Arora
and Sharma [1] and Proposition 3.2 of Lee and Cho [10]. Two common fixed point
theorems of a type of fuzzy contractive mappings are established. These theorems
generalize and extend results in [3,14,21,22]. Finally, we state a conclusion contain-
ing a brief of our results and future research.
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2. BASIC PRELIMINARIES

The definitions and terminologies for further discussions are taken from Heilpern
[7]. Let .X;d/ be a metric linear space. A fuzzy set in X is a function with domain
X and values in Œ0;1�. If A is a fuzzy set and x 2 X , then the function-value A.x/
is called the grade of membership of x in A. The collection of all fuzzy sets in X is
denoted by F .X/.

Let A 2 F .X/ and ˛ 2 Œ0;1�. The ˛-level set of A, denoted by A˛, is defined by
the formula

A˛ D

(
fx W A.x/� ˛g if ˛ 2 .0;1�;
fx W A.x/ > 0g if ˛ D 0:

(2.1)

where xB is the closure of a (nonfuzzy) set B .

Definition 1. A fuzzy set A in X is an approximate quantity if and only if its ˛-
level set is a nonempty compact convex (nonfuzzy) subset of X for each ˛ 2 Œ0;1�
and supx2X A.x/D 1.

The set of all approximate quantities, denoted W.X/, is a subcollection of F .X/.

Definition 2. Let A;B 2W.X/, ˛ 2 Œ0;1� and CP.X/ be the set of all nonempty
compact subsets ofX . Then one puts p˛.A;B/D infx2A˛;y2B˛

d.x;y/, ı˛.A;B/D
supx2A˛;y2B˛

d.x;y/, and D˛.A;B/DH.A˛;B˛/, where H is the Hausdorff met-
ric between two sets in the collection CP.X/.

We define the functions p.A;B/D sup˛p˛.A;B/, ı.A;B/D sup˛ ı˛.A;B/, and
D.A;B/D sup˛D˛.A;B/.

Note that p˛ is nondecreasing function of ˛.

Definition 3. Let A;B 2W.X/. Then A is said to be more accurate than B (or B
includes A), denoted by A� B , if and only if A.x/� B.x/ for each x 2X .

The relation � induces a partial ordering on W.X/.

Definition 4. Let X be an arbitrary set and Y be a metric linear space. F is said
to be a fuzzy mapping if and only if F is a mapping from the set X into W.Y /, i. e.,
F.x/ 2W.Y / for each x 2X .

The following lemma and proposition are used in the sequel.

Lemma 1 ([12]). Suppose that 
 W Œ0;1/! Œ0;1/ is a right continuous function
such that 
.t/ < t for all t > 0. Then for every t > 0, limn!1 
n.t/D 0, where 
n

is the nth iterate of 
 , n 2N[f0g.�

Proposition 1 ([13]). If A;B 2 CP.X/ and a 2 A, then there exists b 2 B such
that d.a;b/�H.A;B/.

�N is the set of all positive integers
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We consider the set ˚ of all functions � W Œ0;1/5 ! Œ0;1/ with the following
properties:

(i) � is nondecreasing with respect to each variable,
(ii) � is right continuous with respect to each variable,

(iii) for each t > 0, 	.t/Dmaxf�.t; t; t; t; t /, �.t; t; t;2t;0/, �.t; t; t;0;2t/g< t .

3. MAIN RESULTS

Throughout this paper, let .X;d/ be a metric space. We consider a subcollection of
F .X/ denoted by W �.X/. Each fuzzy set A 2W �.x/, its ˛-level set is a nonempty
compact (nonfuzzy) subset of X for each ˛ 2 Œ0;1�. It is obvious that each element
A 2W.X/ leads one to A 2W �.X/ but the converse is not true. Now, we introduce
the improvements of the lemmas in Heilpern [7] as follows.

Lemma 2. If fx0g � A for each A 2 W �.X/ and x0 2 X , then p˛.x0;B/ �
D˛.A;B/ for each B 2W �.X/.

Lemma 3. p˛.x;A/� d.x;y/Cp˛.y;A/ for all x;y 2X and A 2W �.X/.

Lemma 4. Let x 2 X;A 2W �.X/ and fxg be a fuzzy set with membership func-
tion equal to a characteristic function of the set fxg. Then fxg � A if and only if
p˛.x;A/D 0 for each ˛ 2 Œ0;1�.

Proof. If fxg � A, then x 2 A˛ for each ˛ 2 Œ0;1�. This implies that p˛.x;A/D
infy2A˛

d.x;y/ D 0 for any ˛ 2 Œ0;1�. Conversely, if p˛.x;A/ D 0, then we have
infy2A˛

d.x;y/ D 0. It follows that x 2 xA˛ D A˛ for an arbitrary ˛ 2 Œ0;1�. Then
fxg � A. �

Also, we state and prove a new lemma in the following way.

Lemma 5. Let .X;d/ be a complete metric space, F W X ! W �.X/ be a fuzzy
map and x0 2X . Then there exists x1 2X such that fx1g � F.x0/.

Proof. For n 2N, ..F.x0//n=.nC1// is a decreasing sequence of nonempty com-
pact subsets of X . Thus we have from Proposition 11.4 and Remark 11.5 of [25,
pp. 495–496] that

T1
nD1.F.x0//n=.nC1/ is nonempty and compact.

Let x1 2
T1
nD1.F.x0//n=.nC1/. Then n

nC1
� .F.x0//.x1/ � 1. As n!1, we

get that .F.x0//.x1/D 1. This implies that fx1g � F.x0/. �

Remark 1. It is clear that Lemma 5 is a generalization of Lemma 3.1 of Arora and
Sharma [1] and Proposition 3.2 of Lee and Cho [10].

Now, we are ready to prove our main theorems.
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Theorem 1. Let .X;d/ be a complete metric space and F1, F2 be fuzzy mappings
from X into W �.X/. If there is a � 2 ˚ such that for all x;y 2X ,

D.F1.x/;F2.y//� �.d.x;y/;p.x;F1.x//;

p.y;F2.y//;p.x;F2.y//;p.y;F1.x///; (3.1)

then there exists ´ 2X such that f´g � F1.´/ and f´g � F2.´/.

Proof. Let x0 2 X . Then by Lemma 5, there exists x1 2 X such that fx1g �
F1.x0/. For x1 2 X , the set .F2.x1//1 is nonempty compact subset of X . Since
.F1.x0//1 and .F2.x1//1 belong toCP.X/ and x1 2 .F1.x0//1, Proposition 1 asserts
that there exists x2 2 .F2.x1//1 such that d.x1;x2/ �D1.F1.x0/;F2.x1//. So, we
have from Lemma 4 and the property (i) of � that

d.x1;x2/�D1.F1.x0/;F2.x1//�D.F1.x0/;F2.x1//

� �.d.x0;x1/;

p.x0;F1.x0//;p.x1;F2.x1//;p.x0;F2.x1//;p.x1;F1.x0///

� �.d.x0;x1/;d.x0;x1/;d.x1;x2/;d.x0;x1/Cd.x1;x2/;0/:

If d.x1;x2/ > d.x0;x1/, then

d.x1;x2/� �.d.x1;x2/;d.x1;x2/;d.x1;x2/;2d.x1;x2/;0/ < d.x1;x2/:

This contradiction demands that

d.x1;x2/� �.d.x0;x1/;d.x0;x1/;d.x0;x1/;2d.x0;x1/;0/:

Similarly, one can deduce that

d.x2;x3/� �.d.x1;x2/;d.x1;x2/;d.x1;x2/;0;2d.x1;x2//:

By induction, we have a sequence .xn/ of points in X such that, for all n 2N[f0g,

fx2nC1g � F1.x2n/; fx2nC2g � F2.x2nC1/:

It follows by induction that d.xn;xnC1/� 	n.d.x0;x1//, where 	 is defined in the
property (iii) of �. Then, Lemma 1 gives that limn!1d.xn;xnC1/D 0. Since

d.xn;xm/� d.xn;xnC1/Cd.xnC1;xnC2/C :::Cd.xm�1;xm/;

then limn;m!1d.xn;xm/D 0. Therefore, .xn/ is a Cauchy sequence. Since X is a
complete metric space, then there exists ´ 2 X such that limn!1xn D ´. Next, we
show that f´g � Fi .´/; i D 1;2. Now, we get from Lemma 2 and Lemma 3 that

p˛.´;F2.´//� d.´;x2nC1/Cp˛.x2nC1;F2.´//

� d.´;x2nC1/CD˛.F1.x2n/;F2.´//;
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for each ˛ 2 Œ0;1�. Taking the supremum on ˛ in the last inequality, we obtain from
the property (i) of � that

p.´;F2.´//� d.´;x2nC1/CD.F1.x2n/;F2.´//

� d.´;x2nC1/C�.d.x2n;´/;p.x2n;F1.x2n//;p.´;F2.´//;

p.x2n;F2.´//;p.´;F1.x2n///

� d.´;x2nC1/C�.d.x2n;´/;d.x2n;x2nC1/;p.´;F2.´//;

p.x2n;F2.´//;d.´;x2nC1//:

As n!1, we have from the properties (i), (ii) and (iii) of � with p.´;F2.´//¤ 0
that

p.´;F2.´//� �.0;0;p.´;F2.´//;p.´;F2.´//;0/

� �.p.´;F2.´//;p.´;F2.´//;p.´;F2.´//;p.´;F2.´//;p.´;F2.´///

< p.´;F2.´//:

This contradiction yields p.´;F2.´// D 0. We then get from Lemma 4 that f´g �
F2.´/. Similarly, one can show that f´g � F1.´/. �

Example 1. LetX D Œ0;1� endowed with the metric d defined by d.x;y/D jx�yj.
It is clear that .X;d/ is a complete metric space. Assume that �.t1; t2; t3; t4; t5/D 3

4
t1

for arbitrary ti 2 Œ0;1/, i D 1;5. It is obvious that 	.t/ < t for all t > 0. Let
F1 D F2 D F . Define a fuzzy mapping F on X such that for all x 2 X , F.x/ is the
characteristic function for f3

4
xg. For each x;y 2X ,

D.F.x/;F.y//D
3

4
d.x;y/

D �.d.x;y/;p.x;F.x//;p.y;F.y//;p.x;F.y//;p.y;F.x///: (3.2)

The characteristic function for f0g is the fixed point of F .
As corollaries of Theorem 1, we get the following statements.

Corollary 1. Let .X;d/ be a complete metric space and F1, F2 be fuzzy mappings
from X into W �.X/ satisfying the following conditions: for any x;y in X ,

D.F1.x/;F2.y//� a1p.x;F1.x//Ca2p.y;F2.y//Ca3p.y;F1.x//

Ca4p.y;F1.x//Ca5d.x;y/; (3.3)

where a1, a2, a3, a4, and a5 are non-negative real numbers,
P5
jD1ai < 1 and a1 D

a2 or a3 D a5. Then there exists ´ 2X such that f´g � F1.´/ and f´g � F2.´/.

Proof. We consider the function � W Œ0;1/5! Œ0;1/ defined by the formula

�.x1;x2;x3;x4;x5/D a1x2Ca2x3Ca3x5Ca4x4Ca5x1; (3.4)

where
PiD5
iD1ai < 1 such that a1 D a2 or a3 D a4. Since � 2 ˚ , we have from

Theorem 1 that there exists ´ 2X such that f´g � F1.´/ and f´g � F2.´/. �



114 M. A. AHMED

The following corollary is a fuzzy version of the fixed point theorem of Singh and
Whitfield [21] for multivalued mappings.

Corollary 2. Let .X;d/ be a complete metric space and F1, F2 be fuzzy mappings
from X intoW �.X/. If there is a constant ˛, 0� ˛ < 1, such that, for each x;y 2X ,

D.F1.x/;F2.y//� ˛max
�
d.x;y/;

1

2
Œp.x;F1.x//Cp.y;F2.y//�;

1

2
Œp.x;F2.y//Cp.y;F1.x//�

�
; (3.5)

then there exists ´ 2X such that f´g � F1.´/ and f´g � F2.´/.

Proof. We consider the function � W Œ0;1/5! Œ0;1/ defined by

�.x1;x2;x3;x4;x5/D ˛max
�
x1;

1

2
Œx2Cx3�;

1

2
Œx4Cx5�

�
: (3.6)

Since � 2 ˚ , we get from Theorem 1 that there exists ´ 2 X such that f´g � F1.´/
and f´g � F2.´/. �

Remark 2. (1) If there is a � 2 ˚ such that, for each x;y 2X ,

ı.F1.x/;F2.y//� �.d.x;y/;p.x;F1.x//;p.y;F2.y//;

p.x;F2.y//;p.y;F1.x///; (3.7)

then the conclusion of Theorem 1 remains valid. This result is considered as a special
case of Theorem 1 because D.F1.x/;F2.y// � ı.F1.x/;F2.y// [8, p. 414]. More-
over, this result generalizes Theorem 3.3 of Park and Jeong [14].

(2) Corollary 1 is [22, Theorem 3.1] without condition (a), where condition (a)
reads as follows: “for each x 2 X , there exists ˛.x/ 2 .0;1� such that .F1.x//˛.x/
and .F2.x//˛.x/ are nonempty closed bounded subsets of F .X/.” Also, Corollary 1
generalizes [3, Theorem 3.1].

(3) Theorems 3.1 and 3.4 of Park and Jeong [14] are special cases of Theorem 1.
The following theorem generalizes Theorem 1 to a sequence of fuzzy contractive

mappings.

Theorem 2. Let .Fn W n 2N[f0g/ be a sequence of fuzzy mappings from a com-
plete metric space .X;d/ intoW �.X/. If there is a � 2˚ such that, for all x;y 2X ,

D.F0.x/;Fn.y//� �.d.x;y/;p.x;F0.x//;p.y;Fn.y//;

p.x;Fn.y//;p.y;F0.x/// 8.n 2N/; (3.8)

then there exists a common fixed point of the family .Fn W n 2N[f0g/.

Proof. Putting F1 D F0 and F2 D Fn for all n 2 N in Theorem 1. Then there
exists a common fixed point of the family .Fn W n 2N[f0g/. �
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Remark 3. If there is a � 2 ˚ such that, for all x;y 2X ,

ı.F0.x/;Fn.y//� �.d.x;y/;p.x;F0.x//;p.y;Fn.y//;

p.x;Fn.y//;p.y;F0.x/// .8n 2N/; (3.9)

then the conclusion of Theorem 2 remains valid. This result is considered as a special
case of Theorem 2 for the same reason as in Remark 2 (1).

4. CONCLUSION

This paper presents an improvement of some results in [1, 7, 10]. Also, it presents
two common fixed point theorems for a type of fuzzy contractive mappings. These
theorems generalize and extend results in [3, 14, 22] and [21], respectively. A fixed
point theorem for fuzzy contractive mappings is stated generalizing [1, Theorem 3.5].
Many applications of our main theorems are possible, e. g., for differential and inte-
gral equations. In view of the references [5,6], some future research can be done, for
example:

(1) I believe that our results can be hold for FC.X/, where FC.X/DfA2 F .X/ W
A˛ is a nonempty closed (nonfuzzy) subset of X for each ˛ 2 Œ0;1�g,

(2) it is also possible to generalize our results to quasi-metric spaces.
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