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Abstract. Recently an SIS epidemic reaction-diffusion model with Neumann (or no-flux) bound-
ary condition has been proposed and studied by several authors to understand the dynamics of
disease transmission in a spatially heterogeneous environment in which the individuals are sub-
ject to a random movement. In this paper an SIS epidemiological model with saturated incid-
ence rate is proposed to describe the dynamics of disease spread among identical patches due to
population migration. First the stability conditions for the endemic equilibrium for the corres-
ponding kinetic system and reaction-diffusion system without diffusion are analyzed and proved.
Moreover, we prove that at a critical value of the bifurcation parameter the positive endemic equi-
librium becomes linear non-constant stationary solutions only when diffusion also plays a role
in the reaction-diffusion system, which shows that the strong effects of diffusion on the Turing
instability. Numerical simulations are provided to illustrate and extend the theoretical results.
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1. THE MODEL

Infectious diseases have tremendous influence on human life and will bring huge
panic and disaster to mankind once out of control. Every year millions of human be-
ings suffer from or die of various infectious diseases. In order to predict the spreading
of infectious diseases, many epidemic models have been proposed and analyzed in
recent years ([6, 10, 19, 20, 22]). In epidemiology, mathematical models have been
an important method in analysing the spread and control of infectious diseases qual-
itatively and quantitatively. More recently, many studies have provided that spatial
epidemic model is an appropriate tool for investigating fundamental mechanism of
complex spatiotemporal epidemic dynamics ([3,11]). In these studies, reaction diffu-
sion equations have been intensively used to describe spatiotemporal dynamics and
pattern formation in the spatial epidemic model, starting with the pioneer work of
Turing. The Turing instability ([18]) has been extensively investigated for biological
and chemical processes. Moreover, pattern formation from the Turing instability in
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nonlinear complex systems is actively investigated in the fields such as social net-
works, molecular computing, embryology and elsewhere in biology and chemistry
([4, 5, 9, 12]).

Continuous models, usually in the form of nonlinear ordinary differential equa-
tions (NODE), have formed a large part of the traditional mathematical epidemiology
literature. In such models, the classical assumptions are that the total population is
divided into any number of classes according to their epidemiological status, and that
the transmission of the infection in the population is modelled by incidence terms.
Some infectious diseases do not confer immunity. Such infections do not have a re-
covered state and individuals become susceptible again after infection. Diseases such
as tuberculosis, meningitis, sexually transmitted diseases or bacterial infections and
gonorrhea exhibit this phenomenon ([4,9,12]). This type of disease can be modelled
by the SIS type. Many forms are possible for the incidence term in epidemic mod-
els, the most common are the simple mass action and standard incidence terms. Li
et al. ([8]) studied an SIS model with bilinear incidence rate ˇSI and treatment.
In this paper, we consider saturation incidence rate and assume the force of infec-
tion is in this version ˇSnIm

1CcS
which is saturated with the susceptible. In this paper

we demonstrate how a mathematical model can describe epidemiological phenomena
and how can we use such a model to analyze endemic states and help eradicate dis-
ease. A model was set up using a system of nonlinear ordinary differential equations
and show how the Turing phenomenon looks like in this ODE setting.

We consider a SIS type of disease transmission. The population is divided into
two classes: susceptible individuals and infectious individuals. Susceptible individu-
als become infective after contact with infective individuals. Infective individuals
return to susceptible class when they are recovered i.e. no immunity is conferred by
going trough the disease.

However, in nature, the tendency of the susceptible would be to keep away from
the infected for the reason that the susceptible have ability to recognize the infected
group and move away from them (cf. [7, 14–16]). Diseases such as tuberculosis,
meningitis, bacterial infections and sexual diseases can be easily transmitted from
one country (regions, cities or patch) to other countries (regions, cities or patch)(cf.
[1, 2, 17]). Thus, it is important to consider the impact of migration on spread of
a disease. Our interest is to study a SIS epidemiological model in patchy space
in which the per capita migration rate of infective specie is influenced only by its
own density (self-migration), and the per capita migration rate of susceptible specie
is influenced not only by its own density but also to the density of the other one
(cross-migration).

To formulate the SIS epidemic diffusion model in the following subsections, some
assumptions and parameters are specified as follows.

The susceptible individuals and the infected individuals in city k at time t are
denoted as Sk.t/ and Ik.t/; respectively .k 2 f1I2gI t 2 RC0 /. 1 � m;n 2 N are
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constants describing the incidence rate of the disease. a and b are the natural birth
rate and the natural death rate, respectively.  is the recovery rate. ˛ is the mortality
caused by the disease. ˇ is the disease transmission coefficient. c is the saturation
factor that measures the inhibitory effect. di > 0 are the diffusion coefficients .i 2
f1I2g/. � 2 C 1 are positive functions modeling the cross-diffusion effect.

Hence, the ordinary differential equations (ODE) for the SIS epidemic diffusion
model can be formulated as

�

S1.t/D�
ˇSn1 I

m
1

1C cS1
�bS1CI1Ca.S1CI1/Cd1.�.I2/S2��.I1/S1/;

�

I 1.t/D
ˇSn1 I

m
1

1C cS1
� .˛CbC/I1Cd2.I2�I1/;

�

S2.t/D�
ˇSn2 I

m
2

1C cS2
�bS2CI2Ca.S2CI2/Cd1.�.I1/S1��.I2/S2/;

�

I 2.t/D
ˇSn2 I

m
2

1C cS2
� .˛CbC/I2Cd2.I1�I2/:

(1.1)

ODEs (1.1) describes the following dynamics of epidemic diffusion among the
population groups. The per capita migration rate of infective specie is influenced only
by its own density (self-migration), and the per capita migration rate of susceptible
specie is influenced not only by its own density but also to the density of the other
one (cross-migration).

2. MODEL ANALYSIS

In this section we analyze a simple model of the temporal behavior of an infectious
disease which is not extended in space (d1 D d2 D 0),

�

S1.t/D�
ˇSn1 I

m
1

1C cS1
�bS1CI1Ca.S1CI1/;

�

I 1.t/D
ˇSn1 I

m
1

1C cS1
� .˛CbC/I1;

�

S2.t/D�
ˇSn2 I

m
2

1C cS2
�bS2CI2Ca.S2CI2/;

�

I 2.t/D
ˇSn2 I

m
2

1C cS2
� .˛CbC/I2:

(2.1)

Define the new variable N.t/ D S.t/C I.t/. In each patches, summing the two

equations in (2) provides the equation for the total population
�

N.t/D .a�b/N �˛I .
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Thus, the total population size may vary in time, as traditionally assumed. In the
absence of a mortality rate caused by the disease, and assuming a greater birth rate
than a mortality rate, i.e., ˛ D 0 and a > b, the population will grow indefinitely.
Therefore, we could think of the disease as regulating the growth of the population.
For this reason, we will assume from here on that ˛ > a� b > 0. These facts are
known substantially from paper of Carrero et al (cf. [3]).

In this case the unique positive equilibrium of (2.1) is
� .S;I ;S;I /1 where mD 1 and

I D g1.S/D
.1C cS/.˛CbC/

ˇS
; I D g2.S/D

a�b

˛Cb�a
�S

resp.
� .S;I ;S;I /m where 1 < m 2N are the intersection of the curves

I D h1.S/D

�
.˛CbC/.1C cS/

ˇSn

� 1
m�1

; I D h2.S/D
a�b

˛Cb�a
�S:

The Jacobian matrix of system (2.1) linearized at .S;I ;S;I /1 is

J.n;1/D0BBB@
R �.˛Cb�a/ 0 0

.a�b/T .n� cS

1CcS
/ 0 0 0

0 0 R �.˛Cb�a/

0 0 .a�b/T .n� cS

1CcS
/ 0

1CCCA
(2.2)

where T WD
˛CbC

˛Cb�a
and R WD .a�b/.1�nT C cS

1CcS
�T /.

The equilibrium .S;I ;S;I /1 is locally asymptotically stable if the zeroes of the char-
acteristic polynomial

P4.�;n;1/D .P2.�;n;1//
2; (2.3)

have negative real part, where

P2.�;n;1/D �
2
�.a�b/.1�nT C

cS

1C cS
�T /�C.a�b/.˛CbC/.n�

cS

1C cS
/:

Because

det.J.n;1//D .a�b/.˛CbC/.n�
cS

1C cS
/ > 0;

the zeroes of the characteristic polynomial (2.3) have negative real part, and the equi-
librium point .S;I ;S;I /1 is locally asymptotically stable if n > n� and unstable if
n < n�, where

n� D
˛Cb�a

˛CbC
C

cS

1C cS
: (2.4)
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The Jacobian matrix of system (2.1) linearized at .S;I ;S;I /m is

J.n;m/D

0BB@
J11 J12 0 0

J21 J22 0 0

0 0 J11 J12
0 0 J21 J22

1CCA : (2.5)

where

J11 D .a�b/.1�nT C
cS

1CcS
�T /; J12 D�m.˛CbC/CaC

J21 D .a�b/T .n�
cS

1CcS
/; J22 D .m�1/.˛CbC/:

The characteristic polynomial of J.n;m/ is

Qkinetic.�;n;m/D .Q2.�;n;m//
2

where
Q2.�;n;m/D �

2
� .J11CJ22/�CJ11 �J22�J12 �J21:

Because

J11CJ22 D .a�b/.1�nT C
cS

1C cS
�T /C .m�1/.˛CbC/;

J11 �J22�J12 �J21 D .a�b/.1�nT C
cS

1C cS
�T / � .m�1/.˛CbC/

C Œm.˛CbC/�a�� � .a�b/T .n�
cS

1C cS
/

D .a�b/.˛CbC/

"
.m�1/C .n�

cS

1C cS
/

#
> 0

the equilibrium point .S;I ;S;I /m is asymptotically stable if n > n� (see Figure 1)
and unstable if n < n�, where

n� D .m�1/
˛Cb�a

a�b
C
˛Cb�a

˛CbC
C

cS

1C cS
: (2.6)

Note: The assumption comes from the fact that the total population is de-
scribed byN

0

.t/D .a�b/N �˛I . Therefore, in order for the disease to have
a regulatory effect on the population it is biologically reasonable to assume
˛ > a�b > 0:

3. THE IMPACT OF A SELF-MIGRATION

In this Section, we model the spatial spread as a diffusive process, where
both classes have diffusion coefficient. The migration rate of each individuals
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FIGURE 1. The unique endemic solution without diffusion (d1 D
d2 D 0) at a D 0:05, b D 0:006, ˛ D 0:06, ˇ D 0:0056,
 D 0:04, c D 0:05, m D 2, n D 1; is .S;I ;S;I /m D

.2:8013;7:7036;2:8013;7:7036) which is stable. (Figure produced
by applying MATLAB.)

is influenced only by its own density. The model can be written as:
�

S1.t/D�
ˇSn1 I

m
1

1C cS1
�bS1CI1Ca.S1CI1/Cd1.S2�S1/;

�

I 1.t/D
ˇSn1 I

m
1

1C cS1
� .˛CbC/I1Cd2.I2�I1/;

�

S2.t/D�
ˇSn2 I

m
2

1C cS2
�bS2CI2Ca.S2CI2/Cd1.S1�S2/;

�

I 2.t/D
ˇSn2 I

m
2

1C cS2
� .˛CbC/I2Cd2.I1�I2/:

(3.1)

Definition 1. The equilibrium .S;I ;S;I /m of (1.1) is said to be diffusion-
ally (Turing) unstable if it is an asymptotically stable of (2.1) but it is unstable
with respect to (3.1) (cf. [4-8]).

The Jacobian matrix of the system (3.1) linearized at the endemic equilibria
.S;I ;S;I /m given by

J.d1;d2/D

0BB@
J11�d1 J12 d1 0

J21 J22�d2 0 d2
d1 0 J11�d1 J12
0 d2 J21 J22�d2

1CCA :
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In order to have Turing instability of the system (3.1), the characteristic poly-
nomial

det.J.d1;d2/��I/DQ2.�;n;m/
�
�2� t race .J.d1;d2//Cdet.J.d1;d2//

�
;

(3.2)
must have at least one eigenvalue with positive real part.

The equilibrium .S;I ;S;I /m is diffusionally unstable if and only if the
following criteria holds:
� Q2.�;n;m/ has roots with negative real parts;
� det.J.d1;d2// < 0

since in this case t race .J.d1;d2//D t race .j.n;m//�2.d1Cd2/ < 0. This
can prove the following Theorem.

Theorem 1. Assume that n > n� holds. Turing instability occurs if

d1 > d1crit
D

det.J.n;m//�2d2
h
.a�b/.1�nT C c

1CcS
�T /

i
2.m�1/.˛CbC/�4d2

(3.3)

Proof. Since

det.J.d1;d2// D det.J.n;m//�2d2
h
.a�b/.1�nT C cS

1CcS
�T /

i
�2d1.m�1/.˛CbC/C4d1d2;

therefore (3.3) implies Turing instability. �

We apply our analytical approach to the following example and we are
looking for conditions which imply Turing instability (diffusion driven in-
stability).

Example 1. Trying to prepare an example comparable to that of [1], we
choose a D 0:05, b D 0:006, ˛ D 0:06, ˇ D 0:0056,  D 0:04, c D 0:05,
mD 2, nD 1, d2 D 0:05.
The unique endemic equilibrium is .S;I ;S;I /m D .2:8013, 7:7036, 2:8013,
7:7036/. We consider d1 as a bifurcation parameter. In this case at d1crit Š
2:4974; we have four eigenvalues eigenvalues �i.i D 1;2;3;4/ such that
<.�i/ < 0;.i D 1;2;3/ and �4 D 0:

Thus,
� if d1 < d1crit then <.�i/ < 0; .i D 1;2;3;4/ and .S;I ;S;I /m is

asymptotically stable;
� if d1 > d1crit then <.�i/ < 0; .i D 1;2;3/, �4 > 0, and .S;I ;S;I /m

is unstable.



56 ALI AL-QAHTANI, SHABAN ALY, AND FATMA HUSSIEN

Therefore, as d1 is increases and passes through d1 D d1crit then the spa-
tially homogeneous equilibrium loses its stability (see Figure 2). Numerical
calculations show that two new spatially non-constant equilibria emerge (see
Figure 2).
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FIGURE 2. Left figures: The solutions S and I before bifurcation at
d1D 0:5; the solution is stable. Right figures: The solutions S and I
after bifurcation at d1 D 20; the solutions loss its stability by Turing
bifurcation. (Figure produced by applying MATLAB.)

4. THE IMPACT OF A CROSS-MIGRATION

In this Section, we model the spatial spread as a diffusive process, where
both classes have diffusion coefficient. Rate of infected species is influenced
only by its own density, i.e. there is no response to the density of the other
one, but the susceptible species is influenced not only by its own but also by
the other one’s density (cf. [13, 21]). The Jacobian matrix of system (1.1) at
.S;I ;S;I /m can be written as:

J.d1;d2;�/D

0BB@
J11�d1� J12�d1�

0S d1� d1�
0S

J21 J22�d2 0 d2
d1� d1�

0S J11�d1� J12�d1�
0S

0 d2 J21 J22�d2

1CCA
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where � and �0 are to be taken at S .

det.J.d1;d2;�/��I/Dˇ̌̌̌
ˇ̌̌̌ J11�d1��� J12�d1�

0S d1� d1�
0S

J21 J22�d2�� 0 d2
d1� d1�

0S J11�d1��� J12�d1�
0S

0 d2 J21 J22�d2��

ˇ̌̌̌
ˇ̌̌̌ : (4.1)

Using the properties of determinant C
0

1 D C3CC1;C
0

2 D C4CC2 and R
0

3 D

R3�R1;R
0

4 DR4�R2, we get

det.J.d1;d2;�/��I/Dˇ̌̌̌
ˇ̌̌̌ J11�� J12 d1� d1�

0S

J21 J22�� 0 d2
0 0 J11�2d1��� J12�2d1�

0S

0 0 J21 J22�2d2��

ˇ̌̌̌
ˇ̌̌̌ : (4.2)

The characteristic polynomial is

Qcross.d1;d2/DQ2.�;n;m/
�
�2� t race .J.d1;d2;�//�Cdet.J.d1;d2;�//

�
:

(4.3)
We know that Q2.�;n;m/ has two roots with negative real parts and

.S;I ;S;I /m is diffusionally unstable if and only if the following criteria
holds:

� Q2.�;n;m/ has roots with negative real parts;
� det.J.d1;d2;�// < 0:

Thus can prove the following Theorem.

Theorem 2. Assume that n > n� holds. Turing instability occurs if

d1 > d1crit
D

det.J.n;m//�2d2
h
.a�b/.1�nT C cS

1CcS
�T /

i
2�Œ.m�1/.˛CbC/�2d2��2�0S.a�b/T .n�

cS

1CcS
/

(4.4)

Proof. Since

t race .J.d1;d2;�//D t race .J.n;m//�2.d1�Cd2/ < 0;
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and
det.J.d1;d2;�//D

D det.J.n;m//C2d2.2d1��J11/�2d1�ŒJ22�
�0

�
SJ21�;

D det.J.n;m//C2d2Œ2d1�� .a�b/.1�nT C
cS

1C cS
�T /�

�2d1�Œ.m�1/.˛CbC/�
�0

�
S.a�b/T .n�

cS

1C cS
/�:

therefore (4.4) implies Turing instability.
The equilibrium .S;I ;S;I /m of system (4.4) is asymptotically stable if �

0

�

is sufficiently large; if �
0

�
is sufficiently small and either � or d1 are sufficiently

big then .S;I ;S;I /m loses its stability by a Turing bifurcation. �

We illustrate the results by the following example of migration function
and we are looking for conditions which imply Turing instability (diffusion
driven instability).

Example 2. Trying to prepare an example comparable to that of [1], we
choose a D 0:05, b D 0:006, ˛ D 0:06, ˇ D 0:0056,  D 0:04, c D 0:05,
mD 2, nD 1, d2 D 0:05, �.I.t//D hexp.I.t/

h
/.

The unique endemic equilibrium is .S;I ;S;I /m D .2:8013; 7:7036; 2:8013;
7:7036/: We consider h as a bifurcation parameter. In this case at hcrit ; we
have four eigenvalues eigenvalues �i.i D 1;2;3;4/ such that<.�i/ < 0;.i D
1;2;3/ and �4 D 0: Thus,
� if h< hcrit then<.�i/ < 0; .i D 1;2;3;4/ and .S;I ;S;I /m is asymp-

totically stable;
� if h > hcrit then <.�i/ < 0; .i D 1;2;3/, �4 > 0, and .S;I ;S;I /m is

unstable.

Analytical studies shown that a cross-diffusion response can stabilize an
unstable equilibrium of standard system (self-diffusion) and destabilize a stable
equilibrium of standard system. Numerical studies shown that if the bifurc-
ation parameter is increased through a critical value of the bifurcation para-
meter h the system undergoes a Turing bifurcation and the spatially homo-
geneous endemic equilibrium loses its stability and two new stable equilibria
emerge. We conclude that the cross migration response is an important factor
that should not be ignored when pattern emerges (see Figure 3).
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FIGURE 3. Left figures: The solutions S and I before bifurcation at
d1 D 5 and hD 100; the unstable solution with self diffusion stable
is stable with cross diffusion. Right figures: The solutions S and I
after bifurcation at d1D 2 and hD 150; the solutions loss its stability
by Turing bifurcation. (Figure produced by applying MATLAB.)

It should be noted that, after the bifurcation, the sum of the stable equilib-
rium values of species S at the two patches (and, similarly, that of species I )
is equal to the double of its spatially homogeneous equilibrium value S (resp.,
I ).

5. CONCLUSIONS

In this paper, we have developed a theoretical framework for studying the
phenomenon of pattern formation in a SIS (Susceptible - Infective - Suscept-
ible) epidemic model with saturated incidence rate in order to stimulate the
dynamics of disease transmission under the influence of a population migra-
tion among identical patches. Applying a stability analysis and suitable nu-
merical simulations, we investigate the Turing parameter space and the Turing
bifurcation diagram, this case is a well-known phenomenon of cross-diffusion
driven instability. Numerical calculations show that a two new equilibria with
non equals compounds emerge and these equilibria are asymptotically stable,
so that this is a pitchfork bifurcation.
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