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For there are never in nature two beings  
which are exactly alike,  

and in which it is not possible to find a difference either 
internal or based on an intrinsic property.

Still monads need to have some qualities, otherwise they 
would not even be existences. And if simple substances did 

not differ at all in their qualities, there would be no means of 
perceiving any change in things.

G. W. Leibniz. 1714. La Monadologie.

Introduction

Diversity is an intrinsic property of the Universe (even 
atoms have their diversity given by protons, neutrons and 
electrons), a property that we, as living beings, have started to 
analyze from the beginning of our existence. Diversity can be 
inspected for any kind of system living or not. The definition 
and analysis of the systems in terms of components and rela-
tionships, are the main aims of all the human cultural activi-
ties. Languages, science and mathematics are the results of 
this analysis and in turn become tools to improve our knowl-
edge and communication about diversity. It is obvious that di-
versity emerges and is codified by hierarchical classification 

processes, and that these are always based on the concept of 
similarity: objects (tangible or not) considered similar enough 
with respect to some set of characters (one, few or many) be-
long to the same class, objects considered not enough similar 
belong to different classes. Classes may be grouped accord-
ing to hierarchical classifications (see Allen and Starr 1982, 
for a great discussion on “hierarchy”) in function of needs of 
abstraction (Juhász-Nagy 1993). In short, speaking roughly 
and considering the ordinary life, for a non-botanist, plants 
are plants (only one class of living organisms) and for a non-
economist money is money: a non-botanist is interested in 
the diversity of plants only under special circumstances e.g., 
when he wants to buy a plant for a gift or when he selects 
legumes or salads to eat etc.; a common mortal is interested 
in the diversity of currency only when he is going abroad. 
With this I mean that the objects can be viewed under differ-
ent perspectives and classified in different ways according to 
our needs and circumstances. It follows that we are using the 
word "diversity" only when we are dealing with a set of tan-
gible or non-tangible objects grouped into different classes. 
Diversity, variability or inequalities (in the sense of Maignan 
et al. 2003) and dissimilarity, notwithstanding diversity im-
plies the concepts of variability and dissimilarity, should not 
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Abstract: After stressing the need to keep separated the concept of variability and/or inequality and dissimilarity from that of 
diversity, it is suggested that diversity of a system should be measured primarily by the number of different classes (K) we can 
define in it (richness) by classification or identification processes. An index d, ranging between 0 and 1, that summarizes the 
similarity pattern within the system, can be used if necessary to transform K to a “fuzzy” diversity number, according to the idea 
that the higher is the similarity within the system the lower should be its diversity. Another index, r, is proposed to measure 
the “loss” of diversity due to similarity within the system, an index that fits the concept of “redundancy”. Since every diversity 
vector may be interpreted as a crisp symmetric similarity matrix, of which the Gini-Simpson’s index is the average dissimilarity, 
while the index of Shannon is the entropy of its eigenvalues, the index d can be chosen to quantify one among the following 
similarities: a) the overall average similarity of the classes considering the within classes similarity equal to 1 and the between 
classes similarity equal to 0 (crisp similarity pattern): this is coincident with the evenness of the proportion of importance of the 
classes, b) the average similarity between the classes without considering evenness, or c) the combination of the two similari-
ties (similarity between the classes and evenness). In these last two cases, the similarity between the classes is characterizing 
the similarity pattern of a system in a fuzzy way (fuzzy diversity). It is stressed that the diversity of vegetation systems may 
be of two complementary types: plant individual-based diversity and plant community-based diversity. If we assume that each 
plant community type corresponds to one habitat then habitat diversity (or niche width) can be calculated for each class of plant 
individuals according to the number of classes of plant communities in which we can find it. Habitat diversity can be used to 
measure the indicator value of species or other classes of plant individuals and of plant communities. In this last case, we have 
to consider the distribution of plant communities in classes defined by environmental factors. It is suggested that the terminology 
alpha, beta, gamma diversity can be useful only if used to distinguish types of diversity in vegetation systems: alpha diversity = 
plant individual based diversity, gamma diversity = the union of alpha diversities, beta diversity = plant community based diver-
sity. Thanks to the availability of mathematical tools, it is concluded that rather than being worried about measuring diversity it 
would be more fruitful to worry about why we are willing to measure it.
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to be considered synonymous. Variability and dissimilarity 
are words meaning that there are changes of values of sin-
gle or set of variables (multi-variables) within a given set of 
objects, diversity means that in the context of our discourse, 
there are classes of objects that we consider different, in this 
sense, variability and dissimilarity may be the causes of di-
versity “perception”. The number (K) of classes of different 
objects of a system should be its diversity, in line with what 
is also said by Whittaker (1972) for vegetation systems: “The 
most generally appropriate measure of diversity is simply S, 
the number of species per unit area as represented in some 
kind of standard sample” (S = K). However, in the past an 
accepted technical definition of diversity, whose authorship 
is not clear for me (maybe Margalef 1958, see Pielou 1975, 
Magurran 1988), indicated that diversity should be given 
by the combination of the number of classes and their pro-
portional importance, i.e., richness and evenness. Based on 
this definition, many formulas have been proposed to com-
bine the two quantities by a single number. The most often 
used ones are the Shannon index, from information theory 
(or from the entropy of thermodynamics) and the formula of 
Gini-Simpson (see Whittaker 1972, Magurran 1988, 2004) 
generalized by Rényi (1961) and later by Hill (1973) and Patil 
and Taillie (1976). The definition of diversity evolved further 
when the idea of considering also the dissimilarity between 
the classes was introduced (cf. Rao 1982, 2010, Feoli et al. 
1992, Ricotta and Szeidl 2006, 2009). This certainly was a 
consequence of the idea that at parity of the number of classes 
and evenness of the importance values (see Hill 1973, Ricotta 
et al. 2001, Ricotta 2003, 2004), the system with a higher 
similarity between the classes should be less diverse than the 
one with lower similarity. This idea followed the one of hi-
erarchical diversity proposed and discussed by Pielou (1975) 
and Feoli and Scimone (1984a) to show, by the hierarchical 
diversity profiles, how much the diversity would change by 
grouping the classes in a hierarchical process (see Feoli 2012, 
Feoli et al. 2013). One definition that keeps into considera-
tion the similarity within the system has been formulated by 
Feoli et al. (2013) as follows: “Diversity is a property of a 
sampling unit (a system) containing a set of events or objects 
(O) of any kind, material or immaterial, real or imaginary, 
of which C(O) is a partition, measurable by combining the 
number of classes (K) of C(O) and the average dissimilarity 
between the K classes”. The similarity-dissimilarity may be 
calculated using different characters, intrinsic and/or extrin-
sic, chosen to compare the classes and by one of the many 
resemblance functions ranging between 0 and 1 (Orlóci 1972, 
1978, Podani 2000, 2007). The intrinsic characters are those 
used to define the classes, the extrinsic ones are those that are 
considered for specific aims and that were not considered to 
build up the classes. The above definition of diversity does 
not refer to evenness (equitability between the classes), be-
cause we can interpret any diversity vector with K compo-
nents (classes) as a crisp similarity matrix Q×Q, where Q is 
the sum of all the units used to measure the importance of 
the K classes, transformed into an integer number. The matrix 
Q×Q is a disjoint matrix with K sub-matrices. Feoli (2012) 
and Feoli et al. (2013) showed that the index of Simpson is the 

average similarity of that matrix (the index of Gini-Simpson 
the average dissimilarity), while the index of Shannon is the 
entropy of its eigenvalues. This is because each of the disjoint 
K matrices, that would correspond to the perfect crisp situa-
tion, implicit in a diversity vector, has its independent sets of 
eigenvalues and eigenvectors (Wilkinson 1965, Feoli 1977). 
Consequently, Feoli (2012) and Feoli et al. (2013) proposed 
to distinguish between two types of diversity, the “crisp di-
versity” and the “fuzzy diversity” depending on the way we 
want to consider the similarity pattern (let us to abbreviate it 
by d) of the classes of a given system. It is crisp when we as-
sume that the similarity within the classes is equal to 1 and the 
similarity between the classes is equal to 0, it is fuzzy when 
we assume that such similarity may range between 0 and 1 
(crisp d → crisp diversity, fuzzy d → fuzzy diversity). The 
similarity between the classes may be interpreted as the de-
gree of belonging of one class to the other class (Zhao 1986). 
It follows that for calculating the fuzzy diversity we need 
a matrix of similarity dissimilarity (S) between the classes. 
This may consider the dissimilarity between all the individu-
als belonging to different classes or some “summary” vector 
representing the classes (i.e., centroid, medoid, min. or max. 
values etc.)

K, d and r: richness, similarity and redundancy

The aim of this paper is to discuss the suggestion of meas-
uring diversity of a system by the simple formula
D = Kd,                 (1)
K is the number of classes defined by an identification or by a 
classification process and d the index, ranging between 0 and 
1, that summarizes the similarity (dissimilarity) pattern of the 
classes within the system.

D is equal to K if d = 1 and D is equal to 0 if d = 0. We can 
calculate d in many ways. After we have defined K, by identi-
fication or classification processes, thanks to the fact that any 
diversity vector can be interpreted as a similarity crisp matrix 
(Q×Q), d can be chosen to quantify one among the following 
similarities within a system: a) the overall average similar-
ity of the classes considering the within similarities equal to 
1 and the between similarity equal to zero (crisp diversity): 
this considers the proportion of importance of the classes; b) 
the average similarity between the classes without consider-
ing the evenness and finally c) the combination of the two 
similarities. In these last two cases (b and c) the similarity 
between the classes is characterizing the similarity pattern of 
a system in a fuzzy way (fuzzy diversity) (Feoli 2012, Feoli 
et al. 2013). 

It follows that for calculating the crisp diversity, d can be 
chosen equal to the evenness (Ricotta 2003, 2004, Ricotta et 
al. 2001) of the formulas of Gini-Simpson or Shannon or to 
the formula proposed by Podani (2006) (similarity of type 
a). While in case of fuzzy diversity it should be equal to an 
average dissimilarity between the classes calculated by any 
dissimilarity function, in case of similarity of type b), and 
equal to the evenness of the formula of Rao (1982) or Ricotta 
and Szeidl (2006) in case of similarity of type c). 
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In conclusion, d is a similarity index that may have one 
or two components, the “fuzzy” similarity (S) between the 
classes and the “crisp” similarity between them (evenness, 
E). Therefore, formula (1) can be seen with three components 
K, S and E. To express diversity by only D could be not much 
informative because the same value of diversity can be ob-
tained with different combinations of values of K, S and E: 
low richness may be compensated by high evenness and low 
similarity; high richness by low evenness and high similarity 
etc. The combinations of values of K, S and E may be infi-
nite within what we can consider the basic 8 combinations 
of maximum and minimu values of K, S and E. Therefore, 
when we want to compare the diversity of different systems 
by keeping into consideration also their similarity patterns, 
we should use the three values of K, S and E in a ternary 
plot such that in Figure 1 or in other techniques of multivari-
ate analysis. To build the ternary plots as in the case of other 
techniques of multivariate analysis K, S and E should be nor-
malized or standardized to become a-dimensional and com-
parable. In the example of Figure 1, all the three systems have 
the same K, but its importance is not the same with respect the 
other components in the context of the comparison.

The recognition that formula (1) could not be completely 
explanatory about the components of diversity (richness and 
similarity pattern) does not mean that we have to leave it 
out the discourse of diversity. Formula (1) is pretty well in 
line,with the fact that diversity is based on classification and 
that classification is based on similarity. Its utility becomes 
relevant if we think that similarity would play a role in defin-
ing diversity: “more similarity less diversity”, i.e., we have 
to accept the idea that the diversity of a system could be less 
than that of another one even if its richness would be higher.

An alternative to formula (1) could be D = Kd, proposed 
by Feoli (2010) to measure the habitat diversity of heath lands 
of Italy. In this case, D is equal to 1 when d = 0 and it would 
be K if d = 1. D = Kd corresponds to the N1 of Hill (1973) 
if d is equal to the evenness of the Shannon’s entropy. I con-

sider here only formula (1) because the second one shows 
very small differences for very different K, for example for K 
= 200 and d = 0.2, D is equal to 2.88, for K = 100 and d = 0.2, 
D is equal to 2.52, while with formula (1) D = 40 for K = 200, 
and it is 20 for K = 100, i.e., just the half (linear relationship!). 
I do not know if such very simple formula has been proposed 
in a such a simple and immediate way, perhaps yes. It was ac-
tually used by Jost (2010) while discussing the relationships 
between evenness and diversity, but not proposed as a meas-
ure of diversity. I was not able to find the explicit references, 
supporting it, for sure a similar one was proposed by Feoli et 
al. (1992), to measure what they call landscape biotic diver-
sity: DBT = nDT, where n is the average number of species 
per square meter and DT is the entropy of the land cover of 
vegetation types multiplied by their average dissimilarity in 
terms of species. However, in formula (1) d, that would cor-
respond to DT, ranges between 0 and 1 and may be calculated 
as the evenness of the K classes or as their average dissimilar-
ity or as the combination of both (evenness and similarity), 
depending on what we want to achieve by the formula.

Although formula (1) ranges between 0 and K, or 1 and K, 
depending on d, it does not give the diversity numbers, effec-
tive numbers or equivalent numbers of Hill (1973) (see Jost 
2007, Pavoine et al. 2016 and references therein), because 
D = Kd  is not meant to be the number of equally important 
classes that gives a definite diversity index (e.g., Shannon or 
Gini Simpson) as in the case of equivalent numbers of Hill 
(1973). In formula (1) d is just a “weight”, explicitly formu-
lated in the context in which we are measuring diversity. It is 
to stress that for any D, obtained by any formula of diversity 
proposed in literature, there exists a d or, in other words, we 
can calculate one d: 
d = D / K      (2)
which leads to
K = D / d     (3)
If we pass to logarithms
lnK = lnD – lnd.                                                      (4)
That is,
lnD= lnK + lnd .                                                      (5)

Formula (4) would support the idea of Jost (2010) that 
richness can be “decomposed” into two “independent” com-
ponents: diversity and an “inequality factor” that, in the case 
dealt by Jost (2010) is the reciprocal of evenness (1/d). On 
the other side, formula (5) would support the idea that any 
D can be “decomposed” in K and d, that however by defini-
tion cannot be independent as stressed also by Jost (2010). It 
is obvious that K remains K, the number of defined classes, 
and that the only factor that should be calculated is d, as it 
is obvious that the evenness of any diversity vector with K 
components may depend on K irrespective the formula we 
use to calculate it (e.g., Gini-Simpson or Shannon, see Pielou 
1975, Magurran 1988, Feoli et al. 2013). For example, given 
a certain Q (the total of the importance of the classes in a 
diversity vector) the maximal evenness is always equal to 1 
irrespective of K, but the “actual” evenness is depending on 
K. For example, if we consider two diversity vectors with Q 

Figure 1. Ternary plot showing the position of three system de-
scribed by K, S and E as follows: 1) K = 2, S = 0.05, E = 0.92; 2) 
K = 2, S = 0.2, E = 0.65; 3) K = 2, S = 0.60 E = 1. K, S, E have 
been normalized before making the plot. 
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= 36, one with 6 classes X1 = (31,1,1,1,1,1) and the second 
with 4 classes X2 = (33,1,1,1), both showing the minimal pos-
sible evenness for integer values, the evenness according to 
Shannon and Gini-Simpson is respectively 0.35 and 0.31 for 
the first vector and 0.27 and 0.21 for the second. If we con-
sider a situation of different Q, but of equal ratio between the 
value of dominance and the other values as in the following 
case: X3 = (4,1,1,1,1,1) and X4 = (3, 0.75.0.75,0.75), again 
the evenness of the vector with K = 6 is higher than the even-
ness of the vector with K = 4 (respectively 0.87 for Shannon 
and 0.90 for Gini-Simpson and 0.84 for Shannon and 0.81 for 
Gini-Simpson). 

The effects of d on K can be indicated as the reduction of 
richness due to similarity and can be interpreted as a redun-
dancy (r) (Pielou 1975, Feoli et al. 1984, Ricotta et al. 2018) 
of the systems in terms of the characters used to evaluate the 
similarity. It can be measured in relative terms by the ratio:
r = (K – Kd)/K     (6)

The reduction of diversity (rf) due to a fuzzy Df with re-
spect to a crisp diversity Dc can be measured in an analogous 
way as:
rf = (Df – Dc) / Df      (7) 

In the case of X1, r = (K – Kd)/K = (6 – 2.1)/6= 0.65 and 
(6 – 1.86)/6 = 0.69, in the case of X2 r = (4 – 1.08)/4= 0.73 
and (4 – 0.84)/4 = 0.79. We can say that at parity of Q and 
with more or less the same pattern of dominance the loss is 
higher when K is lower. 

After discussing on alpha and beta diversity of Whittaker 
(1960,1972), I will show how many diversities of vegetation 
systems we can calculate by formula (1) or by any other 
formula that is able to keep into consideration the similarity 
between the K classes) and with examples based on very 
simple artificial data, I will show the effects of d on K us-
ing r. 

The plant community concept and its role in studying 
fuzzy diversity of vegetation systems 

Vegetation is a system built up by individual plants that 
are interacting between themselves and the environment for 
what Darwin (1859) calls the “struggle for life”. The veg-
etation systems may be individuated at different hierarchi-
cal conceptual levels and geographical scales, from that of 
few plants living on a clod of earth to the vegetation of the 
whole biosphere and they can be studied under different 
perspectives and with different aims (Mueller-Dombois and 
Ellenberg 1974, Wildi 2017). The scale and grain are very im-
portant issues in studying the vegetation systems in all their 
aspects and the concept of plant community would play a fun-
damental role to avoid useless work. I think that if we want to 
study vegetation by a scientific point of view, we should get 
data that can be analyzed by mathematical methods within a 
logical framework that would overcome the problems related 
to the infinite possibilities to select a grain to be used for the 
analysis. The concept of plant community, as accepted by the 
international congress of botany in 1910 and by the Braun 
Blanquet’s approach (van der Maarel 1975), is offering such 

operative logical framework (see Biondi et al. 2004, Orlóci 
2015a) because it conditions all the sampling units to repre-
sent an “homogeneous” entity of the “same ecological mean-
ing”, that is the plant community. It follows that the accept-
ance of the concept of plant community leads to an automatic 
definition of the spatial grain (of not fixed size) used to study 
the vegetation systems of any area. This is the strength of 
the concept that, if viewed as an operative one (e.g., Wilson 
and Chiarucci 2000 , Biondi et al. 2004, Orlóci 2015a), over-
comes its weakness. Among these the major ones are related 
to the fact that plant communities have not boundaries and 
often cannot be sampled in their completeness regarding the 
species that may live on them, because the area of sampling 
could be too small or too fragmented, and the fact that the 
judgement of environmental homogeneity is always subjec-
tive. Within a plant community there are several patches of 
plants of the same species that create evident heterogeneity, 
and it is almost impossible to collect chemical physical data 
in all the patches to see if the samples are belonging to the 
same multivariate unimodal distribution. Obviously, the plant 
community is not an organism, a discrete entity, however it 
can be perceived in nature as a unit that can belong to a set 
of similar plant communities (vegetation types) and that can 
be interpreted as a “working mechanism” that can be defined 
by a certain number of species with a peculiar pattern of their 
abundance (“The plant community may be described from two 
points of view, for diagnosis and classification, and as a work-
ing mechanism” Watt 1947, Newman 1982, van der Maarel 
1996). The fact that it is a working mechanism with a given 
floristic composition and quantitative structure, could be di-
rectly supported by the point of view “for diagnosis and clas-
sification”. It is evident that for each plant community type 
we can find an area that contain almost all the species living 
in it (the minimal area, or the biological minimal area, see van 
der Maarel 2005 for a discussion on the concept), and also 
there are many evidences that to “definite” species combina-
tions there are corresponding, in a statistical significant way, 
“definite” quantitative patterns between the species (Avena 
et al. 1981 and more recently Wilson 2012) and further, there 
is not a mystery that vegetation types based on plant com-
munity concept are strictly related to environmental classes 
(e.g., Ferrari et al. 1983, Feoli 1983, Feoli and Ganis, 1985, 
Feoli and Orlóci 2011). These facts would certainly support 
the idea that the importance values of the species are defined 
by the functional needs of the system. This would open a 
very interesting broad discussion about “system theory” (see 
Von Bertalanffy 1968) that is out of the scope of this paper. 
However, this would suggest that, in the study of vegetation 
diversity, the quantitative pattern of the importance between 
the K classes should be considered only in some determinate 
circumstances, e.g., when we are interested to study the rela-
tionships between the changes of importance of the classes of 
the system and the changes of their class composition (e.g., in 
experiments of fertilization see Kizekova et al. 2017, or along 
gradiets, Whittaker 1960, 1972). 

The discussion about the existence of plant community 
carried out by Wilson (1991,1994), Keddy (1993) and Palmer 
and White (1994), Dale (1994) and Wilson et al. (1995) can be 
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considered over by the paper of Wilson and Chiarucci (2000) 
suggesting that plant community even if it does not exist as a 
discrete entity is a convenient unit to study vegetation. Biondi 
et al. (2004) suggest that the operative value of plant com-
munity overcomes all the weakness of the concept that can be 
easily compensate by the use of approximate reasoning and 
fuzzy set theory and methods dealing with uncertainty instead 
of the traditional probabilistic statistical approaches (Zadeh, 
1965, 1978, Feoli and Zuccarello 1986, Roberts 1986, Pillar 
and Orlóci 1996, Zimmerman 1996, Ricotta and Anand 2006, 
Orlóci 2015a). 

b vegetation diversity and plant community  
classification

According to Feoli (2012), the diversity of vegetation 
systems may be defined by two complementary ways: one is 
based on classes of plant individuals (plant individual based 
diversity) and the other is based on classes of plant commu-
nities (plant community based diversity). In the first case, 
given a vegetation system, we want to find how many classes 
of plant individuals are there and what are the relationships 
between them in terms of importance (proportions) and or/ 
in terms of similarity or in terms of the combination of the 
two statistics, and what are the relationships of these classes 
with the environment. The classes may correspond to spe-
cies, or other taxonomic groups, functional traits, evolutive 
traits, chemical, structural etc. (see Feoli 1984ab, Feoli and 
Scimone 1984b, Orlóci and Orlóci 1985, Orlóci et al. 1986, 
Feoli and Orlóci 1991, Pillar and Orlóci 1993, 2004, Botta-
Dukàt 2005, Mason et al. 2005, de Bello et al. 2007, Pillar et 
al. 2009, Ricotta et al. 2015, 2017, 2018, Pavoine et al. 2016, 
Duarte et al. 2016 and references therein). 

 In the second case we want to find how many classes of 
plant communities are there and what are the relationships be-
tween them, in terms of plant individual based diversity and 
in terms of environmental heterogeneity. This, beside having 
theoretical importance, is very useful for mapping vegetation 
types and for planning purposes.

 The plant-individual based diversity of a vegetation sys-
tem that covers a given area, may be found by considering or 
not the plant community concept. If this concept is not con-
sidered we are working under a prevailing biogeographical 
perspective, and I refer to Hui (2008) and Hui and McGeoch 
(2008) and Chiarucci et al. (2008, 2012), and reference there-
in, for a discussion on the problems and solutions related 
to this approach. In this paper I consider useful to measure 
the diversity of vegetation system by the use of the concept 
of plant community and I support the idea that by sampling 
and classifying plant communities (Braun Blanquet 1964, 
DeCaceres et al. 2015) we can get, within the same effort 
of data collection, plant-individual based diversity and plant-
community based diversity of vegetation systems. 

Whittaker (1960, 1972), anticipated this view, but he did 
not include the classification of plant communities in his pro-
posal of beta (b) diversity. Given a matrix X of M rows (the 
classes of plant individuals that in case of Whittaker are spe-

cies) and N columns representing stands of plant communi-
ties (relevés), the Whittaker’s alpha and gamma diversity are 
respectively the number of species per plant community, and 
the total number of species in the matrix. I report here some 
statements of Whittaker’s paper from 1972:

“For the measurement of alpha (a) diversity relations I 
suggest, first, use of a direct diversity expression, K (S in the 
original sentence), as a basic measurement whenever possi-
ble, second, accompaniment of this by a suitable slope ex-
pression when the data permit.” 

“Beta (b) diversities, in contrast, are of different dimen-
sional character; they are based on ratios or differences. For 
different research purposes such ratios or differences are to 
be measured either along particular coenoclines, or for sets 
of samples differing from one another along several axes of 
habitat or community hyperspace. A number of approaches 
are, however, possible (Whittaker 1960).”

Notwithstanding, according to Whittaker (1972), other 
approaches are admitted, the b diversity is fundamentally the 
ratio between gamma (g) diversity and the number of species 
per relevé (“individual beta diversity”) or the average number 
of species of the N relevés (beta diversity of N plant com-
munities). The individual b diversity would range between 1 
and M (1 in case the stand has all the M species, M in case the 
stand has only one species). The “average” b diversity, what 
is called beta diversity, ranges between 1 and N (1 in case 
the average species number is equal to M, N when there are 
no species in common between the plant communities, i.e., 
all the relevés are completely different). According to Feoli 
(2012), the alpha and gamma diversity of Whittaker would 
belong to the plant-individual based diversity. Beta diversity 
would belong to the plant-community based diversity, but 
only if the columns of the matrix X would represent vegeta-
tion types, i.e., classes of plant communities. The vegetation 
types may be chosen at different hierarchical levels of syn-
taxonomy (Braun-Blanquet 1964, van der Maarel 1975). If 
the columns of X are just samples of plant communities, the 
beta diversity of Whittaker should be considered only a meas-
ure of average dissimilarity, because without the existence of 
classes considered different the concept of diversity would 
collapse (Feoli et al. 1988). Beta diversity can be relativized 
to 1 by the formula (g – a)/g, and it could be used as a d for 
a fuzzy diversity.

However, in the literature the arguments of Feoli et al. 
(1988) have not been taken seriously into consideration and 
the vegetation scientists (and others) started to call beta diver-
sity any similarity-dissimilarity measure calculated between 
any type of objects (e.g., Anderson et al. 2011). In this way 
also the alpha diversity of Whittaker, when we keep into con-
sideration the fact that a diversity vector may be interpreted 
as a similarity matrix (crisp or fuzzy diversity), becomes 
paradoxically a “beta diversity”. Recently it was even pro-
posed another type of “beta” diversity that was called zeta 
diversity (Z). It is the number of species shared by multiple 
assemblages (Hui and McGeoch 2014). In terms of set theory, 
this is the intersection between sets. It can be made relative 
by dividing its value by the total species number in a matrix 
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(i.e., the g diversity) as in the case of the index of Jaccard 
(see Podani and Schmera 2011 for the relationships between 
the index of Jaccard and the beta and gamma diversity of 
Whittaker). As such, Z diversity, is even more explicitly than 
the beta of Whittaker, a measure of similarity. In any case the 
beta diversity of Whittaker and the zeta diversity of Hui and 
McGeoch (2014) may be used to calculate the corresponding 
d according to formula 2) if N is the number of the K classes 
considered different plant communities i.e., different vegeta-
tion types:
d = b / K or d = Z / K 

Accordingly, d is equal to 1 / K if b (or Z) is equal to 1 
(i.e., alpha diversity = gamma diversity), and it is equal to 1 
if b (or Z) is equal to K. It follows that if N of the matrix X 
would represent K classes of plant communities, then b (or Z) 
becomes a “correct” measure of the fuzzy plant-community 
based diversity (D) of a vegetation system (D = b or D = Z). 
They are fuzzy measure because they keep into considera-
tion, notwithstanding indirectly, the similarity between rel-
evés. With them we can calculate r as in formulae (6) and (7).

The d calculated by b / K or b / N can be used as a measure 
of dissimilarity of sets of plant communities ranging between 0 
(of course it never will be zero) and 1. Other measures of simi-
larities within sets of objects (plots or relevés) are presented by 
Ricotta and Marignani (2007), Ricotta and Pavoine (2015) and 
Schmera and Podani (2018 and references therein).

 It is worth to stress that when the alpha diversities of the 
sub-matrices is the same, or when the disjoint sub-matrices 
have only 1 column vector (situations that are rarely met in 
vegetation systems), the beta diversity of Whittaker would be 
equal to the number of completely disjoint sub-matrices of X. 
It follows that we can say that b is approximating in a fuzzy 
way the number of “potential” completely dissimilar vegeta-
tion types in the matrix X. If we consider only two stands (j,k), 
the argument will become clear. The formula of beta diversity 
can be written, in terms of the symbolism of the two way con-
tingency table as: bj,k = 2(a + b + c) / (2a + b + c), where a is the 
number of species in common between j and k and b and c are 
the species peculiar of each stand. It follows that in this case b 
may be considered a pairwise dissimilarity measure for binary 
data ranging between 1 and 2. The decimal number in between 
1 and 2 would be considered a fuzzy estimator (a degree of 
belonging) of how much the two stands would belong to two 
different sets. In case of N stands, the number of the decimals 
after the integer of the number expressing the beta diversity 
(n), would indicate how much the number of potential different 
vegetation types would be close to n + 1. 

In conclusion, if we want to be consistent with the mean-
ing of diversity and we want to calculate the so called beta di-
versity, i.e., the plant community based diversity, we have to 
classify the plant communities, by finding an optimal number 
of vegetation types K on the basis of class separation (Feoli 
and Orlóci 1979, Feoli and Lausi 1980, Dale 1988, Burba et al. 
1992, Pillar and Orlóci 1996, Pillar 1999, Tichy 2002, Tichy 
and Holt 2006, Feoli et al. 2006, 2009, Tichy et al. 2010). 
Having obtained the classes, we can calculate the fuzzy diver-
sity directly by the beta diversity of Whittaker(1972) or the Z 

diversity of Hui and McGeoch (2014) or we can use formula 
(1). In this case d can be the evenness of the eigenvalues of the 
matrix of similarity between the K clusters, weighted or not 
by the vector of proportion between the K vegetation types 
(in the system), or by the evenness of the eigenvalues of the 
similarity matrix between all the stands, this because, thanks 
to some matrix algebra theorems (Wilkinson 1965), there is 
a strong correlation between fuzzy sets obtained by cluster 
analysis and the eigenvectors of the similarity matrix used to 
obtain the clusters (Feoli 2012, Feoli and Zuccarello 2013). If 
we want to calculate the crisp plant community based diversity 
then we do need to calculate the dissimilarity between the K 
classes, but we can use as d any evenness measure related to 
their importance values (Hill 1973, Pielou 1975, Ricotta 2003, 
2004).We can conclude that if N of a matrix X is a number 
of vegetation types (classes of plant communities), from the 
computational point of view, beta diversity and alpha diversity 
(as well gamma diversity) are the same and the problems to in-
terpret beta diversity as a real diversity are over (see Tuomisto 
2010a,b, 2011, Gorelick 2011, Jurasinski and Koch 2011, 
Moreno and Rodriguez 2011, Ricotta 2017, for further discus-
sions about the terminology concerning species diversity). 

In any case I think very useful if, when we are studying a 
vegetation system of a given area, we would provide the three 
Whittaker’s diversities a, g, b. For example, if we consider the 
Coquihalla data used by Feoli and Orlóci (1979) we can say 
that for all the table (matrix X) the average a diversity is 21, 
the g diversity is 73 and the b “diversity” (g/a) of Whittaker 
is 3.48. This number is quite close to the number of clus-
ters obtained by cluster analysis (three clusters) and sharply 
significant according both the chi-squared metrics (Feoli and 
Orlóci 1979) and the method of Burba et al. (1992) and Feoli 
et al. (2009) of the evenness of the eigenvalues (based on spe-
cies similarity and tested by a permutation technique, e.g., 
Biondini et al. 1991, Pillar and Orlóci 1996, Pesarin 2001). If 
we calculate the beta diversity of Whittaker (1972) consider-
ing the 3 vegetation types and using their gamma diversity 
as alpha diversity, the beta diversity would be 73/47= 1.55 
(being 47 the average alpha diversity of the three vegetation 
types). If we calculate the beta diversity according to formula 
1) i.e., D = Kd where K =3 (the number of vegetation types) 
and d is the evenness of the eigenvalues of the similarity ma-
trix between the 45 relevés (calculated by cosine applied to 
binary data) that is 0.5154, the beta diversity is 3 × 0.5154 = 
1.546, if d is calculated as the evenness of the eigenvalues of 
the similarity matrix between the three clusters that is 0.61, 
then the beta diversity is 3 × 0.61 i.e., 1.83. The beta diversity 
is less than 3 because there is a certain redundancy, i.e., simi-
larity between the types. If we apply the formula 6) using this 
last value, then r = (3 – 1.83)/3 = 0.39.

How many diversities of vegetation systems?

The similarity matrices S between the classes of plant- 
individuals or plant community (vegetation types) may be 
calculated in many ways to be used to compute the fuzzy di-
versity by formulas of Rao (1982), Feoli et al. (1992), Ricotta 
and Szeidl (2006) or the one of Leinster and Cobbold (2012). 
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A discussion of what are the most suitable dissimilarity func-
tions to use in the Rao’s formula is given by Pavoine et al. 
(2005). They may be matrices of similarity based on intrinsic 
or extrinsic characters or matrices representing topological 
distances in phylogenetic trees (Podani 2007, Pavoine 2016). 
Ways to codify hierarchical relationships between species 
have been presented also by Feoli (1984a), Dale et al. (1989), 
Feoli and Orlóci (1991), Pavoine et al. (2009, 2016). If the 
matrix X represents plant communities described by classes 
of plant individuals the diversity calculated for the columns 
are interpretable as niche diversity offered by the stands in 
which the plant communities have been found. If the matrix 
X represents vegetation types described by classes of plant in-
dividuals the diversity of vegetation types may be interpreted 
as the diversity of niches offered by the habitat of vegetation 
types to the classes of plant individuals (see Whittaker 1972 
for a more deep discussion and for fundamental references on 
niche diversity relationships). The diversity calculated for the 
classes of plant individuals in matrices of vegetation types 
represents the habitat diversity of the classes of plant individ-
uals since, thanks to similarity theory (Feoli and Orlóci 2011, 
Wildi 2017), each vegetation type would represent or corre-
spond to one habitat ( a set of sites with similar environmental 
characteristics). If the diversity is calculated using matrices in 
which vegetation types are described by the proportions they 
have in classes of environmental factors the diversity calcu-
lated for each vegetation type would represent the amplitude 
of its “community niche” (Feoli et al. 1988, Feoli 2010). 

Given a matrix X for classes of plant individuals describ-
ing vegetation types we can calculate in total at least 16 di-
versity types of plant individual based diversity, 8 for the M 
rows and 8 for the N columns. With the same matrix, if we 
have a vector of proportion between the vegetation types, we 
can calculate 8 types of plant communities based diversity. If 
for example we have a class of plant individuals distributed 
in the vegetation types we can consider the similarity we have 
between these vegetation types and the similarity the class of 
plant individuals has with all the other classes of plant indi-
viduals in terms of their distribution in the vegetation types. 
In the first case we can have a measure of the diversity of the 
environment in which the class is living, in the second case a 
measure of its peculiarity with respect the other classes. The 
number of diversity types can be even higher if we consider 
sub-matrices given or by subsets of plant individual classes 
or plant community classes etc. (e.g., Feoli and Lagonegro 
1982, suggest to calculate diversity by using “nuclear” and 
“orbital” species in order to consider the diversity based on 
discriminant species), and becomes even more high if we 
decide also to distinguish the many ways to calculate the 
similarity and the many possible choice of the characters by 
which measuring similarity. 

Table 1 presents the main types of diversity we can calcu-
late on the basis of classes of plant individuals and classes of 
plant community, with formula 1), however I want to stress 
that other formulas could be used. It should be clear that the 
fuzzy diversity, in case of plant individual based diversity can 
be calculated both by using the similarity between classes of 
plant individuals (species or plant traits) and also the simi-

larity between plant communities or classes of plant com-
munities (vegetation types). From the table it is clear that if 
we consider that alpha diversity is the plant individual based 
diversity and beta diversity is the plant community based di-
versity, the “mathematics” for calculating both is absolutely 
the same. 

Simple examples with small artificial data

In order to show how much a diversity based on Kd can 
change with respect K and what could be the effect of con-
sidering similarity between the classes when we calculate 
d, I give some simple examples with three crispy similarity 
matrices given in Table 2. All are derived by six units (Q = 
6) grouped into different ways in two classes (K = 2). B1, B2 
and B3 are similarity matrices in which the 6 units belonging 
to 2 classes. The diversity vectors (X), are respectively B1= 
(3,3), B2 (4,2) and B3 (5,1), the corresponding P vectors are 
B1(0.5,0.5), B2(0.67,0.33), B3(0.83, 0.27).

The average dissimilarities according the Gini-Simpson 
index are: 0.5 in case of matrix B1 (1 – (18/36)); 0.44 in case 
of matrix B2 (1 – (20/36)); 0.28 in case of matrix B3 (1 – 

Table 1. Types of vegetation diversity (PIBD = plant individual 
based diversity; PCBD = plant community based diversity) that 
can be calculated by formula 1): K = number of classes, c = crisp, 
f = fuzzy, i = intrinsic characters, e = extrinsic characters, E = 
evenness of proportions included in d (see the text). d can be cal-
culated by keeping into consideration the similarity between the 
stands or vegetation types and the similarity between the classes 
of plant individuals. So the number of formulas of PIBD with d 
has to be multiplied by 2 (i.e. M or N, in analogy to R or Q mode).

PIBD (M,N) K  Kdc  Kdfi  K(E)dfi   Kdfe  K(E)dfe  Kdfife  K(E)dfife   

PCBD (N )   K  Kdc  Kdfi  K(E)dfi   Kdfe  K(E)dfe  Kdfife  K(E)dfife 

         B1                       B2                     B3
 1 1 1 0 0 0         1 1 1 1 0 0        1 1 1 1 1 0
 1 1 1 0 0 0         1 1 1 1 0 0        1 1 1 1 1 0
 1 1 1 0 0 0         1 1 1 1 0 0        1 1 1 1 1 0
 0 0 0 1 1 1         1 1 1 1 0 0        1 1 1 1 1 0
 0 0 0 1 1 1         0 0 0 0 1 1        1 1 1 1 1 0
 0 0 0 1 1 1         0 0 0 0 1 1        0 0 0 0 0 1

B1  0.5   0.5     B2 0.67 0.33     B3 0.83  0.27           
       1      0.05        1      0.05           1       0.05
       0.05 1             0.05 1                0.05 1
       1      0.2           1     0.2             1       0.2
      0.2   1              0.2   1                0.2    1
      1      0.6            1     0.6             1       0.6
      0.6   1               0.6  1                0.6    1

Table 3. Similarity matrices corresponding to 3 diversity vec-
tors in which there are 3 levels of between classes similarity (i.e. 
there are three similarity matrices for each diversity vectors cor-
responding to matrices B1, B2, B3 in Table 1, that I call X(3,3), 
X(4,2) and X(5,1) )

Table 2. Four crisp similarity matrices corresponding to a set of 
6 units (Q) belonging to two classes in three different ways (B1, 
B2, B3)).
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(26/36)). To get d, we have to make relative these values to 
the maximal dissimilarity: the Gini-Simpson should be di-
vided by its maximum value (1 – 1/K) i.e., 0.5. So in case of 
B1 it is 1, in case of B2 it is 0.88, and in case of B3 it is 0.56. 
Consequently, the diversity according to formula Kd will be 
for B1 = 2 × 1 = 2, for B2 = 2 × 0.88 =1.76, for B3 = 2 × 0.56 
= 1.12. If we use the Shannon formula, d is calculated as the 
ratio between H and Hmax. In this case the diversity of B1= 2 
× 1= 2, of B2 = 2 × 0.92 = 1.84, and of B3 = 2 × 0.65 =1.30. 

In case we want to calculate the fuzzy diversity the data 
are given by the similarity matrices S between classes and 
by the vectors P of the proportions of the classes. In Table 3, 
there are 9 matrices of similarity corresponding to the three 
above diversity vectors (B1(0.5,0.5), B2(0.67,0.33), B3(0.83, 
0.17)), with three different levels of between class similarity 
(0.05, 0.2 and 0.60).

If we do not consider the weight of the classes (namely 
the P vectors) the d due to dissimilarity is 0.95, for the level 
of similarity equal to 0.05, to 0.80 for the level equal to 0.20, 

and 0.40 to the level equal to 0.60. It means that the diversity 
will be 2 × 0.95 = 1.90, 2 ×.80 = 1.60 and to 2 ×.40 = 0.80. If 
we consider d as the evenness of the eigenvalues of the simi-
larity matrices (Table 4), it is 0.998 for the level of 0.05, 0.97 
for the level of 0.2 and 0.72 for the level 0.6. Therefore, the 
diversity according to Kd will be respectively 1.996, 1.94 and 
1.44, a little higher than in the previous case. Table 4 gives 
values for several diversity statistics related to the matrices 
and the diversity vectors in Table 3. Diversity and evenness 
are calculated for the data in Table 3, according to the formula 
of Rao (1982), i.e the weighted average of the dissimilarity 
matrix, and the formula of Ricotta and Szeidl (2006), i.e., the 
weighted entropy of the proportions by the similarity between 
the classes. It is clear from the values of d in Table 4 that 
similar values can be obtained by different combinations of 
similarity and equitability. 

 If we consider just the diversity numbers calculated by 
Kd for d calculated as the evenness of the formula of Ricotta 
and Szeidl (2006), keeping fixed the equitability to 1, the dec-

Table 4. Results of calculating diversity  by formula 1) by using d calculated in different ways for the similarity matrices and diversity 
vectors in Table 2. Legend to symbols: s = similarity;  l = eigenvalues of similarity matrices; d(El) = evenness of the eigenvalues of 
similarity matrices; P = proportions of components of the vectors; H = Shannon entropy of the vectors; d(EH) = eveness of the Shannon’ 
s index ; G = Gini-Simpson index of the vectors; d (EG) = evenness of the Gini-Simpson index; D = Rao’s index of dissimilarity ma-
trices (complement to matrices in Table 2); d(ED) = evenness of the Rao index;    HD = Ricotta and Szeidl’ entropy index); d (EHD) = 
evenness of the Ricotta and Szeidl’ index; KdE(l) = D1; Kd(EH)= D2;  Kd(EG) = D3; Kd(ED) = DD1; Kd(EHD) = DD2; r = loss of 
diversity in % (formula 6); D1, D2 and D3 are diversity measures calculated according to formula 1) without considering the dissimilar-
ity matrices, while DD1 and DD2 are diversity measures calculated by formula 1) considering the dissimilarity matrices.

1 2 3 4 5 6 7    8 9

S 0.05 0.2 0.6 0.05 0.2 0.6 0.05 0.2 0.6

l     (1.05,0.95)        (1.2, .8)        (1.6, .4)   (1.05, 0.95)        (1.2, 0.8) (1.6, 0.4) (1.05,0.95)      (1.2, .8)    (1.6, 0.4)

d(El) 0.998 0.97 0.72 0.998 0.97 0.72 0.998 0.97 0.72

Kd(El) 1.996 1.94 1.44 1.996 1.94 1.44 1.996 1.94 1.44

r(d(El))%                   0.2                    3                 28                  0.2                     3                28               0.2                  3                  28

P         (0.5,0.5)        (0.5,0.5)       (0.5,0.5)   (0.67, 0.33)    (0.67,0.33) (0.67,0.33) (0.83,0.17) (0.83, .17) (0.83,0.17)

H 0.69 0.69 0.69 0.63 0.63 0.63 0.46 0.46 0.46

d(EH) 1 1 1 0.92 0.92 0.92 0.65 0.65 0.65

Kd(EH) 2 2 2 1.84 1.84 1.84 1.3 1.3 1.3

r(d(EH))%                      0                    0 0                     8 8 8                   35 35 35

G                   0.5               0.5 0.5                0.44 0.44 0.44            0.28 0.28 0.28

d (EG)                      1 1                   1 0.88 0.88 0.88 0.56 0.56 0.56

Kd(EG)                      2                    2                   2                1.76                1.76            1.76 1.12 1.12 1.12

r(d(EG))%                      0 0 0 12 12 12 44 44 44

RD 0.47 0.4 0.2 0.42 0.35 0.18 0.27 0.23 0.11

d(ED) 0.94 0.8 0.4 0.84 0.7 0.36 0.54 0.46 0.22

Kd(ED) 1.88 1.6 0.8 1.68 1.4 0.72 1.08 0.92 0.44

r(d(ED))% 6 20 60 16          30 0.64 46 54 78

HD 0.64 0.51 0.22 0.59 0.46 0.2 0.41 0.31 0.13

d (EHD) 0.93 0.74 0.32 0.85 0.67 0.29 0.59 0.45 0.19

Kd(EHD) 1.86 1.48 0.64 1.7 1.34 0.58 1.18 0.9 0.38

r(d(EHD))% 7 26 68 15 33 71 41 55 81
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rement of diversity, when from a similarity between classes 
of 0.05 we go to a similarity of 0.60, is passing from 7% to 
68%, while for an equitability of 0.92 it is passing from 5 
to 71% and for an equitability of 0.65 we go to a decrement 
from 41% to 81%. If we keep fixed the similarity at 0.05 pass-
ing from an equitability of 1 to an equitability of 0.65, Kd 
loses from 7% to 41%; for a similarity level of 0.20 the loss 
by decrement of equitability is from 26% to 55% and finally 
for the similarity at 0.60 the loss from the equitability of 1 
to the equitability at 0.56 is from 68% to 81%. We can con-
clude that, as we can expect, the decrement of evenness of the 
proportions at lower levels of similarity (e.g., 0.05) influence 
less the diversity values, while at lower levels of evenness the 
increment of similarity produces a considerable lowering of 
the diversity. 

Conclusions

This paper is a discussion from its beginning so a “chap-
ter discussion” would not be necessary. However, I would 
like to conclude by seven simple considerations concerning 
the importance of studying and measuring diversity of veg-
etation systems by K, d and r:
1) In the literature, there is a heavy theoretical debate on di-
versity (biodiversity) especially in relation to the stability of 
ecosystems (see McCann 2000, Tilman et al. 2014). The theo-
retical debate in vegetation science is focused on the plant 
community concept and involves mainly the plant individual 
based diversity (alpha diversity of Whittaker). However, the 
research and discussions are also related to phylogenetic 
similarity between plant communities and to explain different 
kinds of diversity in terms of functional traits of the different 
species with the hope to find general assembly rules and clear 
explanations about environmental filtering (Wilson 1994, 
Kraft and Ackerly 2014). These are keywords for many pa-
pers on diversity, which are addressed to find explanations for 
vegetation variation along gradients or in time. Certainly if 
we consider phylogenetic trees (Podani 2007, Pavoine 2016), 
the matrices S that we can get from them could be useful to 
infer on mechanisms of coevolution (Levin 1983a,b, Wilson 
2011) and or convergent evolution (MacArthur and Levins 
1967, Orlóci et al. 1986). Of great interest in analyzing mech-
anisms that “produce” diversity are the results of Mazzoleni 
et al. (2007, 2010 and 2015). According to these papers, I 
would like to emphasize that environmental homogeneity 
would “produce” plant individual based diversity (alpha di-
versity of Whittaker 1960, 1972), while environmental het-
erogeneity would “produce” plant community based diversity 
(beta diversity of Feoli et al. 1988). 
2) The number of classes K is the basic measure, both for the 
plant individual-based diversity and for the plant community-
based diversity. Once K has been defined, it may be corrected, 
if necessary, by an index d, calculated by one of many criteria 
that would measure the similarity within the system under 
study using intrinsic or extrinsic characters and by includ-
ing or not the proportion of the classes in terms of their im-
portance. Diversity profiles according to Rényi (1961), Hill 
(1973) and Leinster and Cobbold (2012) generalizing the en-

tropy can be used to evaluate the effects of “weighting” the 
importance of the classes in different ways.
3) An index r can be calculated to measure how much the 
diversity given by K would be reduced by d. This may be 
useful to understand relationships between different sets of 
characters intrinsic and extrinsic. 
 4) K, d and r are useful tools to investigate vegetation diver-
sity patterns related to phylogeny, functionality and structure of 
vegetation. For example if for a set A of K classes of objects, 
d is calculated considering one set of characters (features F1) 
that, for instance, represent the mutual phylogenetic position of 
the K classes (or S is a topological distance matrix of the evolu-
tionary tree, see Podani 2007, Ricotta et al. 2018 and references 
therein) and the K classes are described also by a set (features 
F2) that may represent their similarity in terms of structure, 
then if r1, corresponding to F1 is larger than r2, corresponding 
to F2, it would mean that there is a structural divergence, while 
r1 < r2 would represent a structural convergence (obviously for 
the characters we have chosen). 
5) The concept of diversity has aroused too many discussions 
both for its meaning and its measurement which, at least for 
me, were not much necessary after the generalizations of Rényi 
(1961) and Hill (1973). Diversity, notwithstanding Hurlbert 
(1971), is a clear concept that relies on classification and simi-
larity between the classes obtained by identification or clas-
sification processes after data collection. In vegetation science, 
diversity may be based on plant individuals (that if we like we 
can call alpha diversity) or on plant community (that if we like 
we can call beta diversity) and may be fuzzy or crisp, that’s 
all. The term beta diversity should be used only to indicate the 
number of classes of plant community of a vegetation system 
(corrected by d if necessary) and should be avoided to indicate 
similarity-dissimilarity (e.g., Anderson et al. 2011).
6) Thanks to available mathematical tools and in particular to 
eigenanalysis of similarity matrices, by which we can define 
many levels of significant K and we can define d accordingly, 
we can say that it would be better to be worried about why we 
are willing to measure diversity rather than about the method 
or the formula we have to use. 
7) The “infinite” possibilities of using diversity measures, in-
cluding those based on K and d, and the new upcoming views 
and ideas such those related to “quantum ecology” (Orlóci 2013, 
2014, 2015 a,b), push me to close this paper to recall an expres-
sion from Dale (1988): “the choice is yours” (i.e., ours). 
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