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Abstract. Pseudo-linear impulsive differential equations in a Banach space are considered. It is
assumed that the conditions of a small change in the operator coefficients of the equation are
satisfied. Using the method of “frozen” coefficients and the methods of commutator calculus,
the problem of global asymptotic stability of a pseudo-linear impulsive differential equation is
reduced to the problem of estimating the evolution operator for linear impulsive differential equa-
tion with constant operator coefficients. The obtained results are applied for stability study of
a nonlinear system of ordinary impulsive differential equations. Lyapunov’s direct method is
used for estimating the fundamental matrix of the corresponding system of impulsive differen-
tial equations with constant coefficients. The stability conditions are formulated in terms of the
solvability of certain linear matrix inequalities.
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The stability of solutions of the impulsive differential equations has been studied
in many papers [3,4, 7,8, 11]. In the monographs, [7, 11], the direct Lyapunov’s
method for nonlinear systems of impulsive differential equations is developed, and
some results related to the first method of Lyapunov are presented.

In [8], the direct Lyapunov’s method is developed using the second derivatives of
the auxiliary function, while in [3] the higher derivatives of the Lyapunov function
are used.

The problems of the global existence of solutions and the stability of abstract dif-
ferential equations were also considered in the papers [13].

An actual and little studied problem of the theory of stability for solutions of im-
pulsive differential equations is to find or to estimate the stability region, in particular,
the establishment of the conditions for global asymptotic stability of the equilibrium
position for this class of systems. Some results in this direction have been obtained
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in [2] for pseudolinear impulsive systems, under additional monotonicity conditions
for these systems with respect to a certain cone in the phase space.

In the present paper, based on the methods of “frozen” coefficients [10] and the
direct Lyapunov’s method, in combination with the methods of commutator calculus,
the problem of global stability of the zero solution of a nonlinear periodic impulsive
differential equation in Banach space is investigated.

1. AUXILIARY RESULTS

In this section, we give some basic algebraic concepts that will be used later (See
[9]). Let us describe the construction of the free associative algebra R over the field
of real numbers R with two generators x, y. A word over the alphabet (x, y) is a finite
sequence of symbols from the alphabet, and for the sequence z ...z, where z is the

n
generator, we use the notation z”*, n € N, z% = 1. The basis of the algebra 9R¢ consists
of all words over the alphabet (x, y). The empty word is identified with the element
1 € R, therefore R C fRp and the field R is the center of algebra $Rg. Consequently,
PR consists of all possible linear combinations of words with coefficients from R.
Free associative algebra R is defined as the completion of the algebra 2R in some
special topology and consists of all formal infinite series with coefficients from the
field R. Commutator of two elements a € R, b € R which is defined by the formula

[a,b] =ab—ba

introduces into A the structure of the Lie algebra. The commutation operator ad,
a € R is defined as a linear mapping R — ‘R,

adg(y) =[a,y], yeR.
Let f(x,y) € R, z € R, A € R. Then the polarization identity

fx+Az,9) = f(x,9) +2fi(x,3.2) + A% fo(x,y,2) + ...

defines the derivative of Hausdorff (z %) f £ fi(x,y,2).
We define recursively the following Lie elements of the algebra ‘R

.x% =y, T =y alhx] e
It is easy to see that

adl (y) = (=D!{y, "

o0
If p(x) = ) pix¥ is a series from the generator x, then
k=0

Do LY prdyaxk.
k=0
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o0 o0
We also note that if p(x) = Y prx*, q(x) = Y grx¥, then
k=0 k=0

. p(x)q(x)} = {{y, p(x)},q(x)}. (1.1
Similarly, for an arbitrary finite sequence X1, ..., X, of the elements from ‘R, we
define recursively an element {x1,...,X,—1,X,} as
{xl ’ ---:xn—l,xn} - [{xl’ e ,xn—l},xn]-
Moreover, we have
e Yye* ={y,e*} (1.2)

and the following identities of F. Hausdorff are valid

g = () =t

Note that the identities (1.1) — (1.3) have a formal character.

If X is a Banach space and L(X) is a Banach algebra of bounded linear operators
acting in X, then (1.1) is satisfied in the common part of the domain of convergence
of the series p(x), ¢(x), and (1.2), (1.3) are satisfied for all x € L(X), y € L(X).

Consider the operator differential equation

dU(t,s)
dt
where U € CY(Rx R; L(X)), A € C(R; L(X)).

In paper [9] W. Magnus has established the conditions under which the operator

U(t) can be represented as

Ul(t,s) = expr(Z,s), t>s.

X

}. (1.3)

=A@)U(t,s), U(s,s)=1, t=>s, (1.4)

In addition, the function .Q(t, s) is a solution of the Cauchy problem for a nonlinear
differential equation (W. Magnus equation)

d2(t,s) 2(1.5) s . R
T:{A(t)’l )}:’;ﬁn{A(n,sz (t,s)}, D(s,5) =0. (1.5)

_e—fl(t,s

Here B1 = 1/2, B, =0forn =3,5,..., Bon = %, forn € Nand By =1,
B, are Bernoulli numbers [5].

Integration of this Cauchy problem (1.5) leads to the formal series of W. Magnus.
This series is a continual generalization of the classical Baker-Campbell-Hausdorff
formula. It is well known that the series on the right-hand side of this formula does
not always converge. Therefore, in the present paper, we will use the following rep-
resentation of the solution of the Cauchy problem (1.4)

jt'A(r)dr
U(t,s) = + F(t,s))es ,

where F(¢,s) is the function defined below, / is identity operator.
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Next we will derive a differential operator equation for the function F(¢,s). Ap-
plying the chain rule for the derivative of a composite function [9], we obtain

dF(t,s) dU(,$) _jq.s) 0\ x
a A ¢ U(5) (405 )e ’

=—A(t,s)
. t
where A(t,s) = [A(t)d .
S

Hence, taking into account the Hausdorff identity, we get

dF(t,s)
dt

o~ As) _
At,s) }
=AQ@)(F(t,s)+1)—(F(t,s)+ 1)(A(t) —w¥(t,s))
=[A(@t), F(t,s)]+ F(t,s)¥(t,s) + ¥(t,s),

t
: —[A(D)d
=A(I)U(I,S)e_A(”S)+U(I,S)e’f ' T{A(l),

Where
’ 1 (k + 1)' ’ ’ '

Thus, the function F(z,s) is a solution of the Cauchy problem
dF(t,s)

dt
For further discussion, it is necessary to recall the notion of the logarithmic operator

norm [1]. For a bounded linear operator A € L(X), the logarithmic operator norm
A(A) is defined as follows

=[A@), F(t, )]+ F,s)¥(t,s)+W¥(,s), F(s,s)=0.

1 All—1
A(A) = lim &
e—>0+ &

where ¢ is real numbers.

2. PROBLEM STATEMENT

Consider the impulsive differential equation

d’;gt) — A, x(0)x(5), 1 #nb,

Ax(t) = B(x(t))x(t), t=n0,

where x € X, Ae CO¥1(Rx X;L(X)), 0 >0, Ax(t) = x(t +0)—x(¢), x(t +0) =
lim x(s), B € CY(X;L(X))and A(t,x) is a #-periodic function of ¢.

s—>1,5>1
Let x(¢;x0) be a solution of the Cauchy problem (2.1) with initial condition x (0 4
0,x0) = xo. In this case, as usual, it is assumed that x (¢ — 0; x¢) = x (¢, Xo).
The aim of this paper is to obtain sufficient conditions for the global asymptotic
stability of the solution x = 0 of the impulsive differential equation (2.1).

2.1
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Definition 1. The solution x = 0 of (2.1) is said to be globally asymptotically
stable if for any positive number & there exists a positive number § = §(¢) such that
the inequality ||xo| < & implies the estimate ||x(¢;xg)|| < & for all # > 0 and for all
xp€e X

lim ||x(z,x9)| = 0.
t—>00

We will study the global asymptotic stability of the solution x = 0 under the fol-
lowing additional assumptions.

Assumption 1. We assume that for the differential equation (2.1) the following
conditions are satisfied:

(1) There exist positive constants @ and b such that for all (¢£,x) € R x X the

inequalities
sup  [JA(r.x)[ =a, sup [l ALt 0l b
(t,x)€[0,0]1x X (t,x)€[0,0]1xX

are fulfilled, where A’ € L(X, L(X)) is a Frechet derivative of x [0].
(2) There exist functions o € C([0,6]; R), y € C(]0,0] x [0, 8]; R+ ) such that for
all ¢ € [0, 8] the following inequalities hold

sup A(A(t,x)) <a(t), sup [|[ A, x)(A(r,x)x)| < (7).
xeX xeX

(3) There exists function 8 € C(R;R4) such that for all ¢ € [0, 8] the following
estimate is valid

sup 1B (x)(A(t.x)x)|| < B(2).

3. MAIN RESULT

Consider the nonlinear impulsive differential equation (2.1). Let T € (0,0], t =
kh,k=0,1,....,s,h = % We define the function xj, (¢; xo) inductively by the formu-
las

xp(0:x0) = x0,  xp(t;x0) = e¥TKMACX) 0 4 e (kh, (k + 1)h],

where x; = xp,(kh; xp).

Using the continuity of the operator-valued function A(z,x) and the integral in-
equality of Gronwall-Bellman, we can prove the validity of the following auxiliary
assertions (Lemma 1 and Lemma 2), similar to how it was done in [12].

Lemma 1. Assume that for the impulsive differential equation (2.1) the condition
(1) of Assumption 1 holds. Then uniformly overt € [0, 0], we get

lim |x(¢;x0) — x5 (¢;:x0)|| = 0.
h—0+
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Along with the impulsive differential equation (2.1), we consider the linear im-
pulsive differential equation

_dfz(f) = At.x0)y(0). 1 #nb. y(0+0)=xo.

Ay(t) = B(xo)y(t), t=no,
where y(¢) € X, xo € X. Similarly, we define a continuous function for ¢ € (kh, (k +
1)4] by the formula

3.1

(1. x0) = eAkhXO—kR) A(k=DhX)h QX

Similarly, we can prove the following statement.

Lemma 2. Assume that for the impulsive differential equation (2.1) the condition
(1) of Assumption 1 holds. Then uniformly overt € (0,80] we have

lim ||y (#;x0) — ya(t;x0)[x = 0.
h—0+

The following statement establishes an estimate of the error in the “freezing” of
the coefficients of the equation (2.1) and is a generalization of Lemma 5.3 from the
monograph [12], in which the autonomous case is considered.

Lemma 3 (cf. [2]). If the conditions of Assumption 1 are satisfied, then the fol-
lowing inequalities hold

] 0s
Ja()ds , [ [y(s,mdsdn
(eO 0

| (8:x0) =y (B:x0) ]| < e ~1)lxoll

6
1B(x(6:x0)) — B(xo)|| < / B(s)ds.
0

Along with the original impulsive differential equation (2.1), we consider the lin-
ear differential equation

d
zgf) = Ao(x0)z(t), 1t #nb, (3.2)

Az(t) = (B(x0) + B(xo) + B(x0) B(x0))z(t), t=nb,

where z € X, and the linear operators Ag(xo) and By (x0) are defined as follows

o t

Ag(xo) = é/A(‘L’,Xo)d‘C, A(z,xo) Z/A(r,xo)dr, l§’(x0) — F(6,x0),
0 0

dFS;XO) = [A(I,XO)’ F(I,XO)] + F(Z,xo)l[/(t,xo) + l[/([’xo)’ F(O,X()) —0,

(3.3)



STABILITY OF NONLINEAR PERIODIC IMPULSIVE EQUATIONS 601

where
S (- l)k +1 &
W(t,x0) = kz_:} Gegyr AGx0). A% o)},
Define a monodromy operator of the linear impulsive differential equation (3.2) by
U(xo) = (I + B(x0))(I + B (x0))e?40t0), (34

The following statement is the main result of this paper.

Theorem 1. Assume that the conditions of Assumption 1 are valid for impulsive
differential equation (2.1) and there exist positive constants {;, i = 1,2,3 such that

sup [U(xo)| <¢1,  sup |[(1 + B(x0))e? 00| <& sup |1+ B(xo)| < &3

xo€X xoeX xoeX

Let

7] 0s
Ja(s)ds , [ [v(s;n)dsdn
§4 = ¢0 (eoo — 1),

0
%z/ﬁ@d&
0

Then the fulfillment of the inequality
C1+ 8483+ 058 + 8584 < 1

guarantees the global asymptotic stability of the solution x = 0 of the differential
equation (2.1).

Proof. We obtain
x(60 +0:x0) — y(0 4 0;x0) = (I + B(x0))(x(6:x0) — y(6:x0))
+ (B(x(8:x0)) — B(x0))y (6:x0) + (B(x(0:x0)) — B(x0))(x(0;x0) — y(6:x0)).
From the assertion of Lemma 1 and the conditions of Theorem 1, it follows that
[[x(6 4 0;x0) — y (6 + 0:x0) | < |7 4 B(x0)|[|x(6:x0) — y(6: x0) |
+ [1(B(x(8:x0)) — B(x0)) y (63 x0) || + [ B(x(6:x0)) — B(x0)||[[x (6: x0) — y (6 x0) |
< Calsllxoll + L5y (O: x0) | + E58allxoll-
Consider that
y(6:x0) = (I + B(x0))e 0G0 xp,
V(6 +0:x0) = (I + B(x0))(I + B (x0))e?) g = U(x0)xo.
Then, we get

(8 4 0: x0) | < |U(x0) llIxoll + Salzllxoll 4+ &582 [ x0ll + 584
< (814 8483+ 8582+ Cs8a)llxoll := gl xoll.
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Due to the periodicity of the differential equation (2.1), we obtain
llx (76 + 0:x0) || < g"[|xol

from which it follows the global asymptotic stability of the solution x = 0 of the
impulsive differential equation (2.1). Thus Theorem 1 is proved. O

Thus, the study of the global stability of the solution x = 0 for the nonlinear dif-
ferential equation (2.1) is reduced to estimating the solutions of the linear differential
equation with constant operator coefficients (3.2) and solving the auxiliary differen-
tial equation (3.3) to obtain the operator é(xo). As well as for solving of the W.
Magnus equation, one can use the method of successive approximations to solve this
auxiliary equation.

Let us define recursively a sequence

Fo(t,x0) =0,
t

Frt1030) = [ (IAG.30). Fn(5:50)]+ F s 300 5.30) + 95 30)) ds

0
(3.5)

Then, assuming that

sup max (|| ad 4(s,x0) | + ¥ (s, x0) ) =< po,

XOGXSG

sup max ||‘1’(S xo)ll = p1.
xp€EX S€ €[o,0

where p;, i = 1,2 are positive constants, we obtain

| F(t,x0) — Fin(t,x0)| < €mp16,

where €, = e Z (GPO)k .

Consider a linear 1mpulswe differential equation of the form

d
flf‘t)ZAO(XO)Z(t)’ t #nb, (3.6)

Az(t) = (B(x0) + Bm(x0) + B(x0) Bm(x0))z(t), t =nb,

where By, (x0) = Fin (0, x0), and let Uy, (x¢) be the monodromy operator of this equa-
tion
Un(x0) = (I + B(x0))(I + By (x0))e?40t).
Theorem 1 implies the following statement.

Corollary 1. Assume that for the impulsive differential equation (2.1) the condi-
tions of Assumption 1 are satisfied and there exist positive constants {j, i = 1,2 such
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that
sup [Unm(xo)ll &5, sup [[(1 + B (xo))ef40™0)|| < ¢}

x0€X xo€X
and a constant o such that sup A(Ag(xp)) < .
xX0€X
If
§1+ ab3 + 58 + Lals + Lo(63 + 85)e™? < 1,

where g = 0p1€m, then the solution x = 0 of the impulsive differential equation (2.1)
is globally asymptotically stable.

4. EXAMPLE

Consider a system of impulsive differential equations

d
SOy, i #nb
Ax(t) =Y (x(¢))Bx(t), t=nb,

“4.1)

where x € R™, ¥ € C1/(R™,R), A € C(R; L(R™)), A(t +6) = A(t), B € L(R™).
Assume that a nonlinear function ¥ (x) satisfies the following condition. There
exist positive constants o, Vy,, ¥ such that

0<¥m =¥ (x) <¥u < oo, sup VY Collllx ¥ (x) < 0. (4.2)

Denote
6 t
Ag = %/A(f)dr, A@t) :/A(‘C)d‘[, W, (1) = {A(r), A" (1)}
0 0

The corresponding linear differential equation with “frozen” coefficients has the
form

dy(r) _
= = V) Aoy (), t#nb, (4.3)

Ay(t) = (Y (x0) B + B(xo) + ¥ (x0) BB (x0))y(t), t=n9,

where y € R", l?(xo) = F(6,x0), F(t,x0) is a solution of the Cauchy problem

dFEZt;xo) = Y (x0)[A(t), F(t,x0)] + F(t,x0)¥(t,x0) + ¥(t,x9), F(0,x0) =0,
4.4)
00 (—1)k+lwk+1()€ ) R
v = 3 oA )

k=1
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We represent the solution of the Cauchy problem (4.4) in the integral form
t

F(t,x0)=/<D(t,s)(W( Xo)

[AT (5) + A(s), F (s, x0)]

0 4.5)
FF (s, x0)¥ (s, x0) + llf(s,xo))GDT(t,s) ds,
where operator @(t,s) is a solution of the Cauchy problem
do(t, 1
; 9 _ E(A(t)—AT(z))@(z,s), D(s,s) = 1.
Since ||@(¢,s)| = 1, then from (4.4) it follows the estimate
IF (. x0) |
t 0
1274
= [ (G lladar )1 ae) T+ 19 (. x0) DI F (5. x0) [ ds + [ [[¥(s.x0) | ds.
0
Applying the integral Gronwall-Bellman inequality, we obtain the estimate
0
Vm
[ F(0,x0)ll < [ [I¥(s.x0)llds GXP( (T” ad 47 ()4 A(s) | + ||‘1’(S,XO)||)dS>-
0

Since

G
1 (t,x0) -,;W’

then we obtain

X F )yt
1B ro) | < /Z Wy
/&=

k+1
IO

e+ )

M
xexp f Oty a 1+ Y
0

Next, we consider the question of estimating the monodromy matrix of the sys-
tem of equations (4.3). Assume the linear operator A satisfies the Routh-Hurwitz
conditions, i.e. max Re A < 0. Then, the Lyapunov matrix equation

rea(Ao)
AT X + x40 =-0,

where Q is a symmetric positive-definite linear matrix, has a unique solution X —a
symmetric positive-definite operator.
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Consider the Lyapunov function v(y) = y Xy. Then

dv T VmAm(Q)
— <- <—— t t 6. 4.6
2 s = Y(xo)y" Qy < o (X) v(y(1), t#n (4.6)
Denote
E:—W;WM, R=-(BTX +XB+vyBTXB),
— - 3 +
no = WMZ Vm ||BTX+XB||+(WM Wm)El VM w’”)||BTXB||,
— no+n2+n)m
=||X—-vR , t=—"7-—""——.
m =X =VR|+no s
Therefore for t = n0 we obtain
v(y(+0) < A=Y AR.X)+D)(y()). 4.7)
where
ARX) = ) dny AR =0
A:Z(X)’ Am(R) <O.
From (4.6) and (4.7) it follows that
(1=VAR.X)+ DAy (X) _gvmim@
U < 20m X)) = fo
| (x0)||_\/ () e M {1
Similarly, we obtain
har () oy

(7 + Blxope? COMo) < (14m) 7500

Taking into account the assumption (4.2), we get
VM=V
———"BI.

¢ =11 +VB|+——

0 0t 6
v* [AAG)ds o[ [IIA@IIA(s)|dTds
AL b 1), cs=o~||B||f||A<s)||ds,
0
4.8)

where
0
vm, for [ A(A(s))ds >0,
0

y* = 0
Ym. for [A(A(s))ds <0.
0

Theorem 1 implies the following statement.
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Proposition 1. Assume that the condition (4.2) is satisfied for the system (4.1) and

max Re A < 0. If the following inequality is valid
A€O (A())

1+ Cal3+ {580+ Lals < 1,
then the solution x = 0 of the system (4.1) is globally asymptotically stable.

Next we will consider the case when, in general, the matrix Ag does not satisfy
the Routh—-Hurwitz condition. Assume that for a given positive-definite symmetric
matrix G there exists a positive-definite matrix X satisfying the conditions

O(ATX +XA40)+ BT X + XB+yBTXB =G,

(4.9)
A2x 4248 x40+ XA2% > 0.

Consider the Lyapunov function v(y) = yT Xy. Then we get

. _dv(y(0;x0)) 1.d?v(y(c;x0)) 2
v(x0) =v(y (¥ x0)) = =0 dt @.1 2 dt? (4.1)9

where ¢ € (0,6).
We have

dv(y(6;x0)) _ _— '

dt “.1) - _W(XO)_)} (Q,XO)QJ’(G»XO)7

dt? @1

where Q = —(AgX + XAp).
Consequently, we obtain

= Y2 (x0)y T (c;x0)(AJ?X + 24T XAo + XA3)y(c; x0) = 0,

0(3(8:%0)) ~ v(x0) < 69y (653000 (6:30) + 67V 0]y 85302

v(y(0 4 0:x0)) —v(y(0:x0)) < ¥ yT (B:x0)(BT X + XB + ¥ BT XB)y(6;x0)
+dv(y(0;x0)).
This implies that

v(y(0 +0;x0)) —v(x0) < =¥ y7 (0:x0)Gy(0;x0) + P1v(y(8;x0))

Y Am(G)
<f{f - — 7 19 9; ’
= (=T +)r0 @)
where ¢ :7194_%‘
LetSz%—ﬁl > (. Then
dv

Ty = V@Y =~y (0)Am (@)Y I = =A%, X)v (),
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where

Am (DY
a0 =1, o e
s for Am(Q) =0.
Therefore, we obtain

v(y(8;x0)) > v(xg)e 47 (@ X),
Thus, we get
v(y(8 405 x0)) —v(x0) < —8v(y(8;x0)) < —8e 47 (@ Xy (xp).

From this it follows the estimate

Similarly, we obtain

D A X EES ~
I+ Blaoe? o) < (14 ) [2H U0 v 027,
on ()

where

Ym, for A(Q,X)>0.

The constants 3, 4, 5 are determined by the formulas (4.8), and the matrix R by
the formula

1p** — {WMv for A(Q’X)<0,

R=—(BTX+XB+yBTXB).
An immediate consequence of Theorem 1 is the global stability conditions for the

solution x = 0 of the system of nonlinear impulsive differential equations (4.1).

Proposition 2. Assume that for system (4.1) the conditions (4.2) are fulfilled and
for a given symmetric positive-definite matrix G there exists a symmetric positive-
definite matrix X satisfying conditions (4.9). If

Vim(G)
Am(X)
then the solution x = 0 of system (4.1) is globally asymptotically stable.

91 >0, C1+Cals 0+ lals <1,

5. NUMERICAL EXAMPLE

Let us consider the linear impulsive system (4.1) with matrices

. -05 0
A(t) = Ag+ Ajcoswt + Apsinwt, B = ( 0 0.25),
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where w = 27” and

10 0 1 0 0
(o 5) 4=( o) == (7o)

Let Y3 = 0.205, ¥, = 0.195, 0 = 0.004, 6 = 0.365625. Next we will study
the asymptotic stability of considered system based on Proposition 2. Let X = 1.
Then we obtain n < 0.01027, no < 0.00551, 7y < 1.10801, ¥ < 0.03203, A, (G) =
0.21875, 8 > 0.01172, {1 < 0.99495, {3 < 1.0525, {4 < 0.00193, {5 < 0.00180.

Hence, if the inequality {1 + {483 + 5C2 + {485 < 1, § > 0 is fulfilled, then the
hypotheses of Proposition 2 are satisfied and the linear impulsive system (4.1) is
asymptotically stable for the particular case.

We note that the matrix Ag does not satisfy the Routh-Hurwitz conditions, and
also the condition r4 (I + B) < 1 does not hold for the matrix B. Therefore, the con-
struction of the Lyapunov function for system (4.1) in this particular case is difficult.

6. DISCUSSION OF RESULTS

First of all, we note that the problem of global asymptotic stability of the zero
solution for a nonlinear impulsive differential equation has some specificity in com-
parison with a similar problem for differential equations without impulsive action and
it is more complicated. For example, if we consider the linear system of differential
equations (4.1) in the case when there is no impulsive action, i.e. B = 0, then the
solution x = 0 of the system (4.1) will be globally asymptotically stable if ¥ (x) > 0.

If B # 0, then from the asymptotic stability of the linear system

dx(t)
T A(t)x(t), tF#nb,

Ax(t) = Bx(t), t=nb,

generally speaking, does not follow the global asymptotic stability of the equilibrium
position x = 0 of the system (4.1). Let us consider a one-dimensional impulsive
differential equation

dx(t)
o =x(t), t#nb,

Ax(t) = —yx(t), t=nb,

(6.1)

where x € R, y € (0,1).

Obviously, the inequality e? (1—7v) < 1 guarantees (global) asymptotic stability of
the linear impulsive differential equation (6.1). Let us consider a nonlinear impulsive
differential equation

dx(t) . 2
S =X +x7@), 1 #nb, (6.2)

Ax(t) = —yx(@)(1 +x%(t)), t=nb.
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The zero solution of this equation is locally asymptotically stable (under the condition
e?(1—y) < 1). Let us prove that the solution x = 0 is not globally asymptotically
stable.

Let x (¢, xo) be a solution of the Cauchy problem (6.2), x(0+,xo) = xo, @™ (xo)
is a length of the right maximal interval of existence of the solution of the corres-
ponding ordinary differential equation without impulsive action. It is easy to see that
ot (xo) < # Therefore, for all xq > \/Lg’ the inequality o™ (xq) < % is fulfilled.
Hence, such a solution x (¢, xg) goes to infinity until the moment of the first impulse
action. Therefore, this solution is not infinitely-prolongable, and, as a result, the
solution x = 0 is not globally asymptotically stable.

The proposed method of investigating the global asymptotic stability reduces the
problem of stability of the solution of the linear operator equations and makes it
possible to establish the global asymptotic stability under various assumptions about
the dynamic properties of the continuous and discrete components of the impulsive
system. The idea of applying the methods of commutator calculus in problems of
stability theory of the nonlinear impulsive equations in a Banach space is new and
opens up new possibilities for the development of the Lyapunov’s direct method for
the stability study of solutions of nonautonomous differential equations.
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