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Lower occlusion pressure during resistance exercise
with blood-flow restriction promotes lower pain and
perception of exercise compared to higher occlusion
pressure when the total training volume is equalized
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Low-intensity resistance exercise with blood-flow restriction (BFR) promotes similar adaptations to high-intensity
resistance exercise (HI-RE). Interestingly, BFR has been demonstrated to be effective for a wide range of occlusion
pressures. However, the occlusion pressure magnitude may alter the psychophysiological stress related to BFR as
measured by rating of perceived exertion scale (RPE) and rating of pain. We aimed to compare the RPE and pain
levels across different magnitudes of occlusion pressures, promoting new knowledge regarding occlusion pressure on
stress related to BFR. All BFR protocols ranging between 40% and 80% of total arterial occlusion (BFR40, BFR50,
BFR60, BFR70, and BFR80) were compared to HI-RE in 12 participants using a randomized and crossover design
72 h apart. BFR protocols and HI-RE were performed with 30% and 80% of one-repetition maximum (1RM) test
value, respectively. RPE and pain levels were measured before exercise and immediately after each set. BFR
protocols (i.e., BFR40 and BFR50) presented overall lower RPE response compared to higher-pressure BFR
(i.e., BFR70 and BFR80) and HI-RE conditions. For pain levels, low-pressure BFRs (i.e., BFR40 and BFR50), and
HI-RE showed lower values than high-pressure BFR protocols (i.e., BFR60, BFR70, and BFR80). In conclusion,
low-pressure BFR protocols promote lower RPE and pain compared to high-pressure BFR protocols (between 60%
and 80% of occlusion pressure), when total training volume (TTV) is equalized. In addition, HI-RE promotes similar
levels of pain, but higher RPE than low-pressure BFR, probably due to the higher TTV.

Keywords: resistance training, blood-flow restriction, psychophysiological stress, rating of perceived exertion,
pain

Introduction

High-intensity resistance exercise [HI-RE; >65% one-repetition maximum (1RM)] is
typically recommended as the most effective training protocol to promote muscle mass
accrual (i.e., muscle hypertrophy) (2, 3). However, recent evidence suggests that low-load
resistance exercise (RE; 20%–40% 1RM) associated with partial blood-flow restriction
(BFR) may result in similar increases in muscle mass compared to HI-RE (12, 13, 26, 32, 33).
Interestingly, BFR has been demonstrated to be effective for a wide range of occlusion
pressures (14). Indeed, a recent meta-analysis carried out by our laboratory demonstrated
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similar increases in muscle mass between HI-RE and distinct BFR protocols, even with far
different relative occlusion pressures (6, 12–15, 28).

Although it seems not to influence muscle mass accrual, occlusion pressure seems to
affect the psychophysiological stress related to BFR as measured by rating of perceived
exertion (RPE) scales (1, 25). For instance, adding BFR to low-load RE resulted in increased
RPE response when compared to the same protocol without BFR (22). Moreover, higher
occlusion pressures are associated with higher RPE levels (18). Despite this, recently,
Loenneke et al. (19) investigated the dose response of occlusion pressure (i.e., 40%, 50%,
60%, 70%, 80%, and 90%) on RPE levels and showed no significant response. Importantly,
total training volume [TTV; sets × repetitions × load (kg)] was not equalized between
protocols. TTV has been shown to influence RPE response, with higher TTV being
associated with elevated RPE response (8). Therefore, to properly understand the effects
of occlusion pressure manipulations on RPE response, it seems imperative to equate TTV
across BFR protocols.

Another important measure of BFR-related stress is the level of pain (16, 29, 30).
Studies comparing the levels of pain between protocols with and without BFR have yielded
contrasting results. Some studies showed higher pain levels for BFR protocols (16, 29) and
others showed no significant differences (30). These different findings may be, at least,
partially explained by discrepancies between studies (e.g., cuff type and width and occlusion
pressure). In addition, data are still lacking with regard to the understanding of the effects of
occlusion pressure manipulation on pain levels.

Therefore, this study aimed to investigate the effects of TTV-equated BFR protocols
with different occlusion pressures on RPE and ratings of pain. In addition, all BFR protocols
were compared with conventional HI-RE.

Methods

Participants
Twelve male subjects (age: 24.5± 1.5 years, height: 1.78± 0.04 m, body mass: 83.4±
11.2 kg) participated in this study. Subjects were not engaged in any kind of regular RE and/
or aerobic training for at least 12 months prior to the experimental period, were free from any
musculoskeletal disorders, and had not used drugs or medications that could affect physical
performance. In addition, subjects were excluded if they had presented more than one risk
factor for venous thromboembolism, obesity (BMI> 30 kg/m2), cardiac dysrhythmia, and/or
cardiac failure. The study was approved by the Ethics Committee of the local University (no.
466/12). Subjects gave their informed written consent prior to their inclusion into the study.

Experimental design
During the first visit, participants completed an anamnesis, anthropometric measurements,
and were familiarized with the knee extension exercise. Twenty-four hours later, participants
performed two maximum dynamic muscle strength tests (1RM), with 72-h rest apart. If 1RM
values differed more than 5% from previous test, a subsequent test was performed after 72 h.
Later, participants were familiarized with the BFR protocols. Seventy-two hours later,
participants performed the following RE protocols in a randomized manner with 72-h rest
intervals between them: (1) BFR at 40% of occlusion pressure (BFR40), (2) BFR at 50% of
occlusion pressure (BFR50), (3) BFR at 60% of occlusion pressure (BFR60), (4) BFR at 70%
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of occlusion pressure (BFR70), (5) BFR at 80% of occlusion pressure (BFR80), and
(6) HI-RE. In order to prevent or at least minimize an interference effect, a “randomized
protocol orders of Williams design” (Latin square) (11) was used. Williams’ crossover design
attempts to balance any carryover effects. The TTV was equated between all BFR conditions.
RPE and pain levels were measured after each exercise set and immediately after the final set.

Rating of perceived exertion (RPE)
It was measured immediately after each set of RE training protocols through the standard
6–20 Borg scale, similar to that used by Row et al. (24). Subjects were instructed on how to
respond to RPE before each exercise visit according to the following information: “We want
you to tell us your perception of effort, that is, how difficult and strenuous you feel this
exercise. Perception of effort depends primarily on the tension and fatigue in your muscles.
We want you to respond using a 6–20 scale, where 6 means ‘no effort’ and 20 means
‘maximum effort.’ Any question?” Subjects confirmed that they fully understood how to
respond to the RPE scale before beginning the RE protocol.

Ratings of pain
In a similar manner to RPE assessment, pain levels were evaluated after each set during the
RE protocols using a visual analog scale (VAS). Similarly, participants were instructed on
how to respond to the VAS. The value of 10 was classified as: “the worst pain of lactic acid
that you have experienced in your quadriceps.” This method has been previously used by
Assumpção et al. (4).

Maximum Dynamic Strength Test
Bilateral quadriceps maximum dynamic strength was measured by the 1RM test on a knee
extension machine (NKR Effort; Nakagym, São Paulo, Brazil) following previous recom-
mendation (5). Subjects performed an initial general warm-up on a bicycle ergometer (Ergo
167 Cycle, Ergo Fit, Pirmasens, Germany) at 20 km/h. This was followed by a specific warm-
up consisting of one set of eight repetitions at 50% of the estimated 1RM, followed by one set
of three repetitions at 70% of the estimated 1RM with a 2-min-rest interval between sets.
Three minutes after the warm-up, subjects had about five attempts to achieve their 1RM. The
smallest incremental load for the next attempt was approximately 1 kg. A 3-min interval was
allotted between the attempts and the highest load achieved (full eccentric–concentric
movement with 90° range of motion) was considered as 1RM.

Determination of arterial occlusion pressure
Participants were requested to rest comfortably in supine position – for approximately
15 min – while a standard blood pressure cuff (i.e., static pressure control) (17.5 cm ×
94 cm – JPG; Industria Comercio Assistência técnica Mat Hospitalar Ltda Me, São Paulo,
Brazil) was positioned on the inguinal fold region of the thigh. Then, a vascular Doppler
probe (DV-600, Martec, Ribeirão Preto, Brazil) was placed over the tibial artery to capture
its auscultatory pulse. To determine complete BFR (pulse elimination pressure), the
pressure cuff was inflated up to the point at which the auscultatory pulse was interrupted
(9). For visual details on the procedures for the determination of BFR pressure and
administration of BFR-RE, please refer to previous detailed description in the study of
Gualano et al. (9). Complete BFR was individually measured for each leg of the same
participant and reassessed at every training session.
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Familiarization to BFR protocol
Subjects warmed up for 5 min in a bicycle ergometer (25 W, 20–25 km/h). Then, they
performed a warm-up on the knee extension machine (NKR Effort) that consisted of one set
of 10 repetitions at 50% 1RM. Three-minutes later, subjects performed three sets of
15 repetitions at 30% of 1RM, with 1-min rest intervals between sets. Each one of the
three sets was performed at different percentages of complete BFR (40%, 60%, and 80%,
respectively). Occlusion pressure was held constant during rest intervals, with values used in
the previous set. Five seconds after the beginning of the subsequent set, the pressure was
adjusted for the new set. Immediately after the end of each set, subjects were asked to rate
their RPE (24) and pain levels (4).

RE protocols
RE protocols were performed in a bilateral knee extension machine (NKR Effort). Subjects
warmed up for 5-min in a bicycle ergometer with a load of 25 W at 20–25 km/h, followed by
a specific warm-up in the knee extension machine consisting of one set of 10 repetitions at
50% of 1RM. BFR protocol (same cuff used on “determination of arterial occlusion
pressure” topic) consisted of three sets of 15 repetitions at 30% of 1RM with occlusion
pressures ranging from 40% to 80% of total BFR (Table I). The HI-RE protocol consisted of
three sets of 10 repetitions at 80% of 1RM without BFR. For all BFR protocols, the occlusion
pressures were maintained throughout the exercise session. The rest interval between the sets
was set at 1 min. The movement speed was set at approximately 1 s for concentric and
eccentric phases, standardized by a metronome.

Statistical analyses
Data were first inspected for normality by the Shapiro–Wilk’s test. One-way repeated
measures analysis of variance was performed to compare the mean RPE and pain for all
sets (average of all sets), and TTV [sets × repetitions × load (kg)] between protocols. In case
of significant F values, a Tukey’s adjustment was used for multiple comparison purposes.
The significance level was set at p< 0.05. Data are presented as mean± standard deviation.

Table I. Resistance exercise protocols

Protocols
1RM
(%)

BFR
pressure
(%)

BFR
pressure
(mmHg)

Intervals
(s) Sets Repetitions

TTV
(kg)

BFR40 30 40 57.0± 4.5 60 3 15 1,731.4± 255.6

BFR50 30 50 72.9± 5.0 60 3 15 1,731.4± 255.6

BFR60 30 60 88.0± 7.5 60 3 15 1,731.4± 255.6

BFR70 30 70 100.3± 9.6 60 3 15 1,731.4± 255.6

BFR80 30 80 117.8± 8.7 60 3 15 1,731.4± 255.6

HI-RE 80 0 0 60 3 10 3,078.0± 454.3*

HI-RE: high-intensity resistance exercise; BFR: blood-flow restriction; 1RM: one-repetition maximum test; BFR
pressure (%): blood-flow restriction pressure (%) delta percentage of total occlusion pressure; TTV: total training volume.
*p< 0.05 when compared to all BFR protocols
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Results

Total training volume (TTV)
HI-RE protocol showed significantly greater TTV values compared to all other protocols
performed with BFR (p< 0.0001). All repetitions of each set were completed by all the
participants.

Rating of perceived exertion (RPE)
RPE showed higher values for BFR70, BFR80, and HI-RE compared to BFR40 (p= 0.002,
p< 0.0001, p= 0.002, respectively). Similarly, RPE showed higher values for BFR70,
BFR80, and HI-RE compared to BFR50 (p= 0.005, p< 0.001, p= 0.005, respectively). In
addition, BFR80 and HI-RE also showed significantly higher RPE values compared to
BFR50 (p< 0.0001 and p= 0.0052, respectively) (Fig. 1A).

Ratings of pain
The BFR60, BFR70, and BFR80 protocols showed higher ratings of pain compared
to BFR40 (p= 0.03, p= 0.008, p= 0.0002, respectively), BFR50 (p= 0.0249, p= 0.0120,
p= 0.0004, respectively), and HI-RE (p< 0.0001; Fig. 1B).

Discussion

This study aimed to investigate the effects of BFR with different occlusion pressures with
equated TTV on RPE and ratings of pain. A secondary purpose was to compare BFR protocols
with a conventional HI-RE. The main results showed that lower-pressure BFR protocols
generally promoted lower RPE and pain levels compared to higher-pressure BFR protocols. In
addition, HI-RE protocol showed higher RPE than lower-pressure BFR protocols.

Previous studies have investigated the effects of occlusion pressure manipulation during
BFR on RPE levels (18, 19, 27, 31). For instance, Loenneke et al. (18) observed that increases
in occlusion pressure only altered the RPE response in BFR protocols that used an exercising
load of 20% 1RM, with no significant effect at 30% 1RM. On the contrary, our results
showed that increases in occlusion pressure altered the RPE response, even though we used a
BFR protocol exercising load of 30% 1RM. Discrepancies between the studies could be
related to different occlusion pressure prescriptions (individualized vs. non-individualized)
and/or cuff width [wider (this study: 17.5 cm) vs. narrow (18) 5 cm] and importantly the use
of static BFR pressure applications versus dynamically adjusting BFR pressure application.
The use of non-individualized occlusion pressure prescription possibly represents a different
stimulus to each subject, affecting their RPE response. For example, Loenneke et al. (17)
suggest that the degree of BFR could be influenced by differences between subjects
(e.g., leg circumference), as differences in the amount of tissue surrounding the blood
vessels could influence the pressure exerted on the vasculature. Thus, using an individualized
occlusion pressure is necessary to equate the restrictive stimulus to all subjects. Regarding
cuff width, wider cuffs are associated with higher RPE values than narrow ones, at least for
non-individualized occlusion pressure prescriptions (i.e., the same occlusion pressure for all
participants) (23). Considering that cuff width influences the occlusion pressure necessary to
reduce blood flow to muscles (10), subjects exercising with wider cuffs and same absolute
occlusion pressures would experience greater BFR, which could increase the RPE response.
However, to the best of the authors’ knowledge, no study has investigated the effects of
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occlusion pressure manipulation using different cuff widths on RPE response. Thus, future
studies are necessary to understand the relationship between these variables.

Similar to this study, Loenneke et al. (19) investigated the dose response of occlusion
pressure (i.e., 40% up to 90% of total occlusion restriction) on RPE response. The main
results showed that different occlusion pressures did not alter RPE levels. However, these
authors failed to equate the RE TTV across the BFR protocols, i.e., some subjects were
unable to complete the predetermined number of repetitions. Given that RE TTV can alter the
RPE response, these differences preclude an understanding of the effects of occlusion
pressure manipulation on RPE parameters. Thus, as this study equated the RE volume across
protocols, we can ascertain that modulations in BFR are capable of altering the RPE response
during BFR exercise. Furthermore, it has been recently demonstrated that increases in
occlusion pressure resulted in elevated RPE responses, even though the higher-pressure
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Fig. 1. Mean of all sets of rating of perceived exertion (RPE; A) and ratings of pain (B) for blood-flow restriction
(BFR) at 40% (BFR40), 50% (BFR50), 60% (BFR60), 70% (BFR70), and 80% (BFR80) of occlusion pressure and
high-intensity resistance exercise (HI-RE). Individual responses are represented by different symbols. Values are
presented as mean± SD. aSignificantly different from BFR40 (p< 0.03). bSignificantly different from BFR50

(p< 0.03). cSignificantly different from BFR40, BFR50, and HI-RE (all p< 0.009)
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protocols performed a lower RE volume (20). On the whole, occlusion pressure manipulation
seems to have an important impact on the RPE response during BFR protocols.

A secondary purpose of this study was to compare BFR protocols to conventional
HI-RE, which is considered as a gold standard measure for increases in muscle mass.
Importantly, previous studies have observed similar hypertrophic responses between BFR
and HI-RE protocols (7, 12, 13, 15, 21, 27, 28, 34). When compared to HI-RE, lower-
pressure BFR protocols (i.e., BFR40 and BFR50) presented lower RPE values; however,
higher-pressure BFRs (i.e., BFR70 and BFR80) showed similar RPE responses. These results
are interesting, as previous studies have demonstrated that low-pressure BFR protocols may
be all that is required to promote increases in muscle mass (6, 12, 13, 15). For instance, a
recent meta-analysis carried out by our group showed that the magnitude of occlusion
pressure did not affect muscle hypertrophy (14). Thus, practitioners and coaches can use BFR
protocols for individuals who are unable to withstand the high mechanical load placed upon
the joints, typically associated in HI-RE training programs.

With regard to the ratings of pain, our results demonstrated that BFR affected the pain
response, corroborating with other studies (16, 30). Even more interestingly, pain response
was affected by occlusion pressure manipulation, with higher pain levels in the higher-
pressure BFR protocols. Similarly, Counts et al. (6) observed higher levels of discomfort with
higher occlusion pressure BFR protocols (40% vs. 90% of complete occlusion restriction).
When compared to HI-RE, our results showed similar pain levels compared to lower-pressure
BFR protocols (i.e., BFR40 and BFR50). On the other hand, higher occlusion pressures
applied on the lower body promote values of pain even higher than HI-RE. Collectively, our
results suggest that higher occlusion pressures (BFR60, BFR70, and BFR80) during BFR
protocols can be even more uncomfortable than conventional RE programs.

Considering that TTV may affect our dependent variables, we opted to equalize TTV to
avoid a possible bias and isolate the variable “occlusion pressure,” whereas we do not know
how different TTVs would affect the measured variable. Some factors may partly explain the
successful work that matched TTV, such as: (1) the use of a static BFR pressure control, (2) a
lower volume in BFR-RE (i.e., 3 × 15 repetition) compared to other BFR-RE studies
(1 × 30 reps + 3 × 15 reps), and (3) the familiarization sessions with BFR.

In conclusion, low-pressure BFR protocols (BFR40 and BFR50) promote lower RPE
and pain compared to high BFR protocols (between 60% and 80% of occlusion pressure)
when TTV is equalized. In addition, low-pressure BFR promotes lower RPE, but similar
levels of pain than HI-RE.
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