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1. I

The Crouzeix-Velte decomposition is a decomposition into three orthogonal sub-
spaces of the customary Sobolev space (H1

0(Ω))d of vector functions defined over a
lipschitzian domainΩ ⊂ IRd which was first described in [4] and later, independently,
in [18]. This decomposition is similar to the well-known Helmholtz-Weyl decompo-
sition but different from the latter; not only by the prescribed boundary conditions
(originally homogeneous Dirichlet conditions) but also by the properties of the func-
tions in the three subspaces. E.g., along with the subspaces of divergence-free and
rotation-free functions, there is a third subspace the functions of which have both
nonzero divergence and rotation or are the zero function. In [18] and [5], the decom-
position was used to get more information about the inf-sup constant of the Stokes
problem. The optimal inf-sup constant can be characterized by the third subspace
alone [12].

For the numerical solution of the Stokes problem and its connection to the inf-sup
problem, see [1], [9], [2]. In [3], additional results were gained about the inf-sup
constant for ring and disk domains.

If using finite difference methods for approximating the Stokes equations, and if
the discrete scheme admits a discrete Crouzeix-Velte decomposition, then the same
conclusions as in the continuous case can be drawn. The subspaces of the discrete
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130 GY. STRAUBER

rotation-free and discrete divergence-free functions are in a similar relation as the cor-
responding subspaces of (H1

0)n, and there is a third orthogonal subspace consisting of
discrete harmonic functions. The optimal constant of the discrete inf-sup condition
can therefore be computed in this much smaller third space. These results are of inter-
est for the iterative solution of stationary problems for the Stokes and linear elasticity
equations, and for long-term calculations in the time-dependent case for the follow-
ing reasons: if there exists a Crouzeix-Velte decomposition, then independently of
the domain and its triangulation, there is an eigenvalue 1 of high multiplicity (of the
order of inner grid points). Then, the error components lying in the eigensubspace
corresponding to this eigenvalue can be removed by one step of a simple damped
Jacobi iteration. The remaining error is connected only with boundary effects. Since
in the two-dimensional case the spectrum is symmetric with respect to 1/2, the opti-
mal iteration parameters can be calculated using only a lower estimate of the inf-sup
constant. Moreover, the conjugate gradient iteration automatically takes advantage
of such a spectrum and converges faster than for discrete spaces without a decompo-
sition.

In [13], the Uzawa and Arrow-Hurwitz iterations are investigated and are shown
to reach the third Crouzeix-Velte subspace after at most 2 steps, and an improved
convergence estimate is derived for the conjugate gradient method using the esti-
mates of the inf-sup constant. In [16], the well-known staggered grid approximation
of the Stokes problem is investigated. The existence of the discrete Crouzeix-Velte
decomposition is proved in the case of a non-equidistant grid for the Shortley-Weller
approximation, for a finite volume scheme and in the case of second order approxima-
tion and homogeneous Dirichlet boundary conditions. The first order staggered grid
approximation in a special case is investigated in [12]. This result was generalized
in [6] to general two and three-dimensional domains. In [14], the Crouzeix-Velte de-
composition is generalized with respect to boundary conditions and boundary value
problems. Moreover, in the discrete case, the gap between the lower-order staggered
grid and finite volume approximations and the high-order Scott-Vogelius elements is
filled by proving that Fortin-Soulie elements also admit such a decomposition.

The aim of the present paper is to investigate the staggered grid approximation of
the Stokes problem in a polar coordinate system, and to prove the existence of the
discrete Crouzeix-Velte decomposition for the unit disk, in the case of second order
approximation and homogeneous Dirichlet boundary conditions. Further we present
computational results using the Uzawa algorithm (as outer iteration) and solving the
discrete Poisson equations by the conjugate gradient method (as inner iteration) with
an effective preconditioning matrix and FFT algorithm.

The outline of the paper is as follows. In Section 2, the necessary notations and
the Crouzeix-Velte decomposition in the continuous case as well as the Stokes prob-
lem in the polar coordinate system are introduced. In Section 3, the discrete Stokes
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problem is described. In Section 4, the discrete Crouzeix-Velte decomposition is in-
vestigated, and it is shown that this decomposition exists for the disk. Finally, in
Section 5 we show the computational results. The results show that the discretiza-
tion obeying a discrete Crouzeix-Velte decomposition leads to effectively solvable
systems of algebraic equations. The average number of the outer iterations using the
Uzawa algorithm was 3-5, and the number of inner iterations needed to reach the
stopping criterion of the conjugate gradient method, using the best preconditioning
matrix, was only 2.

2. N

2.1. The Stokes problem on the unit disk.Let Ω be the unit disk

Ω = {(r, ϕ)|0 ≤ r < 1,0 ≤ ϕ < 2π} ,
and consider the following Stokes problem:

∆rϕu− u

r2
− 2

r2

∂v

∂ϕ
− ∂p
∂r

= f1, (2.1)

∆rϕv − v

r2
+

2
r2

∂u
∂ϕ
− 1

r
∂p
∂ϕ

= f2, (2.2)

div~u =
1
r

(
∂

∂r
(ru) +

∂v

∂ϕ

)
= 0, (2.3)

where (u, v) = ~u and (f1, f2) = ~f and

∆rϕ =
1
r
∂

∂r

(
r
∂

∂r

)
+

1
r2

∂2

∂ϕ2
.

On the boundary, homogeneous Dirichlet boundary conditions are imposed:

~u = 0, on∂Ω, (2.4)

The problem consists in finding a vector-function~u(x) and a scalar functionp(x)
that satisfy the system of partial differential equations above. The function~u is the ve-
locity of fluid andp is the pressure. We mention that the appearance of v in equation
(2.1) and the appearance of u in equation (2.2) cause difficulty during the numerical
solution of (2.1)-(2.4).

A unique weak solution~u ∈ V andp ∈ P exists when, for example,~f ∈ (L2(Ω))n,
(see, e.g., [11],[17]), whereP := L2,0(Ω) the subspace ofL2(Ω) of square integrable
functions with zero integral overΩ andV := (H1

0(Ω))n with the Hilbert space

L2(Ω) = {φ|(φ, φ) < ∞} , (φ, ψ) =

∫

Ω

φψdΩ

and the Sobolev space

H1
0(Ω) =

{
φ|φ ∈ L2(Ω),D1φ ∈ L2(Ω), φ = 0 on∂Ω

}
,
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whereD1 denotes any derivative of the first order.

For existence and uniqueness of the classical solution see [10]. For the numerical
solution by finite element methods see [9].

2.2. The Crouzeix-Velte decomposition.For ann > 2, let (·, ·) denote the Eu-
clidean scalar product in IRn, moreover, letA, B,C ∈ IRn×n be matrices satisfying

A = B + C, (2.5)

A = AT > 0, (2.6)

B = BT ≥ 0 , C = CT ≥ 0, (2.7)

δ := dim kerB ≥ 1 , % := dim kerC ≥ 1. (2.8)

Then, with a suitable subspaceW ⊂ IRn (which may turn out to be empty) and with
orthogonality to be understood in the sense of the scalar product (A·, ·), the following
orthogonal decomposition of IRn can be derived (see [15]):

IRn = kerB⊕ kerC ⊕W. (2.9)

We call this decomposition the algebraic Crouzeix-Velte decomposition of IRn. It is
of interest due to the following correspondences connected with the matrices in (2.5):

A ∼ −∆, B ∼ − grad div, C ∼ curl rot,

where∆ is the (vector) Laplace operator and where the sign∼ expresses only an
analogy between a differential operator and a matrix, and is not necessarily a (good)
approximation. In this sense (2.5) corresponds to the well-known identity

−∆ = − grad div+ curl rot (2.10)

of vector analysis.

In the discrete case, the velocity space (which approximates (H1(Ω))d or a sub-
space of the latter) will be denoted byVh, the pressure space will be denoted byPh,
and divh and roth will be written for the discrete equivalents of the divergence and
rotation operator,∆h will denote the discrete Laplace operator. The matrix corre-
sponding to the mapping− divh from the velocity space into the pressure space is
denoted byB̃h and we introduce the following notations:̃Ch for the matrix of the
operator roth andAh for the matrix of the operator−∆h. If Ah, B̃h, C̃h matrices satisfy
the following:

Ah = Bh + Ch,

Ah = AT
h > 0, (2.11)

whereBh = B̃T
h B̃h andCh = C̃T

h C̃h and kerB̃h , ∅ and kerC̃h , ∅, then a discrete
Crouzeix-Velte decomposition exists and (2.9) takes the form

Vh = ker divh⊕ ker roth⊕W = Vh,0 ⊕ Vh,1 ⊕ Vh,β.
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Ph is decomposed similarly into three orthogonal subspaces:

Ph = ker gradh⊕divh ker roth⊕ divh Vh,β = Ph,0 ⊕ Ph,1 ⊕ Ph,β.

After discretization by the finite element or finite difference methods, the Stokes
problem takes the following form ([9],[16]):

(
Ah B̃T

h
B̃h 0

) (
u
p

)
=

(
f
0

)
. (2.12)

For the specific formulae of these matrices in a polar coordinate system see below
Section 3. With thesse matrices the Schur complement isSh := B̃hA−1

h B̃T
h . For the

numerical solution of the discretized Stokes problem, the eigenvalue problem forSh

is important:

Shph = λhph

If the discrete Crouzeix-Velte decomposition exists, thenλh ∈ [0,1] ([12]).
The analytical case of the Crouzeix-Velte decomposition for two-dimensional do-

mains was investigated, and for the circle domain, the spectrum of the Schur com-
plement was proved to be 0,1/2,1, where 1/2 and 1 have infinite multiplicity, in [3],
[8] and [4]. For the analytical case a three-dimensional ball is described in [18]. The
results of the spectrum for tube domains are contained in [7].

3. T       

The difference approximation on a staggered grid will be considered here. In this
case, whereΩ is the unit circle subdivided by an equidistant grid according tor andϕ
into n*m cells. The cell midpoints are pressure nodes, the pressure vector is denoted
by ph and its components bypi j , with i = 1, . . . ,n; j = 1, . . . ,m. The sides of the
cells contain as their midpoints the velocity nodes: nodes of theu-components of the
velocity are on the sides according tor, nodes of thev-components are on the sides
according toϕ. The velocity vector is~uh, its components are denoted byuh andvh and
theirs components byui j andvi j , i = 1, . . . ,n, j = 1, . . . ,m. The boundary values
areun, j := 0 where j = 1, . . . ,m, furtheruh andvh are periodical with respect toϕ,
that is

ui,0 = ui,m, vi,0 = vi,m, i = 1, . . . ,n. (3.1)

For the approximation of the Stokes problem we need the discrete gradient, the dis-
crete divergence operator and the vector Laplace operator. Moreover, we will also
define the discrete rotation and curl operators. For the gradient:

(gradp) =


∂p
∂r

1
r
∂p
∂ϕ

 (3.2)
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we shall use the approximation:

(gradh ph)i j :=

(
(pi+1, j − pi, j)/hr

1
r i

(pi, j+1 − pi, j)/hϕ

)
(3.3)

wherehr := 1/n, hϕ := 1/m andr i := (i − 1/2)hr , i = 1, . . . ,n, j = 1, . . . ,m. For the
approximation of the divergence operator, we shall use:

(divh~uh)i j :=
r iui, j − r i−1ui−1, j

r ihr
+
vi, j − vi, j−1

r ihϕ
, (3.4)

wherer i := ihr , i = 1, . . . ,n, j = 1, . . . ,mandr0u0, j = 0.

For the rotation:

(rot~u) =
1
r

(
∂

∂r
(rv) − ∂u

∂ϕ

)
(3.5)

we shall use the approximation:

(roth~uh)i j :=
r i+1vi+1, j − r ivi, j

r ihr
− ui, j+1 − ui, j

r ihϕ
, (3.6)

wherei = 1, . . . ,n− 1, j = 1, . . . ,m, and

(roth~uh)n j :=
rnvn, j

rnhr/2

where j = 1, . . . ,m. For scalar functions, we define the operator curl as follows:

(curlψ) :=


1
r
∂ψ
∂ϕ

−∂ψ∂r ,

 ,

and we shall approximate this operator in the following way:

(curlψ)i j :=


1
r i

ψi j−ψi, j−1

hϕ

−ψi j−ψi−1, j

hr
,

 .

Since

(grad div~u− curl rot~u) =


∂
∂r

(
1
r
∂
∂r (ru) + 1

r
∂v
∂ϕ

)
− 1

r
∂
∂ϕ

(
1
r
∂
∂r (rv) − 1

r
∂u
∂ϕ

)
1
r
∂
∂ϕ

(
1
r
∂
∂r (ru) + 1

r
∂v
∂ϕ

)
+ ∂

∂r

(
1
r
∂
∂r (rv) − 1

r
∂u
∂ϕ

)
 ,

that is

(grad div~u− curl rot~u) =


1
r
∂
∂r

(
r ∂u
∂r

)
− u

r2 − 2
r2

∂v
∂ϕ + 1

r2
∂2u
∂ϕ2

1
r
∂
∂r

(
r ∂v∂r

)
− v

r2 + 2
r2
∂u
∂ϕ + 1

r2
∂2v
∂ϕ2

 ,

identity (2.10) holds in polar coordinate system in the following form:


∆rϕu− u
r2 − 2

r2
∂v
∂ϕ

∆rϕv − v
r2 + 2

r2
∂u
∂ϕ

 = (grad div~u− curl rot~u). (3.7)
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Using identity (3.7) and the approximation of the divergence (3.4), rotation (3.6) and
curl (3.7), we can approximate the Stokes problem (2.1), (2.2), (2.3), (2.4) in the
following form:

(
Ãh B̃T

h
B̃h 0

) (
~u
p

)
=

(
~f
0

)
. (3.8)

whereB̃h corresponds to the negative divergence operator and−Ãh corresponds to
the left side of identity (3.7) and is the following:

−(Ãh~uh)i j : =
1
hr

( 1
r i+1

((ru)r )i+1, j − 1
r i

((ru)r )i, j

)
+ (3.9)

+
1
hr

( 1
r i+1

(vϕ)i+1, j − 1
r i

(vϕ)i, j

)
+

+
1

hϕr2
i

(
(uϕ)i, j+1 − (uϕ)i, j

)
−

− 1

hϕr2
i

(
((rv)r )i+1, j − ((rv)r )i+1, j−1

)

−(Ãh~vh)i j : =
1
hr

( 1
r i

((rv)r )i+1, j − 1
r i−1

((rv)r )i, j

)
+ (3.10)

+
1
hr

( 1
r i−1

(uϕ)i−1, j+1 − 1
r i

(uϕ)i, j+1

)
+

+
1

hϕr2
i

(
(vϕ)i, j+1 − (vϕ)i, j

)
−

− 1

hϕr2
i

(
((ru)r )i, j+1 − ((ru)r )i, j

)
,

wherei = 1, . . . ,n, j = 1, . . . ,m and taking into account (3.1), and we used the
following notations:

(uϕ)i, j : =
ui, j − ui, j−1

hϕ
,

(vϕ)i, j : =
vi, j − vi, j−1

hϕ
,

((ru)r )i, j : =
r iui, j − r i−1ui−1, j

hr
,

((rv)r )i, j : =
r ivi, j − r i−1vi−1, j

hr
.

(3.11)
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We also introduce the following notation:̃Ch for the matrix of the operator roth.

For pressure vectorsph,qh and velocity vectors~uh = (uh, vh)T , ~wh = (th, sh)T the
following discrete scalar products and the corresponding norms are introduced: and

(ph,qh)0,r,h :=
n∑

i=1

m∑

j=1

pi j qi j r ihrhϕ, (3.12)

‖ph‖20,r,h := (ph, ph)0,r,h,

and

(~uh, ~wh)0,h :=
n∑

i=1

m∑

j=1

(ui j ti j r i + vi j si j r i)hrhϕ (3.13)

‖~uh‖20,h := (~uh, ~uh)0,h.

Theorem 1. (Ãh~uh, ~uh)0,h = ‖B̃h~uh‖20,r ,h + ‖C̃h~uh‖20,r,h holds for all vectors~uh :=

(uh, vh)T ∈ ~Vh
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P. We apply partial summation to (Ãh~uh, ~uh)0,h:

(Ãh~uh, ~uh)0,h =

n−1∑

i=1

m∑

j=1

hϕ
r i+1hr

(r i+1ui+1, j − r iui, j)
2 +

+

m∑

j=1

hϕ
r1hr

(r1u1, j)
2 +

n∑

i=1

m∑

j=1

hr

r ihϕ
(ui, j+1 − ui, j)

2 −

−
n∑

i=1

m∑

j=1

(
r i

r i+1
(vi+1, jui, j − vi+1, j−1ui, j) − r i

r i
(vi, jui, j − vi, j−1ui, j)

)
−

−
n∑

i=1

m∑

j=1

(
r i+1

r i
(vi+1, j−1ui, j − vi+1, jui, j) − r i

r i
(vi, j−1ui, j − vi, jui, j)

)
+

+

n−1∑

i=1

m∑

j=1

hϕ
r ihr

(r i+1vi+1, j − r ivi, j)
2 + (3.14)

+

m∑

j=1

hϕ
rnhr

(rnvn, j)
2 +

n∑

i=1

m∑

j=1

hr

r ihϕ
(vi, j+1 − vi, j)2 −

−
n∑

i=1

m∑

j=1

(
r i

r i−1
(ui−1, j+1vi, j − ui−1, jvi, j) − r i

r i
(ui, j+1vi, j − ui, jvi, j)

)
−

−
n∑

i=1

m∑

j=1

(
r i−1

r i
(ui−1, jvi, j − ui−1, j+1vi, j) − r i

r i
(ui, jvi, j − ui, j+1vi, j)

)
.

‖B̃h~uh‖20,r ,h may be written in the following form:

‖B̃h~uh‖20,r ,h =

n∑

i=1

m∑

j=1

( hϕ
r ihr

(r iui, j − r i−1ui−1, j)
2 + (3.15)

+
hr

r ihϕ
(vi, j − vi, j−1)2 +

2
r i

(r iui, j − r i−1ui−1, j)(vi, j − vi, j−1)
)
.

‖C̃h~uh‖20,r,h can be written as follows:

‖C̃h~uh‖20,r,h =

n∑

i=1

m∑

j=1

( hr

r ihϕ
(ui, j+1 − ui, j)

2 +
hϕ
r ihr

(r i+1vi+1, j − r ivi, j)
2 −

− 2
r i

(ui, j+1 − ui, j)(r i+1vi+1, j − r ivi, j)
)
. (3.16)
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Performing some index shifts and taking into account the periodicity in the direction
ϕ and the homogeneous boundary conditions we get:

(Ãh~uh, ~uh)0,h − ‖B̃h~uh‖20,r ,h − ‖C̃h~uh‖20,r,h = 0.

�

Remark1. Ãh a symmetric matrix in the sense of the scalar product (3.13). This
means that Theorem can be described in matrix terms as follows:

(DÃÃh~uh, ~uh) = (DB̃B̃h~uh, B̃h~uh) + (DC̃C̃h~uh, C̃h~uh) =

= (B̃T
h DB̃B̃h~uh, ~uh) + (C̃T

h DC̃C̃h~uh, ~uh), (3.17)

where (.,.) is the Euclidean scalar product andDÃ,DB̃,DC̃ are diagonal matrices
corresponding to (3.13) and (3.12):

DÃ = diag (r1Im×m, ..., rn−1Im×m, r1Im×m, ..., rnIm×m) ,

DB̃ = diag (r1Im×m, ..., rnIm×m, ) , (3.18)

DC̃ = diag (r1Im×m, ..., rnIm×m, ) .

From (3.17) we get:

DÃÃh = B̃T
h DB̃B̃h + C̃T

h DC̃C̃h. (3.19)

That isDÃÃh is a symmetric matrix and can be written in the following form:

DÃÃh =: Ah = Bh + Ch, (3.20)

whereBh = B̂T
h B̂h andCh = ĈT

h Ĉh with the notationB̂h = D1/2
B̃

B̃h, Ĉh = D1/2
C̃

C̃h.

4. N 

Using the notations (3.20), our problem consists in finding the solution of the
following algebraic system:

Ah~uh + B̂T
h ph = ~fh, (4.1)

B̂h~uh = gh. (4.2)

We use the Uzawa-algorithm ([9]) to solve (4.1), (4.2):

p(0)
h := 0,

p(i+1)
h := p(i)

h + ω(B̂h~u
(i)
h − gh) (4.3)

~u(i)
h := A−1

h ( ~fh − B̂T
h p(i)

h )

i = 0, 1,2, . . . .
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(4.3) can be written in the following form:

p(0)
h = 0,

p(i+1)
h = p(i)

h + ω(ψh − Shp(i)
h ) (4.4)

i = 0, 1,2, . . . .

whereψh = B̂hA−1
h
~fh − gh andSh is the discrete Schur complement operator, that

is Sh = B̂hA−1
h B̂T

h . Since the discrete Crouzeix-Velte decomposition exists, using
the Uzawa-algorithm we can reach the third Crouzeix-Velte subspace after at most 2
steps ([13]). In this subspace the spectrum of the Schur complement is closer, and the
algorithm performs effective convergence. We introduce the following notations: the
optimal iteration parameter isωh

opt := 2/(λh + λ̄h), whereλh andλh are the smallest
and the largest of the eigenvalues different from 0 and 1 of the discrete Schur com-
plement; andω = 2 is the optimal iteration parameter for the undiscretized Uzawa-
algorithm, see ([13]). Table 1 shows the values of the optimal iteration parameter
(ωh

opt) and the smallest and largest eigenvalues (λh, λh).

Table 1
n = m 5 10 20 40 60
λh 0.5133234 0.5036472 0.5009311 0.5002340 0.5001041
λh 0.5248821 0.5188427 0.5154488 0.5138629 0.5133509
ωh

opt 1.926401 1.95601 1.967768 1.972198 1.973447

In a first numerical experiment in (4.1), (4.2) we took random values for the exact
solution of ph which was projected to the orthogonal complement of the kernel of
B̂T

h . Hereψh was calculated asψh := Shph. After i = 1,2 initial steps withω =

1, the optimal parameters have been taken. In Table 2
〈
i;ωh

opt

〉
means the number

of iterations (included the initial steps) in the case ofi initial steps and after that
iterations withωh

opt. 〈i;ω = 2〉 means the number of iterations in the case ofi initial
steps followed by iterations withω = 2. For comparison we show the number of
iterations in the case ofω = 1 iteration parameter in all steps, which is in widespread
use, denoted by〈1;ω = 1〉. The numerical convergence rateq := (‖e(it)‖/‖e(0)‖)1/it

is also shown, wheree(0) is the initial pressure error ande(it) is the final error after
it iterations. The stopping criterion is that the initial pressure error in the Euclidean
norm has been reduced by a factor of 10−5. In the inner iteration (in the conjugate
gradient method for details see below), it is necessary to use a stronger stopping
criterion: that the initial error in the Euclidean norm has been decreased at least by a
factor of 10−6. (If in the outer iteration the initial pressure error is reduced by a factor
of 10−10, then in the inner iteration it is necessary to decrease the initial error at least
by a factor of 10−11.)
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Table 2
n = m 5 10 20 40 60
〈1;ω = 1〉 14 15 16 17 17

q 0.4179 0.4172 0.4131 0.4166 0.4129〈
1;ωh

opt

〉
4 4 4 4 4

q 0.0056 0.0057 0.0046 0.0041 0.0041
〈1;ω = 2〉 5 4 4 4 4

q 0.0291 0.0138 0.0105 0.0090 0.0083〈
2;ωh

opt

〉
4 5 5 5 5

q 0.0029 0.0044 0.0041 0.0034 0.0032
〈2;ω = 2〉 5 5 5 5 5

q 0.0144 0.0106 0.0090 0.0074 0.0067

In the second numerical experiment, an algebraic Stokes problem with known
solution was generated. (The exact solution is:uexact = r cosϕ + 2r sinϕ + 3,
vexact = 4r cosϕ − r sinϕ + 2 andpexact = 2r cosϕ. In this case div(u, v) = 0 and
the solvability condition of (4.1), (4.2) is satisfied.) The number of outer iterations
and the numerical convergence rate are shown in Table 3 depending on the iteration
parameter. Here, iteration was stopped if the initial pressure error had been reduced
by a factor of 10−6. In the inner iteration the initial error in the Euclidean norm was
decreased by a factor of 10−7.

Table 3
n = m 5 10 20 40 60 80
〈1;ω = 1〉 21 22 23 24 25 25

q 0.4693 0.5022 0.5606 0.5784 0.6354 0.6143〈
1;ωh

opt

〉
5 5 5 5 5 -

q 0.0341 0.0690 0.0742 0.0932 0.0110 -
〈1;ω = 2〉 5 4 4 4 3 3

q 0.0342 0.0283 0.0312 0.0422 0.0043 0.00731〈
2;ωh

opt

〉
5 6 6 6 6 -

q 0.0112 0.0690 0.0742 0.0932 0.0092 -
〈2;ω = 2〉 6 5 5 4 4 4

q 0.0341 0.0283 0.0312 0.0087 0.0043 0.0073

Because of the large amount of memory needed,ωh
opt was not calculated in the

case ofn = m = 80.
Instead of the calculation ofA−1

h in (4.3) we used the fast Fourier transformation
in combination with the preconditioned conjugate gradient method. For this, let us
introduce the following notations:

~uh,F := Q∗2n−1~uh, ph,F := Q∗nph, (4.5)

Ah,F := Q∗2n−1AhQ2n−1, B̂h,F := Q∗nB̂hQ2n−1,
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whereQk, the matrix of the Fourier transformation, is a block-diagonal matrix with
k blocksQ = (q j,l)m

j,l=1 andq j,l =
√

1/m eihϕl j . Now, instead of (4.3) the following
iteration for the transformed variables can be used:

~fh,F := Q∗2n−1
~fh, gh,F := Q∗ngh, (4.6)

p(0)
h,F := 0,

i = 0, 1,2, . . . ,maxit :[
p(i+1)

h,F := p(i)
h,F + ω(B̂h,F~u

(i)
h,F − gh,F) (4.7)

~u(i)
h,F := A−1

h,F( ~fh,F − B̂∗h,F p(i)
h,F)

]

~uh := Q2n−1~uh,F , ph := Qnph,F ,

Observe that in a cartesian coordinate system,Ah,F would be block-diagonal with
tridiagonal blocks. In our case of polar coordinates, however,Ah,F has 7 nonzero
diagonals, the main diagonal, the±m-th, the±(m − 1) ∗ n-th and the±(m − 1) ∗
n + m-th diagonal (using the Matlab notation). To solve the equationAh,F x = b
the preconditioned conjugate gradient method was used combined with incomplete
Gauss-elimination. (Additional diagonals were not used in the incomplete Gauss-
elimination. This version is sometimes called ILU(0).) In the numerical experiments
several ILU(0)-type preconditioning matrices fitting the structure ofAh,F were inves-
tigated andTopt was found to be the optimal preconditioner from the 5 precondition-
ers considered, resulting in the fastest convergence with a few number of iterations.
Topt is a tridiagonal matrix consisting of the main diagonal and them-th and−m-th di-
agonal ofAh,F . In the numerical experiments above, this preconditioning matrix was
used. Table 4 displays the number of inner iterations needed to reach the stopping cri-
terion of the conjugate gradient method, in that the initial error in the Euclidean norm
has been decreased by a factor of 10−4. In the TableTopt shows that the matrixTopt

was used as the preconditioning matrix, and the unpreconditioned conjugate gradient
method is denoted byT = I . For comparison we show the number of iterations with
the preconditioning matrix, denoted byTD, which contains only the main diagonal
of Ah,F and two other preconditioning matrices denoted byT∗ andT∗∗. HereT∗ is
a tridiagonal matrix consisting of the main diagonal and the (m− 1) ∗ n + m-th and
−((m−1)∗n+m)-th diagonal ofAh,F andT∗∗ is a pentadiagonal matrix with the main
diagonal and the±m-th and±(m− 1) ∗ n + m-th diagonal ofAh,F .

Table 4
n = m 5 10 20 50 100 200 500 640
Topt 9 12 12 12 8 5 5 4
T = I 25 59 76 197 362 - - -
TD 19 39 72 106 125 - - -
T∗ 19 39 72 107 125 - - -
T∗∗ 7 8 8 8 5 3 2 2
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Because of the large amount of computational time needed, the number of the
iteration was not calculated in the case ofn = m ≥ 200, and the preconditioning
matrices areT = I , TD or T∗.

In Table 5 we show the computational time of the conjugate gradient method (inner
iteration) to reach our stopping criterion 10−4, and the necessary memory for the
incomplete Gauss-elimination using the different preconditioning matrices andn =

m = 50.

Table 5
n = m = 50 computational time (s) memory needed (byte)
Topt 32.28 2400
T = I 202.70 -
TD 163.95 800
T∗ 326.47 2400
T∗∗ 63.92 4000

The full computational time of the second numerical experiment in the case of
〈1;ω = 2〉 andn = m = 50 is the following: the time of the FFT and IFFT and the
calculation ofψh are altogether 25, 155 s and the full time of the outer iteration (see
(4.7), maxit = 3) is 121.125 s. Here the stopping criterion of the inner iteration is
10−4 and the stopping criterion of the outer iteration is 10−3 and we usedTopt as the
preconditioning matrix.
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