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Abstract. This paper studies stability properties of the trivial invariant torus of a class of non-
linear extensions of dynamical systems on torus. Two theorems on exponential stability and
instability of the invariant torus in terms of quadratic forms that are sign-definite in nonwander-
ing set of the dynamical system have been proven.
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1. INTRODUCTION

Fundamental results of the qualitative theory of multifrequency oscillations, in
particular, the problems of the existence and stability of invariant sets of dynamical
systems defined in the direct product of m-dimensional torus and n-dimensional Eu-
clidean space, have been developed by A. M. Samoilenko and summarized in [12].
In [6], the stability properties of invariant tori have been studied in terms of sign-
definite quadratic forms. In this paper, we establish new conditions for exponential
stability and instability of the trivial invariant torus of nonlinear extension of dy-
namical system on torus which are formulated in terms of quadratic forms that are
sign-definite not on the entire surface of the torus, but in nonwandering set [7] of
dynamical system on torus only. The corresponding results for linear extensions of
dynamical systems on torus have been obtained in [1, 3, 8–11].

2. MOTIVATION AND PROBLEM STATEMENT

We consider a system of ordinary differential equations defined in the direct product
of m-dimensional torus Tm and n-dimensional Euclidean space Rn

d'

dt
D a.'/;

dx

dt
D P.';x/x; (2.1)
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where ' D .'1; : : : ;'m/T 2 Tm, x D .x1; : : : ;xn/T 2 Rn, function P is continuous in
Tm�Rn and for every x 2 Rn P.�;x/; a.�/ 2 C.Tm/; C.Tm/ is a space of continuous
2�-periodic with respect to each of the component 'v, vD 1; : : : ;m functions defined
on Tm.

We assume that the following conditions hold:

9M > 0 such that 8 .';x/ 2 Tm�Rn kP.';x/k �M I (2.2)

8 r > 0 9 LD L.r/ > 0 such that 8 x
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Condition (2.4) guarantees that the system
d'

dt
D a.'/ (2.5)

generates a dynamical system on Tm, which we will denote by 't .'/.

Definition 1 ([7]). A point ' 2 Tm is called a nonwandering point of dynamical
system (2.5) if there exist a neighbourhoodU.'/ and a moment of time T D T .'/> 0
such that

U.'/\'t .U.'//D¿ 8 t � T:

Let us denote by˝ a set of all nonwandering points of dynamical system (2.5). Since
Tm is a compact set, the set˝ is nonempty, invariant, and compact subset of Tm [12].
Additionally, the following holds:

Lemma 1 ([7]). For any " > 0 there exist T ."/ > 0 andN."/ > 0 such that for any
' 62˝ the corresponding trajectory 't .'/ spends only a finite time that is bounded
by T ."/ outside the "-neighbourhood of the set ˝, and leaves this set not more than
N."/ times.

Definition 2 ([12]). Trivial invariant torus

x D 0; ' 2 Tm

of the system (2.1) is called exponentially stable if there exist constantsK >0, 
 > 0,
and ı > 0 such that for all ' 2 Tm and for all x0 2 Rn, kx0k � ı it holds that

8 t � 0 kx.t;';x0/k �Kkx0ke�
t ; (2.6)

where x.t;';x0/ is a solution to the Cauchy problem
dx

dt
D P.'t .'/;x/x; x.0/D x0: (2.7)

In [5], the conditions for the exponential stability of the trivial invariant torus of the
system (2.1) have been established in terms of the properties of function ' 7!P.';0/

in the nonwandering set ˝ of dynamical system (2.5):
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Lemma 2 ([5]). Let
8 ' 2˝ �.';0/ < 0; (2.8)

where �.';x/ is the largest eigenvalue of the matrix

OP .';x/D
1

2

�
P.';x/CP T .';x/

�
:

Then, the trivial invariant torus of system (2.1) is exponentially stable.

The following example demonstrates the case when the trivial invariant torus is
exponentially stable (this will be proven in Theorem 1), however the condition (2.8)
does not hold.

Example 1. Consider a system defined in T1�R2

d'

dt
D�sin2

�'
2

�
; (2.9) 

dx1
dt
dx2
dt

!
D

�
sin.'Cx1Cx2/x1 �x2

x1 �sin.x1�x2�'/x2

�
: (2.10)

Dynamical system on torus T1 that are generated by (2.9) has a nonwandering set

˝ D f' D 0g:

However, the matrix
OP .0; N0/D

�
0 0

0 0

�
does not fulfill condition (2.8).

The main results of this paper are theorems on exponential stability and instability
of the trivial torus of the systems of a class (2.9) with conditions given in terms of
quadratic forms that are sign-definite in nonwandering set˝ of dynamical system on
torus only.

3. MAIN RESULTS

For any ' 2 Tm, x 2 Rn let us denote

OS.';x/D
@S.';x/

@'
a.'/C

@S.';x/

@x
.P.';x/x/

CS.';x/P.';x/CP T .';x/S.';x/;

(3.1)

where S D S.';x/ is a symmetric matrix of a class C 1.Tm�Rn/.

Theorem 1. Let there exist a symmetric matrix S D S.';x/ of the class C 1.Tm�
Rn/ such that

8 ' 2˝ S.';0/ > 0; OS.';0/ < 0: (3.2)
Then, the trivial torus of system (2.1) is exponentially stable.
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Proof. Due to the conditions (3.2) and continuous dependence of the polyno-
mialFLs roots on the coefficients [4], we get that for some r > 0, 
 > 0 the following
inequalities hold

8 ' 2Or.˝/ 8 x 2 Rn;kxk< r S.';x/� 
E; OS.';x/� �
E: (3.3)

Also, there exists a constant C DC.r/ > 0 such that for all ' 2 Tm and for all x 2Rn,
kxk � r

kS.';x/kCk OS.';x/k � C: (3.4)

Denote by
V.';x/D .S.';x/x;x/: (3.5)

Let
' 2Or.˝/ and 8 s � 0 's.'/ 2Or.˝/:

Then, for the solution to (2.7) x.t/D x.t;';x0/with kx0k<r the following estimate
kx.t/k< r holds for t 2 Œ0;T /, 0 < T �C1. Hence, from (3.3),


kx.t/k2 � V .'t .'/;x.t//� Ckx.t/k
2;

d

dt
V .'t .'/;x.t//� �
kx.t/k

2

hold for t 2 Œ0;T /. From the last inequalities we get that

V.'t .'/;x.t//� V
�
';x0

�
e�



C
t :

Hence, there exist constants K1 > 0 and 
1 > 0 such that 8 t 2 Œ0;T /

kx.t/k �K1kx
0
ke�
1t : (3.6)

For kx0k< r
K1

we obtain that T DC1 and the inequality (3.6) holds for all t � 0.
Now, let ' 2Or.˝/, but there exists t1 > 0 such that

8 t 2 Œ0; t1/ 't .'/ 2Or.˝/; 't1.'/ 62Or.˝/:

From Lemma 1, there exist

N.';r/�N.r/; f�i .';r/g
N.';r/C1
iD1 ; fti .';r/g

N.';r/
iD1

N.';r/C1X
iD1

�i .';r/DW T .';r/� T .r/

such that
't .'/ 2Or.˝/

8 t 2 .0; t1/[

N.';r/�1[
kD1

� kX
iD1

.�i C ti /;

kX
iD1

.�i C tiC1/
�[�N.';r/X

iD1

.�i C ti /;C1
�
:

(3.7)
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Then, for t 2 Œ0; t1�

kx.t/k �K1kx
0
ke�
1t < r if kx0k<

r

K1
:

For t 2 Œt1; t1C �1�, from (2.2) and Wazewski inequality [2],

kx.t/k � kx.t1/ke
M.t�t1/

�K1kx
0
ke.
1CM/�1e�
1t

< r if kx0k<
r

K1e.
1CM/�1
:

For t 2 Œt1C �1; t1C �1C t2�,

kx.t/k �K21kx
0
ke.
1CM/�1e�
1t < r if kx0k<

r

K21e
.
1CM/�1

:

Continuing this process, due to (3.7), finally we get:

for K WDK
N.r/
1 e.
CM/T.r/; ı WD

r

K
N.r/
1 e.
CM/T.r/

; kx0k< ı;

8 t � 0 kx.t/k �Kkx0ke�
1t : (3.8)

Now, let us consider the case of ' 62Or.˝/. In this case,

8 �0 2 .0;T .r// '�0.'/ 2Or.˝/

and
8 t 2 Œ0;�0� kx.t/k � kx

0
ke.MC
1/T .r/ke�
1t :

Then, for

OK DKe.
CM/T.r/; Oı D
ı

e.
CM/T.r/

we obtain the required estimate (2.6). This completes the proof. �

Example 2 (revisited). Let us illustrate the usage of Theorem 1 for the system
(2.9), (2.10). Let

S D S.';x/D

�
2 1

1 1

�
> 0

Then,

OS.0; N0/D

�
2 �1

�1 �2

�
< 0

which guarantee exponential stability of the trivial invariant torus.

The following theorem provides sufficient conditions for instability of the trivial
torus of system (2.1) in terms of sign-definite on the set ˝ quadratic forms.
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Theorem 2. Let there exist a symmetric matrix S D S.';x/ of the class C 1.Tm�
Rn/ such that for the matrix (3.1) and for the quadratic form (3.5) the following
conditions hold:

8 ' 2˝ OS.';0/ > 0; (3.9)

8 ı > 0 9 x0 2 Rn; kx0k< ı; 9 '0 2˝ such that V.'0;x0/ > 0: (3.10)

Then, the trivial torus of system (2.1) is unstable.

Proof. From (3.9) and (3.3), 9ˇ > 0 and 9r > 0 such that

8' 2˝ 8x 2 Rn;kxk< r OS.';x/� ˇE:

Let for arbitrary ı > 0 (ı < r), the corresponding x0, '0 are from the condition (3.10),
and x.t/D x.t;'0;x0/ is the solution to the Cauchy problem (2.7). Next, we show
that 9t1 > 0 such that kx.t1/k D r . This will be sufficient to prove instability.

Suppose the opposite: Let

8t � 0 kx.t/k< r:

Then, for the function v.t/D V.'t .'0/;x.t// we have:

d

dt
v.t/� ˇ kx.t/k2 : (3.11)

From the condition (3.10), v.0/D V.'0;x0/D ˛ > 0. Hence,

8t � 0 v.t/� ˛: (3.12)

Then, 9" > 0 such that 8t � 0 kx.t/k � ". Really, if it is not so then there exists a
sequence tk!1 such that kx.tk/k! 0. Finally,

v.tk/D
�
S.'tk .'0/;x.tk//x.tk/;x.tk/

�
� C kx.tk/k

2
! 0;

where constant C > 0 is from (3.4), which contradicts (3.12).
Then, from (3.11):

v.t/� ˛C "2t 8t � 0:

Hence, 8t � 0

kx.t/k2 �
1

C

�
˛C "2t

�
:

The latter estimate implies the existence of t1 > 0 such that kx.t1/k D r . This com-
pletes the proof. �
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