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1. INTRODUCTION

The generalized Banach fixed point Theorem was introduced in [8]. Hitzler and
Seda (2000) introduced the dislocated metrics space in [3, 4] as a generalization of
metrics where self-distances need not be zero. Also dislocated metrics were studied
under the name of metric domains in the context of domain theory in [1]. The notion
of dislocated metric is useful in the context of electronic engineering (see [3]). In
1985, S. G. Matthews [6] introduced a generalization of Banach contraction princi-
ple. In 2000, Hitzler and Seda [4] introduced an alternative proof of this result in
dislocated metric spaces. The plan of this paper is as follows. In Section 2, some pre-
liminaries are presented. In Section 3, we define a weak left small self distance space
and give a new topology on a distance space different from the distance topology
of P. Waszkiewicz [9, 10]. In Section 4, we generalize the multivalued contraction
theorem by S. B. Nadler [8]. As corollaries of this result we obtain fixed point theo-
rems for a multivalued function in a complete dislocated metric space and a complete
partial metric space.

2. PRELIMINARIES

In this section we give some preliminaries.

Definition 1 ([9,10]). A distance on a set X is a map d WX �X! Œ0;1/ : A pair
.X;d/ is called a distance space.
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Let " > 0 and x 2X . Then

Bd .x;"/D fy 2X j d .x;y/ < d .x;x/C "g

and Nx D fA�X j 9" > 0; Bd .x;"/� Ag : The family �d D fA�X j8x 2 A; A 2

Nxg is a topology onX and called the distance, the topology �d is called the distance
topology. If d .x;y/ is replaced by d .y;x/ it is called the dual distance topology.

We need the following conditions for a distance function:
(d1) 8x 2X;d .x;x/D 0,
(d2) 8x;y 2X;d .x;y/D d .y;x/D 0) x D y,
(d3) 8x;y 2X;d .x;y/D d .y;x/,
(d4) 8x;y;´ 2X , d .x;y/� d .x;´/Cd .´;y/,
(d5) 8 x;y 2X , d .x;x/�minfd .x;y/ ;d .y;x/g,
(d6) 8x;y;´ 2X;d .x;y/� d .x;´/Cd .´;y/�d .´;´/.
If d satisfies conditions (d1)–(d4), then .X;d/ is called a metric space. If it sat-

isfies conditions (d2)–(d4), then .X;d/ is called a dislocated metric space (d-metric
space for short). If d satisfies conditions (d2), (d3), (d5) and (d6) then .X;d/ is called
a partial metric space [7].

One can deduce that every partial metric space is a dislocated metric space.

Definition 2. Let .X;d/ be a distance space. A multivalued function f on A�X
is a function f W A! 2A�f�g.

Theorem 1 ([3, 6]). Let .X;d/ be a complete d-metric space and let f W X ! X

be a Banach contraction function. Then f has a unique fixed point.

Theorem 2 ([8]). Let .X;d/ be a complete metric space and A�X . Suppose that
f is a multivalued function on A, A is closed, f .x/ is closed for all x 2 A, D is the
Hausdorff metric, and multivalued k-contraction condition

D.f .x/ ;f .y//� kd .x;y/

is satisfied for all x;y 2A and fixed k 2 Œ0;1/. Then f has a fixed point, i. e., 9x 2A
such that x 2 f .x/.

Theorem 3 ([2,5]). Let .X;d/ be a metric space. A mapping T from X to itself is
said to be asymptotically regular if and only if

lim
n!1

d
�
T n .x/ ;T nC1 .x/

�
D 0; 8x 2X:

3. ON DISTANCE SPACES

Definition 3. Let .X;d/ be a distance space and let A�X .

(1) The left d -closure of A is denoted and defined by

dl � cl.A/D
n
x 2X j 9.xn/�X , lim

n!1
d .xn;A/D lim

n!1
d .xn;x/D 0

o
if A 6D �, and dl � cl.�/D �.
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(2) A is called left-d -closed (dl -closed for short) iff dl � cl.A/� A,
(3) For a 2 X and B � X , we put d .a;B/ D infb2B d .a;b/ and d.B;a/ D

infb2B d .b;a/.
(4) For A�X , B �X , we put d .A;B/D inffd .a;b/ ja 2 A;b 2 Bg,
(5) The Hausdorff distance D on X is defined by

D.A;B/Dmax
�

sup
a2A

d .a;B/; sup
b2B

d.A;b/

�
;

where A�X , B �X .
In [8, Theorem 2.2], above the definition of Hausdorff metric coincides with the

definition of Hausdorff distance iff d is a metric.

Definition 4. A sequence .xn/ in a distance space .X;d/ is said to be left con-
vergent to an x 2 X (respectively, asymptotically regular) iff limn!1d .xn;x/D 0

(respectively, limn!1d .xn;xnC1/D 0). If limn!1d .xn;x/D 0, then x is called
a left limit of .xn/.

If .X;d/ is a metric space and T is a mapping from X to itself, then T is asymp-
totically regular iff 8 x 2X , the sequence T n .x/ is left asymptotically regular.

It is clear that every left Cauchy sequence (see Definition 4.2 below) is left asymp-
totically regular. The converse is not true even in metric spaces, for instance let
X DR and d .x;y/D jx�yj 8 x;y 2X , then .xn/ inX defined by xnD

Pn
kD1k

�1

is asymptotically regular but not Cauchy.

Definition 5. A distance space is called complete left asymptotically regular dis-
tance iff every left asymptotically regular sequence .xn/ in X , left converges to some
point in X .

Theorem 4. Let .X;d/ be a distance space. Then

�dl
D
˚
A j A 2 2X and Ac is dl -closed

	
is a topology on X , where Ac is the complement of A.

Proof. (i) Since dl � cl.�/ D � � �, then � is dl -closed and so X 2 �dl
. Since

dl � cl.x/�X , then X is dl -closed and so � 2 �dl
.

(ii) Let A;B 2 �dl
, x 2 dl � cl.Ac [Bc/ then, there is a sequence .xn/ such that

lim
n!1

d
�
xn;A

c
[Bc

�
D lim

n!1
d .xn;x/D 0;

this implies that either

lim
n!1

d
�
xn;A

c
�
D lim

n!1
d .xn;x/D 0

or limn!1d .xn;B
c/ D limn!1d .xn;x/ D 0) x 2 dl � cl.Ac/ or x 2 dl �

cl.Bc/) x 2 Ac [Bc D .A\B/c .
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(iii) Let fAj j j 2 J g � �dl
and x 2 dl � cl

�T
j2J A

c
j

�
. Then there exists a se-

quence .xn/ such that limn!1d
�
xn;

T
j2J A

c
j

�
D limn!1d .xn;x/D 0. Therefore,

limn!1d.xn;A
c
j /D limn!1d .xn;x/D 0 for all j 2 J ) x 2 dl�cl.Ac

j /8j 2 J

) x 2
T

j2J A
c
j D

�S
j2J Aj

�c
: �

Definition 6 ([9,10]). A distance space .X;d/ is called a small self-distance iff d
satisfies the condition (d5) above.

Definition 7. A distance space .X;d/ is called a weak left small self-distance iff
d satisfies the condition d .x;y/D 0) d .x;x/D 0, 8x;y 2X .

It is clear that any small self distance space is weak left small self-distance. The
following counterexamples illustrate that �dl

and the distance topology �d by P. Wasz-
tiewiecz are different concepts even in a weak left small self distance space.

Counterexample 1. Let X D fa;b;cg and d W X �X ! Œ0;1/ is defined by the
relation d .x;y/D 1 for all x;y 2 X . It is clear that .X;d/ is a weak left small self
distance space. Since fag … �d and �dl

D 2X , it follows that �dl
ª �d .

Counterexample 2. LetX Dfa;b;cg and d WX�X! Œ0;1/ is defined as follows:
d .b;a/ D d .b;b/ D 0, d .a;a/ D 2�1 and d .x;y/ D 2 for all .x;y/ 2 X �X �
f.b;a/ ; .b;b/ ; .a;a/g. Then .X;d/ is a weak left small self distance space. Since
fag 2 �d and fag … �dl

, it follows that �d ª �dl
.

4. MAIN RESULTS

The following counterexample illustrates that there exists a sequence in a weak left
small self distance satisfying (d4) which is left convergent but not left asymptotically
regular.

Counterexample 3. Let X D fa;b;cg and d is a distance function defined by the
relations d .a;b/D d .b;a/D d .c;b/D d .c;a/D d .c;c/D 1, d .b;c/D d .a;c/D
d .b;b/D d .a;a/D 0. The desired sequence is .xn/ given by the formula

xn D

(
a if n is odd,
b if n is even.

Definition 8. Let .X;d/ be a distance space and A�X . A is called left-asympto-
tically regular-closed iff if .xn/ is a left asymptotically regular sequence left conver-
gent to x 2X , then x 2 A.

Theorem 5. Let .X;d/ be a complete left asymptotically regular weak left small
self distance space and A � X . If f is a multivalued function on A; A is left-
asymptotically regular-closed, f .x/ is left-d-closed 8x 2 A and f satisfies the fol-
lowing condition: D.f .x/ ;f .y// � kd .x;y/ 8x;y 2 A for fixed k 2 .0;1/, then
f has a fixed point.
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Proof. (I) Choose a k0 2 .k;1/ and an x0 2 A. If there is not an element x1 2

f .x0/such that x1 ¤ x0, then since f .x0/ ¤ � we have x0 2 f .x0/. Thus x0 is
a fixed point of f . If there exists x 2 f .x0/ and x ¤ x0such that d .x0;x/ D 0,
then d .x0;f .x0// D 0. Consider the sequence .xn/n2N where xn D x0 8n 2 N.
Then limn!1d .xn;f .x0// D limn!1d .xn;x0/ D 0, because .X;d/ is a weak
left small self distance space, i. e., since d .x0;x/D 0 we have d .x0;x0/D 0. Thus
x0 2 dl � cl.f .x0//� f .x0/. Hence x0 is a fixed point. For the other case choose
x1 2 f .x0/such that x1 ¤ x0 and d .x0;x1/ > 0. Now,

d .x1;f .x1//�D.f .x0/ ;f .x1// < k0d .x0;x1/ :

Then there exists x2 2 f .x1/such that d .x1;x2/ < k0d .x0;x1/. By repeating this
process one can construct a sequence .xn/such that xnC1 2 f .xn/, d .xn;xnC1/ <

kn
0d .x0;x1/ for all n 2 N. Thus limn!1d .xn;xnC1/ D 0 and so .xn/ is a left

asymptotically regular sequence. Since .X;d/ is a complete left asymptotically reg-
ular distance space, then exists x 2 Xsuch that limn!1d .xn;x/ D 0. Since A is
left-asymptotically regular-closed, then x 2 A.

(II) Since d .xnC1;f .x//�D.f .xn/ ;f .x//� kd .xn;x/ 8n 2N, then

lim
n!1

d .xnC1;f .x//� k lim
n!1

d .xn;x/D 0;

i. e., limn!1d .xnC1;f .x//D 0. Now,

lim
n!1

d .xnC1;f .x//D lim
n!1

d .xnC1;x/D 0) x 2 dl � cl.f .x//� f .x/

then x 2 f .x/. �

Proposition 1. Let .X;d/ be a distance space and A�X . Let f be a multivalued
function on A such that

(1) D.f .x/ ;f .y//D 0 8x;y 2 A,
(2) 9 x 2 A such that

(a) x 2 f .`/ for some ` 2 A,
(b) d.x;f .x//D 0) x 2 f .x/.

Then f has a fixed point.

Definition 9. Let .X;d/ be a distance space. A sequence .xn/ in X is called left
Cauchy iff limn!1d .xn;xm/D 0 8 n;m 2Nsuch that m> n.

Definition 10. A distance space .X;d/ is called left complete iff every left Cauchy
sequence in X , left converges.

Definition 11. Let .X;d/ be a distance space and A�X . A is called left-Cauchy-
closed iff if .xn/ is a left Cauchy sequence left convergent to x 2X , then x 2 A.

One can prove that the sequence .xn/ defined in (I) in the proof of Theorem 5 is
left Cauchy if the triangular inequality holds. So one can have the following theorem.
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Theorem 6. Let .X;d/ be a left complete left small self distance spacesuch that
d satisfying (d4) and let A � X . If f is a multivalued function on A, A is left-
Cauchy-closed, f .x/ is left-d -closed 8 x 2 A and f satisfies the following condi-
tion: D.f .x/ ;f .y//� kd .x;y/ 8 x;y 2 A for fixed k 2 .0;1/, then f has a fixed
point.

Remarks. (1) If d satisfies (d3) the term “left” in each concept is omitted.
(2) Let .X;d/ be a distance space satisfies (d3). If A is closed; i. e., if every con-

vergent sequence in A converges in A; then A is left-asymptotically regular-closed.
(3) If .X;d/ satisfies (d3) and (d2), then .X;d/ is a weak small self distance.
From Theorem 6 and the remarks above one can have the following corollaries.

Corollary 1. Let .X;d/ be a complete d-metric space and A � X . If f is a
multivalued function on Asuch that 8x 2 A, A is closed, f .x/ is d -closed and f
satisfies the condition mentioned in Theorem 6, then f has a fixed point.

Corollary 2. If .X;d/ is a complete partial metric space and A � X . If f is a
multivalued function on Asuch that 8 x 2 A, A is closed, f .x/ is d -closed and f
satisfies the condition mentioned in Theorem 5, then f has a fixed point.

The following corollary illustrates that Theorem 6 and Proposition 1 generalize
the generalized k-contraction fixed point Theorem by S. B. Nadler.

Corollary 3 ([8]). Let .X;d/ be a complete metric space and A � X . Suppose
that f WA! 2A�f�g is a multivalued map such that A is closed, f .x/ is closed for
all x 2 A, and multivalued k-contraction condition

D.f .x/ ;f .y//� kd .x;y/

is satisfied for all x;y 2 A and fixed k 2 Œ0;1/. Then f has a fixed point.

The proof follows from the above notes and the following fact: In metric spaces,
the topology �dl

coincides with the usual metric topology.
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