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AsstraAcT. In this paper, a staggered grid approximation of the Stokes problem on
the unit disk is investigated. A full description of the approximation and the dis-
crete Crouzeix-Velte decomposition is given in the case of homogeneous Dirichlet
boundary conditions. Further we consider the Uzawa algorithm combined with
the conjugate gradient method and FFT algorithm for solving the discrete Poisson
equations. Computational results show tffe@iveness of this discretization.
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1. |NTRODUCTION

The Crouzeix-Velte decompaosition is a decomposition into three orthogonal sub-
spaces of the customary Sobolev spadé((z))d of vector functions defined over a
lipschitzian domaif2 c RY which was first described in [4] and later, independently,
in [18]. This decomposition is similar to the well-known Helmholtz-Weyl decompo-
sition but diferent from the latter; not only by the prescribed boundary conditions
(originally homogeneous Dirichlet conditions) but also by the properties of the func-
tions in the three subspaces. E.g., along with the subspaces of divergence-free and
rotation-free functions, there is a third subspace the functions of which have both
nonzero divergence and rotation or are the zero function. In [18] and [5], the decom-
position was used to get more information about the inf-sup constant of the Stokes
problem. The optimal inf-sup constant can be characterized by the third subspace
alone [12].

For the numerical solution of the Stokes problem and its connection to the inf-sup
problem, see [1], [9], [2]. In [3], additional results were gained about the inf-sup
constant for ring and disk domains.

If using finite diference methods for approximating the Stokes equations, and if
the discrete scheme admits a discrete Crouzeix-Velte decomposition, then the same
conclusions as in the continuous case can be drawn. The subspaces of the discrete
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130 GY. STRAUBER

rotation-free and discrete divergence-free functions are in a similar relation as the cor-
responding subspaces dﬁg{)”, and there is a third orthogonal subspace consisting of
discrete harmonic functions. The optimal constant of the discrete inf-sup condition
can therefore be computed in this much smaller third space. These results are of inter-
est for the iterative solution of stationary problems for the Stokes and linear elasticity
equations, and for long-term calculations in the time-dependent case for the follow-
ing reasons: if there exists a Crouzeix-Velte decomposition, then independently of
the domain and its triangulation, there is an eigenvalue 1 of high multiplicity (of the
order of inner grid points). Then, the error components lying in the eigensubspace
corresponding to this eigenvalue can be removed by one step of a simple damped
Jacobi iteration. The remaining error is connected only with bound#eygts. Since

in the two-dimensional case the spectrum is symmetric with respe¢tdtie opti-

mal iteration parameters can be calculated using only a lower estimate of the inf-sup
constant. Moreover, the conjugate gradient iteration automatically takes advantage
of such a spectrum and converges faster than for discrete spaces without a decompo-
sition.

In [13], the Uzawa and Arrow-Hurwitz iterations are investigated and are shown
to reach the third Crouzeix-Velte subspace after at most 2 steps, and an improved
convergence estimate is derived for the conjugate gradient method using the esti-
mates of the inf-sup constant. In [16], the well-known staggered grid approximation
of the Stokes problem is investigated. The existence of the discrete Crouzeix-Velte
decomposition is proved in the case of a non-equidistant grid for the Shortley-Weller
approximation, for a finite volume scheme and in the case of second order approxima-
tion and homogeneous Dirichlet boundary conditions. The first order staggered grid
approximation in a special case is investigated in [12]. This result was generalized
in [6] to general two and three-dimensional domains. In [14], the Crouzeix-Velte de-
composition is generalized with respect to boundary conditions and boundary value
problems. Moreover, in the discrete case, the gap between the lower-order staggered
grid and finite volume approximations and the high-order Scott-Vogelius elements is
filled by proving that Fortin-Soulie elements also admit such a decomposition.

The aim of the present paper is to investigate the staggered grid approximation of
the Stokes problem in a polar coordinate system, and to prove the existence of the
discrete Crouzeix-Velte decomposition for the unit disk, in the case of second order
approximation and homogeneous Dirichlet boundary conditions. Further we present
computational results using the Uzawa algorithm (as outer iteration) and solving the
discrete Poisson equations by the conjugate gradient method (as inner iteration) with
an dfective preconditioning matrix and FFT algorithm.

The outline of the paper is as follows. In Section 2, the necessary notations and
the Crouzeix-Velte decomposition in the continuous case as well as the Stokes prob-
lem in the polar coordinate system are introduced. In Section 3, the discrete Stokes
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problem is described. In Section 4, the discrete Crouzeix-Velte decomposition is in-
vestigated, and it is shown that this decomposition exists for the disk. Finally, in
Section 5 we show the computational results. The results show that the discretiza-
tion obeying a discrete Crouzeix-Velte decomposition leadstectvely solvable
systems of algebraic equations. The average number of the outer iterations using the
Uzawa algorithm was 3-5, and the number of inner iterations needed to reach the
stopping criterion of the conjugate gradient method, using the best preconditioning
matrix, was only 2.

2. NoTtaTIONS
2.1. The Stokes problem on the unit disk.Let Q be the unit disk
Q={(r,9)0<r<10<¢< 2n},
and consider the following Stokes problem:

Ar¢u ______ - = f]_, (2 . 1)

Ago-—+ =220 =, (2.2)

divd = - (%(ru) 3—;) = 0, (2.3)
where (,0) = dand (f, f,) = f and
10( 0 1 6°
e = Fa(ra) T 2og
On the boundary, homogeneous Dirichlet boundary conditions are imposed:
=0, ondQ, (2.4)

The problem consists in finding a vector-functidix) and a scalar functiop(x)
that satisfy the system of partialffiirential equations above. The functidis the ve-
locity of fluid andp is the pressure. We mention that the appearance of v in equation
(2.1) and the appearance of u in equation (2.2) caufieudty during the numerical
solution of (2.1)-(2.4).

A unique weak solutioif € V andp € P exists when, for exampld, € (Lo())",
(see, e.g., [11],[17]), wher := Ly o(Q2) the subspace df»(Q2) of square integrable
functions with zero integral ove® andV := (Hé(Q))” with the Hilbert space

Lal€d) = (616.6) < o1 (@) = [ owee
and the Sobolev space
H3(Q) = {#16 € L2(). D¢ € Lo(Q). ¢ = 0 0ndQy}.
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whereD?! denotes any derivative of the first order.

For existence and uniqueness of the classical solution see [10]. For the numerical
solution by finite element methods see [9].

2.2. The Crouzeix-Velte decompositionFor ann > 2, let (,-) denote the Eu-
clidean scalar product in Rmoreover, lef, B,C € R™" be matrices satisfying

A = B+C, (2.5)

A = AT>0, (2.6)

B=B">0 , C=C'>0, (2.7)

6 :=dimkerB>1 , p:=dimkerC> 1 (2.8)

Then, with a suitable subspa¥¢ c R" (which may turn out to be empty) and with
orthogonality to be understood in the sense of the scalar prodyey, ¢he following
orthogonal decomposition of Rean be derived (see [15]):

R" = kerBe kerC e W. (2.9)

We call this decomposition the algebraic Crouzeix-Velte decompositionofltis
of interest due to the following correspondences connected with the matrices in (2.5):

A~ -A, B~ —graddiy C ~ curlrot,

whereA is the (vector) Laplace operator and where the sigexpresses only an
analogy between afiierential operator and a matrix, and is not necessarily a (good)
approximation. In this sense (2.5) corresponds to the well-known identity

—A = —grad div+ curl rot (2.10)
of vector analysis.

In the discrete case, the velocity space (which approximaté&X)? or a sub-
space of the latter) will be denoted by, the pressure space will be denotedryy
and diy, and rof, will be written for the discrete equivalents of the divergence and
rotation operatorAn will denote the discrete Laplace operator. The matrix corre-
sponding to the mapping divy, from the velocity space into the pressure space is
denoted byB,, and we introduce the following notatlonélh for the matrix of the
operator rgt andAy, for the matrix of the operaterAy. If Ap, By, C;, matrices satisfy
the following:

An = Bn+GCy,
An = Al >0, (2.11)

whereBy, = Bl B, andCy, = C] €y, and kerB, # @ and ketCy, # @, then a discrete
Crouzeix-Velte decomposition exists and (2.9) takes the form

Vh = ker divh @ ker roh @W = Vg @ Vi1 @ Vhg.
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Py, is decomposed similarly into three orthogonal subspaces:

Ph = ker grag, @ divy ker rot, @ divh Vhg = Pho @ Ph1 @ Phg.

After discretization by the finite element or finitefldrence methods, the Stokes
problem takes the following form ([9],[16]):

An BN \(u) (f
( B 0 o)=lo]) (2.12)
For the specific formulae of these matrices in a polar coordinate system see below
Section 3. With thesse matrices the Schur compleme8 is= ByA.*B! . For the

numerical solution of the discretized Stokes problem, the eigenvalue problep for
iS important:

Shph = AnPh

If the discrete Crouzeix-Velte decomposition exists, ther [0, 1] ([12]).

The analytical case of the Crouzeix-Velte decomposition for two-dimensional do-
mains was investigated, and for the circle domain, the spectrum of the Schur com-
plement was proved to be /2, 1, where ¥2 and 1 have infinite multiplicity, in [3],

[8] and [4]. For the analytical case a three-dimensional ball is described in [18]. The
results of the spectrum for tube domains are contained in [7].

3. THE STAGGERED GRID APPROXIMATION ON A UNIT DISK

The diference approximation on a staggered grid will be considered here. In this
case, wher€ is the unit circle subdivided by an equidistant grid accordingandy
into n*m cells. The cell midpoints are pressure nodes, the pressure vector is denoted
by pn and its components bgij, withi = 1,...,n;j = 1,...,m. The sides of the
cells contain as their midpoints the velocity nodes: nodes afiitemponents of the
velocity are on the sides accordingrtonodes of the-components are on the sides
according tap. The velocity vector isi,, its components are denotedlyyandv, and
theirs components by;; andvij, i = 1,...,n, j = 1,...,m. The boundary values
areunj := 0 wherej = 1,...,m, furtheru, andu, are periodical with respect tp,
that is

Uo=Um Vio=vim I=1...,N (3.2)
For the approximation of the Stokes problem we need the discrete gradient, the dis-

crete divergence operator and the vector Laplace operator. Moreover, we will also
define the discrete rotation and curl operators. For the gradient:

p
(gradp) :( 1%p ] (3.2)

r dp
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we shall use the approximation:

i+1,j = Mi.j /y
(grad, pn)ij := ( Fl,((ppi,,ijl —ppij,?)/m

(3.3)

whereh, :=1/n, h, := 1/mandf; ;= (i-1/2)h,i=1,...,n, j=1,...,m Forthe

approximation of the divergence operator, we shall use:
lilij — fi-ali-1j  0ij — Vi j-1
Tihy T h¢, ’

wherer; :=ih;,i=1,...,n, j=1,...,mandroug; = 0.

(dth Uh)ij =

For the rotation:
1(6 ou
(rotlj) = F (E(rv) - %)

we shall use the approximation:

Tisavivyj —Tivij  Uij1 — Uij
rot, dn)ij = - ,
( th h)lj rihr rih¢
wherei=1,...,n-1, j=1,...,m and
FnUnj
rot, Gh)ni '= ———=
(1Ot to)n; rmhy /2

(3.4)

(3.5)

(3.6)

wherej = 1,...,m. For scalar functions, we define the operator curl as follows:

104
(curly) ::( _rg_f ]
or’
and we shall approximate this operator in the following way:
1 ¥ij—¥ij
(curly);j :=[ jt//ij—ngr—l,j }

Since

d (10 1 ov 10 (10
(grad divd — curl rotd) = ( o (Far(ru) + Fal_wg rog (Far(ro) -
1E(22(u)+ L

~— |
+
SIS
—~
=1

|

that is

(grad divd — curl rotd) = (

10 (rv)_ !

identity (2.10) holds in polar coordinate system in the following form:

Argu—§ - 5% .
"5 e6 | = (graddivd - curl rota).

(3.7)
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Using identity (3.7) and the approximation of the divergence (3.4), rotation (3.6) and
curl (3.7), we can approximate the Stokes problem (2.1), (2.2), (2.3), (2.4) in the

following form:
A Bl \(d\ (f
(& 5 )e)-() &

where By, corresponds to the negative divergence operator-akdcorresponds to
the left side of identity (3.7) and is the following:
1

iy = (W - (W) + (3.9)

1,1 1
+h_r(a(v¢)l+l,1 - r_i(vsﬂ)"l) +

1
+W ((U<p)i,j+1 - (utp)i,j) -
Pl
- (@ - @)
P
iy ¢ = (G - (@) + (3.10)
1

1 1
+h—r(a(u¢)|—1,1+1 - r_i(u<p)l,1+l) +

+i_2 ((0pijer = @pig) -
h,T;
1
hF?
wherei = 1,...,n, j = 1,...,mand taking into account (3.1), and we used the
following notations:

((ruijs = (ru)oi).

Ui,j — Ui j-1
(Up)i,j =,
h‘%’
Vi,j = Ui,j-1
(vo)i,j =,
h‘/’
) Fitij — ri-1Ui-1,j
()i =,
r
_ ~ o Tivij—Ticaviaj
(@ ==,
r

(3.11)
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We also introduce the following notatioft}, for the matrix of the operator rgt

For pressure vectorns,, g, and velocity vectorsiy = (Un, vn)", @h = (th, S0)' the
following discrete scalar products and the corresponding norms are introduced: and

n m
ZZ Pijdijribrhy, (3.12)

(Pn, Gh)o.r.h i=
i=1 j=1
IPnllGn = (Ph Ph)orh,
and
n m
(Un, Wh)op = Z Z Uijtijri + vijs;Ti)hehy (3.13)

i=1 j=1

IGhIGs == (Th, Ghon.

Theorem 1. (AnGh, Gh)on = ||I§htih||(2mh + ||C~:hcih||§’r’h holds for all vectordi, :=
(Un, vn)" € Vi
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Proor. We apply partial summation té\qth, Gn)on:

. n-1 m h
(Anlh, Un)on = Z = (r.+1u.+1J riui,j)2 +
lis
i=1 j=1
IR IO I
+ ——(ruyj)“ + _(Ul j+1 — Ui J)
j=l rlhr i-1 le I'|h¢,
n m _
- Z Z( (U|+1 jUi,j — Vi+1,j-1Ui j) I (Ui,jUi,j - Ui,j_lui,j)) -
i=1 j=1 Fi
R r|+1 i
- Z Z (UI+1j 1Uij = vig1jUij) — __(Ui,j—lui,j = vi,juij) | +
i=1 j=1 i
n-1 m h
+ Z m( i+1Vi+1,j — Tivi j) + (3.14)

hr

|M3

(Ul j+1 — Ui j)
r_

Ti Fi
poy Ui = U jon ) = (Uit — Uijei ) ) =
I

li-1 ri
( (Ui 1,jui,j — Ui-1,j+10i, J) - __(Ui,jvi,j - Ui,j+1Ui,j))'
ri

n m
~ h,
Bothlen = D ) (Fp-(ibiy —nicati-s)? + (3.15)
i=1 j=1
hr
+  ——(i,j —vij—1)" + = (rilij — ri-ai-1,j)(vi,j — vi,j 1))
Fihs,J

IChtlI2, ,, can be written as follows:
m
Z rh, (Ul j+1 — Ui j) + (rl+lUI+1j —Tiy ]) -
J:

M:

x 22
IChUllG .1

[y

- (Ul j+1 — Uij)(Tis1virej — Tivi J)) (3.16)
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Performing some index shifts and taking into account the periodicity in the direction
¢ and the homogeneous boundary conditions we get:

(Anlh, Gh)on — 1Bl 7 1, — IIChTnlI3, 1, = O.

O

Remarkl. A, a symmetric matrix in the sense of the scalar product (3.13). This
means that Theorem can be described in matrix terms as follows:

(DxAnTh, Gn) (DgBnih, Bnin) + (D&Chh, Chh) =
(é-rl; Dgéhljh, Uh) + (é;]l' Dééhljh, Uh), (3.17)

where (.,.) is the Euclidean scalar product dhgl Dg, Ds are diagonal matrices
corresponding to (3.13) and (3.12):

Di = diag (rilmsm, - M1l mxms T2l msm, <o Tnlmxm) 5
Dé = diag(rllmxm,...,rnlmxm,).

From (3.17) we get:
DxAn = Bl DgBn + C/ DeCh. (3.19)
That isDAAh is a symmetric matrix and can be written in the following form:
DiAn =: An = By + Cp, (3.20)

whereBy, = Bl B, andCp, = C! €y, with the notationBy, = Dé/zéh,éh = D(li/zéh.

4. NUMERICAL RESULTS

Using the notations (3.20), our problem consists in finding the solution of the
following algebraic system:

Anln+Blpn = fi, (4.2)
Bhlh = g (4.2)
We use the Uzawa-algorithm ([9]) to solve (4.1), (4.2):
p¥ = o,
PR = Py +w(Bal) - gn) (4.3)
ay = A Brpy)

i=012,....
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(4.3) can be written in the following form:

i’ = o
pﬂ+l) = pﬂ)+w(lﬁh—5hpﬂ)) (4.4)

1=012....

whereyy = BhAglf?, — gn and Sy, is the discrete Schur complement operator, that

is Sy = BhAgléE. Since the discrete Crouzeix-Velte decomposition exists, using
the Uzawa-algorithm we can reach the third Crouzeix-Velte subspace after at most 2
steps ([13]). In this subspace the spectrum of the Schur complement is closer, and the
algorithm performs ffective convergence. We introduce the following notations: the
optimal iteration parameter mgpt = 2/(4, + An), whereq,, andy, are the smallest

and the largest of the eigenvaluesfelient from 0 and 1 of the discrete Schur com-
plement; andv = 2 is the optimal iteration parameter for the undiscretized Uzawa-
algorithm, see ([13]). Table 1 shows the values of the optimal iteration parameter

(wgpt) and the smallest and largest eigenvalu_l%sih).

Table 1
n=m 5 10 20 40 60

A, 0.5133234 0.5036472 0.5009311 0.5002340 0.5001041
An 0.5248821 0.5188427 0.5154488 0.5138629 0.5133509
wgpt 1.926401 1.95601 1.967768 1.972198 1.973447

In a first numerical experiment in (4.1), (4.2) we took random values for the exact
solution of pn which was projected to the orthogonal complement of the kernel of
BE. Hereyy was calculated agy, := Shpn. Afteri = 1,2 initial steps withw =

1, the optimal parameters have been taken. In Tab(lie@pt) means the number

of iterations (included the initial steps) in the casei afitial steps and after that
iterations Witha)gpt. (i; w = 2) means the number of iterations in the caseiaftial

steps followed by iterations witkv = 2. For comparison we show the number of
iterations in the case @ = 1 iteration parameter in all steps, which is in widespread
use, denoted byl;w = 1). The numerical convergence raje= (||ei)]|/||e@)/t

is also shown, wherel© is the initial pressure error areéfV is the final error after

it iterations. The stopping criterion is that the initial pressure error in the Euclidean
norm has been reduced by a factor of 10In the inner iteration (in the conjugate
gradient method for details see below), it is necessary to use a stronger stopping
criterion: that the initial error in the Euclidean norm has been decreased at least by a
factor of 10°. (If in the outer iteration the initial pressure error is reduced by a factor
of 10719, then in the inner iteration it is necessary to decrease the initial error at least
by a factor of 1011,
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Table 2
n=m 5 10 20 40 60
Lo=1| 14 15 16 17 17

q 0.4179 0.4172 0.4131 0.4166 0.41p9
(Lwhy) 4 4 4 4 4

q 0.0056 0.0057 0.0046 0.0041 0.0041
Lw=2] 5 4 4 4 4

q 0.0291 0.0138 0.0105 0.0090 0.0083
(2;05) 4 5 5 5 5

q 0.0029 0.0044 0.0041 0.0034 0.0082
(2w=2] 5 5 5 5 5

q 0.0144 0.0106 0.0090 0.0074 0.0067

In the second numerical experiment, an algebraic Stokes problem with known
solution was generated. (The exact solution ligxact = r COSp + 2r Sing + 3,
Vexact = 4r COSp — r Sing + 2 and Pexact = 2r C0Sy. In this case diwf,v) = 0 and
the solvability condition of (4.1), (4.2) is satisfied.) The number of outer iterations
and the numerical convergence rate are shown in Table 3 depending on the iteration
parameter. Here, iteration was stopped if the initial pressure error had been reduced
by a factor of 108. In the inner iteration the initial error in the Euclidean norm was
decreased by a factor of 10

Table 3
n=m 5 10 20 40 60 80
Lw=1y| 21 22 23 24 25 25

q 0.4693 05022 0.5606 0.5784 0.6354 0.6143
(Lwhy) 5 5 5 5 5 -

q 0.0341 0.0690 0.0742 0.0932 0.0110 -
Liw=2]| 5 4 4 4 3 3

q 0.0342 0.0283 0.0312 0.0422 0.0043 0.00731
(2,05 5 6 6 6 6 -

q 0.0112 0.0690 0.0742 0.0932 0.0092 -
Qw=2| 6 5 5 4 4 4

q 0.0341 0.0283 0.0312 0.0087 0.0043 0.0073

Because of the large amount of memory neea@;t was not calculated in the
case ofn = m= 80.

Instead of the calculation d&;l in (4.3) we used the fast Fourier transformation
in combination with the preconditioned conjugate gradient method. For this, let us
introduce the following notations:

Uhr = Q5 10Uh, PnF = Qnbh, (4.5)
Anr = Q5 1AnQon-1, Bnr := Q;BnQan-1,
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whereQy, the matrix of the Fourier tran_sformation, is a block-diagonal matrix with
k blocksQ = (q;,)|_, andg;; = vI/m dli, Now, instead of (4.3) the following
iteration for the transformed variables can be used:

fue = Quafh  gnF = Qign. (4.6)
e = O
=012 ...,max :
[0 = Pk + w(BhrU: - gnF) 4.7)
Uﬂ,)F = A‘r:,}:(f;,F_ A*h,Fpﬂ,)F]

Uh = Qon-10UnhF, Ph := QnpPnr,

Observe that in a cartesian coordinate syst@py, would be block-diagonal with
tridiagonal blocks. In our case of polar coordinates, howe&gf, has 7 nonzero
diagonals, the main diagonal, then-th, the +(m — 1) = n-th and thex(m — 1) =

n + mth diagonal (using the Matlab notation). To solve the equafigax = b

the preconditioned conjugate gradient method was used combined with incomplete
Gauss-elimination. (Additional diagonals were not used in the incomplete Gauss-
elimination. This version is sometimes called ILU(0).) In the numerical experiments
several ILU(0)-type preconditioning matrices fitting the structuréygf were inves-
tigated andl,pt Was found to be the optimal preconditioner from the 5 precondition-
ers considered, resulting in the fastest convergence with a few number of iterations.
Toptis atridiagonal matrix consisting of the main diagonal anchtkte and-m-th di-
agonal ofA, e. In the numerical experiments above, this preconditioning matrix was
used. Table 4 displays the number of inner iterations needed to reach the stopping cri-
terion of the conjugate gradient method, in that the initial error in the Euclidean norm
has been decreased by a factor of4.an the Tabl€eTpt shows that the matriXopt

was used as the preconditioning matrix, and the unpreconditioned conjugate gradient
method is denoted by = |I. For comparison we show the number of iterations with
the preconditioning matrix, denoted By, which contains only the main diagonal

of Anr and two other preconditioning matrices denotedThyandT.... HereT., is

a tridiagonal matrix consisting of the main diagonal and the-(1) = n + m-th and
—((m-1)*n+m)-th diagonal ofA, ¢ andT... is a pentadiagonal matrix with the main
diagonal and them-th and+(m - 1) = n + m-th diagonal ofA .

Table 4
n=m|5 10 20 50 100 200 500 640

Topt 9 12 12 12 8 5 5 4
T=I11]25 59 76 197 362 - -

To 19 39 72 106 125 - - -
T, 19 39 72 107 125 - - -
T 7 8 8 8 5 3 2 2
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Because of the large amount of computational time needed, the number of the
iteration was not calculated in the casemot m > 200, and the preconditioning
matricesard = |, Tp or T.,.

In Table 5 we show the computational time of the conjugate gradient method (inner
iteration) to reach our stopping criterion 0 and the necessary memory for the
incomplete Gauss-elimination using thefeient preconditioning matrices and=
m = 50.

Table 5
n=m= 50 | computational time (s) memory needed (byte)
Topt 32.28 2400
T=1I 202.70 -
Tb 163.95 800
T. 326.47 2400
T 63.92 4000

The full computational time of the second numerical experiment in the case of
(1;w = 2) andn = m = 50 is the following: the time of the FFT and IFFT and the
calculation o, are altogether 2955 s and the full time of the outer iteration (see
(4.7), max; = 3) is 121125 s. Here the stopping criterion of the inner iteration is
104 and the stopping criterion of the outer iteration is3@nd we usedop as the
preconditioning matrix.
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