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Abstract. The aim of this paper is to prove some fixed point theorems for L-functions with the
help of measure of noncompactness and the Tychonoff fixed point theorem. Also, we prove some
existence theorems for a general infinite system of integral equations. As an application, we study
the problem of the existence of solutions for infinite systems of nonlinear integral equations of
Hammerstein type in two variables. The results obtained extend several ones. Finally, an example
is presented to guarantee our results.
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1. INTRODUCTION AND PRELIMINARIES

There are three major branches of fixed point theory in functional analysis, and
each branch has its celebrated theorems. In the topological branch of fixed point the-
ory, the main three theorems are Brouwer’s fixed point theorem, its infinite dimen-
sional version, Schauder’s fixed point theorem, and Tychonoff fixed point theorem
on locally convex spaces which in each of them compactness plays an essential role.

Theorem 1 (Schauder [1]). Let C be a closed and convex subset of a Banach
space E. Then every compact and continuous map F W C �! C has at least one
fixed point.

Theorem 2 (Tychonoff fixed point theorem [1]). LetE be a Hausdorff locally con-
vex linear topological space, C a convex subset of E and F W C �!E a continuous
mapping such that

F.C/� A� C

with A compact. Then F has at least one fixed point.

The concept of measure of noncompactness together with the well-known Darbo’s
fixed point theorem have played a basic role in nonlinear functional analysis, espe-
cially in topological fixed point theory. Up to now, several papers have been published
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on the existence and behavior of solutions of nonlinear differential and integral equa-
tions, using the technique of measure of noncompactness together with the Darbo’s
fixed point theorem. Some of these works are noted in [3, 4, 7, 8, 10, 12–16, 18, 19].
Recently, the theory of infinite systems of integral or differential equations can also
be used in solving some problems for differential and integral equations (see [5, 11,
22–25]).
On the other hand, In 1969, Meir and Keeler [21] proved the following very interest-
ing fixed-point theorem, which is a generalization of the Banach contraction principle
[6].

Definition 1 ([21]). Let .X;d/ be a metric space. Then a mapping T on X is said
to be a Meir-Keeler contraction (MKC, for short) if for any " > 0, there exists ı > 0
such that

"� d.x;y/ < "C ı H) d.T x;Ty/ < "; (1.1)
for all x;y 2X .

Theorem 3 (Meir and Keeler [21]). Let .X;d/ be a complete metric space. If
T WX �!X is a Meir-Keeler contraction, then T has a unique fixed point.

Next, Lim [20] and Suzuki [26] introduced the notion of L-functions and char-
acterized Meir-Keeler contractions in metric spaces. Moreover, Aghajani et al. [2]
introduce the notion of Meir-Keleer condensing operator on a Banach space, a char-
acterization using strictly L-functions and provide a few generalizations of Darbo’s
fixed point theorem. In this paper, we state and prove some fixed point theorems for
L-functions on Fr Kechet spaces with the help of measure of noncompactness and the
Tychonoff fixed point theorem, which is an extension of the results [21], Lim [20],
Suzuki [26] and Darbo [13]. Then, we prove some existence theorems for a general
infinite system of integral equations. Finally, using the obtained results, we are go-
ing to study the existence of continuous solutions of the infinite system of nonlinear
integral equations of Hammerstein type

xn.t; s/ (1.2)

D fn

�
t; s;x1.t; s/ : : : ;xn.t; s/;

Z 1
0

Z 1
0

kn.t; s;v;w/hn.v;w;.xj .v;w//
1
jD1/dvdw

�
;

t; s 2 RC, n 2 N. The functions fn, kn and hn (n 2 N) are continuous and sat-
isfy some certain conditions, specified later. Furthermore, an example is presented to
guarantee our results.
Now, we recall some basic facts concerning measures of noncompactness. Denote by
R the set of real numbers and put RCD Œ0;C1/. Let .E;k�k/ be a real Banach space
with zero element 0. Let B.x;r/ denote the closed ball centered at x with radius r .
The symbol Br stands for the ball B.0;r/. For X , a nonempty subset of E, we de-
note by X and ConvX the closure and the closed convex hull of X , respectively.
Moreover, let us denote by ME the family of nonempty bounded subsets of E and
by NE its subfamily consisting of all relatively compact sets.
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A topological vector space (TVS) is a vector space X over the field R which is en-
dowed with a topology such that the maps .x;y/! xC y and .˛;x/! ˛x are
continuous from X �X and R�X to X . A topological vector space is called locally
convex if there is a basic for the topology consisting of convex sets (that is, sets A
such that if x;y 2 A then txC .1� t /y 2 A for 0 < t < 1).

Definition 2 (Definition 1.11 in [9]). A Fr Kechet space is a complete linear metric
space or equivalently, a complete total paranormed space. In other words, a locally
convex space is called a Fr Kechet space if it is metrizable and the underlying metric
space is complete.

Definition 3 ([5]). Let M be a class of subsets of a Fr Kechet space E, we say M is
an admissible set if NE \M ¤¿ and if X 2M, then Conv.X/;X 2M.

Definition 4 ([5]). Let M be an admissible subset of a Fr Kechet space E, we say
that � WM �! RC be a measure of noncompactness on Fr Kechet space E if it satisfies
the following conditions:
.1ı/ The family ker�D fX 2M W �.X/D 0g is nonempty and ker��NE .
.2ı/ X � Y H) �.X/� �.Y /.
.3ı/ �.X/D �.X/.
.4ı/ �.ConvX/D �.X/.
.5ı/ �.�XC .1��/Y /� ��.X/C .1��/�.Y / for � 2 Œ0;1�.
.6ı/ If fXng is a sequence of closed sets from M such that XnC1 � Xn for nD

1;2; � � � , and if lim
n!1

�.Xn/D 0, then X1 D\1nD1Xn ¤¿.

Definition 5 (Lim [20]). A function ' from RC into itself is called an L-function
if '.0/D 0, '.s/ > 0 for s 2 .0;C1/, and for every s 2 .0;C1/ there exists ı > 0
such that '.t/� s, for all t 2 Œs; sC ı�.

Definition 6 ([2]). A function � from RC into itself is called a strictly L-function
if �.0/D 0, �.s/ > 0 for s 2 .0;C1/, and for every s 2 .0;C1/ there exists ı > 0
such that �.t/ < s; for all t 2 Œs; sC ı�.

2. FIXED POINT THEOREMS

In this section, we present some fixed point theorems on a Fr Kechet space.

Definition 7. Let˝ be a nonempty subset of a Fr Kechet space E, M an admissible
set such that ˝ 2M and � WM �! RC be a measure of noncompactness on E. We
say that an operator F W ˝ �! ˝ is a Meir-Keeler condensing operator if for any
" > 0, there exists ı > 0 such that

"� �.X/ < "C ı H) �.FX/ < "; (2.1)

and F.X/ 2M for any nonempty subset X 2M.

Now, we are ready to state our first main theorem for this section.
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Theorem 4. Let ˝ be a nonempty, closed and convex subset of a Fr Kechet space
E, M an admissible set such that ˝ 2M and � WM �! RC be a measure of non-
compactness on E. Let F W˝ �!˝ be a continuous and Meir-Keeler condensing
operator, then F has at least one fixed point.

Proof. By induction, we obtain a sequence f˝ng such that ˝0 D ˝ and ˝n D
Conv.F˝n�1/, n � 1. It is obvious that ˝n 2M and ˝nC1 � ˝n for all n 2 N.
If there exists an integer N � 0 such that �.˝N / D 0, then ˝N is compact. Thus,
Tychonoff fixed point theorem implies that F has a fixed point. Now assume that
�.˝n/ ¤ 0 for n � 0. Define "n D �.˝n/. Since ˝nC1 � ˝n and by .2ı/ so we
have f"ng is a positive decreasing sequence of real numbers and there exists 
 � 0
such that "n! 
 as n!1. We claim that 
 D 0. Suppose, on the contrary, that

 > 0, then there exists n0 such that n > n0 implies 
 � "n < 
C ı.
/, therefore by
the definition of Meir-Keeler condensing operator, "nC1<
 which is a contradiction.
Therefore, 
 D 0, that is, "n! 0 as n!1. Since the sequence .˝n/ is nested, in

view of axiom .6ı/ of Definition 4 we deduce that the set˝1D
1\
nD1

˝n is nonempty,

closed and convex subset of the set ˝. Moreover, the set ˝1 is invariant under the
operator F and belongs to Ker�. Thus, applying Tychonoff fixed point theorem, F
has a fixed point. �

Lemma 1. Let ' W RC �! RC be an increasing and right continuous function.
Then the following conditions are equivalent:

.a/ '.t/ < t for any t > 0 and '.0/D 0.

.b/ ' is an L-function.

.c/ ' is a strictly L-function.

Proof. Let ' satisfy condition (a). Since '.t/ < t for any t > 0 and ' a right
continuous function, so for any s > 0 there exist ıs > 0 such that

j'.t/�'.s/j< s�'.s/

for all t 2 Œs; sCıs�. Thus, '.t/ < s for all t 2 Œs; sCıs� and ' satisfies condition (b).
Now, assume that ' satisfies condition (b). Thus, for any s > 0 there exists ı > 0
such that '.t/� s for all t 2 Œs; sC ı�. Since ' is an increasing function, so '.t/ < s
for all t 2 Œs; sC ı

2
� and ' satisfies condition (c).

It remains to be shown that condition (c) implies condition (a). Because ' is a strictly
L-function, it implies that '.s/ < s for all s > 0 and therefore the proof is obvious.

�

Now, we formulate and prove a fixed point theorem using strictly L-functions as
an application of Theorem 4.
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Theorem 5. Let˝ be a nonempty, closed and convex subset of a Fr Kechet space E,
M an admissible set such that˝ 2M and � WM �! RC a measure of noncompact-
ness on E. Then T is a Meir-Keeler condensing operator if and only if there exists a
(increasing, right continuous) strictly L-function # such that

�.TX/� #.�.X//; (2.2)

for each X �˝ and X 2M.

Proof. Let " > 0 be given. By the assumption, there exists ı > 0 such that #.t/ < "
if "� t < "C ı. If X is a subset of ˝ such that

"� �.X/ < "C ı."/;

thus,
�.T .X//� #.�.X// < "

and T is a Meir-Keeler condensing operator. For the necessity part, assume that T is
a Meir-Keeler condensing. From the definition of Meir-Keeler condensing, we can
define a function ˛ W .0;1/! .0;1/, such that

"� �.X/ < "C2˛."/H) �.T .X// < "; (2.3)

for " 2 .0;1/. Using such ˛, we define a nondecreasing function ˇ W .0;1/!
Œ0;1/, by

ˇ.t/D inff" W t � "C˛."/g
for t 2 .0;1/. Since t � t C˛.t/, we note that ˇ.t/ � t for t 2 .0;1/. Define a
function �1 from Œ0;1/ into itself by

�1.t/D

8<:
0 if t D 0;

ˇ.t/ if t > 0 andminf" > 0 W t � "C˛."/g exists;
ˇ.t/Ct
2

otherwise:

(2.4)

Similar to Proposition 1 in [20], �1 be an L-function. Now, we define �2, �3 and #
from Œ0;1/ into itself by

�2.t/D supf�1.s/ W s � tg;

�3.t/D inff�2.s/ W s > tg

and

#.t/D
�3.t/C t

2
for t 2 Œ0;1/. Then we have

0� �1.t/� �2.t/� �3.t/� #.t/� t

for all t 2 .0;1/, �2 is a nondecreasing L-function, �3 is a nondecreasing, right
continuous L-function and # is an increasing, right continuous L-function. Therefore,
by Lemma 1 we have # is a increasing and right continuous strictly L-function. Fix
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X 2M such that �.X/ ¤ 0. From the definition of ˇ, there exists " � �.X/ such
that "� �.X/� "C˛."/. Thus,

�.TX/ < "� ˇ.�.X//� #.�.X//

holds. �

Remark 1. If there exists a strictly L-function # such that T satisfies in condition
(2.2) then there exists an increasing and right continuous strictly L-function # 0 such
that T satisfies in condition (2.2).

3. INFINITE SYSTEMS OF CONDENSING OPERATORS

In this section, we prove some existence theorems for a general infinite system of
equations involving condensing operators.

Let .Ei ;di / be a Fr Kechet space for all i 2 N, d.x;y/D sup
˚ 1
2i

minf1;di .xi ;yi /g W

i 2 N
	
, x D .x1;x2; : : :/;y D .y1;y2; : : :/ 2

Y
i2N

Ei . Then .
Y
i2N

Ei ;d / is a Fr Kechet

space.

Theorem 6 (Tychonoff’s theorem[17]). Let f.Xi ; �i / W i 2Ng be any family of to-
pological spaces. Then

Y
i2N

.Xi ; �i / is compact if and only if each .Xi ; �i / is compact.

Remark 2. We use the notation R! which denotes the countable Cartesian product
of RC with itself, and l1 consists of all bounded sequences of scalars.

Now we are ready to state and prove the main results of this section.

Theorem 7. Suppose �i be a measure of noncompactness on Fr Kechet spaces Ei
for all i 2 N. Moreover assume that the function F W l1 �! RC is convex, non-
decreasing and F..xi /1iD1/D 0 if and only if xi D 0 for all i 2N. If we define

M D fX �

1Y
iD1

Ei W sup
i

f�i .�i .X//g<1g;

where �i .X/ denotes the natural projections of
1Y
iD1

Ei into Ei and

� WM �! RC be defined by

�.X/D F
��
�i .�i .X//

�1
iD1

�
; (3.1)

then M is an admissible set and � is a measure of noncompactness on Fr Kechet space

E D

1Y
iD1

Ei .
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Proof. It can be easily verified that M is an admissible set. Now, we prove � is

a measure of noncompactness on E D
1Y
iD1

Ei . For proving the condition .2ı/, sup-

pose that X � Y . Since �i be a measure of noncompactness, we have �i .�i .X// �
�i .�i .Y // for all i 2N, and using F is nondecreasing we imply that

�.X/D F
��
�i .�i .X//

�1
iD1

�
� �.Y /D F

��
�i .�i .Y //

�1
iD1

�
;

which shows that the condition .2ı/ is valid. The properties .3ı/-.5ı/ are simple
consequences of

�i .�U C .1��/V /D ��i .U /C .1��/�i .V /; (3.2)

�i .ConvX/D Conv�i .X/;

�i .X/� �i .X/� �i .X/:

Now we show .1ı/. If �.X/ D 0 for X 2M then �i .�i .X// D 0 for each i 2 N.
Hence, by virtue of .1ı/ of Definition 4 for measure of noncompactness �i , �i .X/ is

relatively compact for all i 2N and by Theorem 6,
1Y
iD1

�i .X/ is relatively compact.

Thus, X �
1Y
iD1

�i .X/ is relatively compact. Finally, it suffices to show .6ı/. suppose

that fXng is a sequence of closed sets from M such that XnC1 � Xn for n 2N and
lim
n!1

�.Xn/D 0. So we have

lim
n!1

F
��
�i .�i .Xn//

�1
iD1

�
D 0: (3.3)

Since XnC1 � Xn, �i .�i .XnC1// � �i .�i .Xn// and �i .�i .Xn// � 0 for all i 2N.
Thus, there is an ri � 0 so that

lim
n!1

�i .�i .Xn//D ri :

Because F is continuous, then

lim
n!1

F
��
�i .�i .Xn//

�1
iD1

�
D F

�
lim
n!1

�
�i .�i .Xn//

�1
iD1

�
D F

�
.ri /
1
iD1

�
:

On the other hand, using (3.3) we have F
�
.ri /
1
iD1

�
D 0. By assumption of the the-

orem we imply that ri D 0 for all i 2 N, and so lim
n!1

�i .�i .Xn// D 0. By (6ı) of

definition of measure of noncompactness on En we have X1i D
1\
nD1

�i .Xn/ ¤ ¿

for all i 2 N. Therefore we get
1Y
iD1

X1i � X1 and X1 ¤ ¿. This completes the

proof. �
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Example 1. Let�n .n2N/ be measures of noncompactness on Fr Kechet spacesEn,

respectively. Considering F1..xn/1nD1/ D sup
n2N

bnxn and F2..xn/1nD1/ D
1X
nD1

anxn

(the functionsF1;F 2 are defined on l1) such that an;bn 2RC,
1X
nD1

an<1 and fbng

be a bounded sequence, then all the conditions of Theorem 7 are satisfied. Therefore,

e�1 WD sup
n2N

bn�.Xn/ and e�2 WD 1X
nD1

an�.Xn// define measures of noncompactness

in the Fr Kechet space E D
1Y
iD1

Ei where Xn .n 2N/, denotes the natural projections

of X into En.

Theorem 8. Let˝i .i 2N/ be a nonempty, convex and closed subset of a Fr Kechet
space Ei , �i an arbitrary measure of noncompactness on Ei and sup

i

f�i .˝i /g<1.

Let Fi W
1Y
iD1

˝i �!˝i .i D 1;2; : : :/ be a continuous operator such that

ai�i .Fi .

1Y
jD1

Xj //� '.sup
j

faj�j .Xj /g/ (3.4)

for any subsetXi of˝i (i 2N) where ' WRC �!RC is a strictly L-function and faig

is a bounded sequence of positive real numbers. Then there exist .x�j /
1
jD1 2

1Y
jD1

j̋

such that

Fi ..x
�
j /
1
jD1/D x

�
i (3.5)

for all i 2N.

Proof. Let us consider eF W 1Y
iD1

˝i �!

1Y
iD1

˝i in the following way:

eF ..xj /1jD1/D .F1..xj /1jD1/;F2..xj /1jD1/; : : : ;Fi ..xj /1jD1/; : : :/
for all .xj /1jD1 2

1Y
iD1

˝i . It is obvious that eF is continuous. It suffices to show that

the hypothesis (2.2) of Theorem 5 holds where � is defined by Example 1. Take an
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arbitrary nonempty subset X of
1Y
iD1

˝i . Now, by .2ı/ and (3.4) we obtain

�.eF .X//� �. 1Y
iD1

Fi .

1Y
jD1

�j .X///

D sup
i

ai�i .Fi ..

1Y
jD1

�j .X////

� sup
i

'.sup
j

aj�j .�j .X///

� sup
i

'.�.X//

� '.�.X//: (3.6)

Thus, using Theorem 5, eF is a continuous and Meir-Keeler condensing operator.

Now applying Theorem 4, eF has a fixed point and there exist .x�j /
1
jD1 2

1Y
jD1

j̋ such

that

.x�j /
1
jD1 D

eF ..x�j /1jD1/D .F1..x�j /1jD1/;F2..x�j /1jD1/; : : : ;Fj ..x�j /1jD1/; : : :/
and that (3.5) holds. �

4. EXISTENCE OF A SOLUTION FOR A INFINITE SYSTEM OF INTEGRAL
EQUATIONS

In the following section, we will work in the classical Banach space BC.RC �
RC/ consisting of all real functions defined, bounded and continuous on RC �RC
equipped with the standard norm

kxk D supfjx.t; s/j W t; s � 0g:

Now, we present the definition of a special measure of noncompactness in BC.RC�
RC/ which will be needed in the sequel.
To do this, let X be a fixed nonempty and bounded subset of BC.RC�RC/ and fix
a positive number T . For x 2 X and � > 0, denote by !T .x;�/ the modulus of the
continuity of function x on the interval Œ0;T �; i.e.,

!T .x;�/D supfjx.t; s/�x.u;v/j W t; s;u;v 2 Œ0;T �; jt �uj � �; js�vj � �g:

Further, let us put
!T .X;�/D supf!T .x;�/ W x 2Xg;

!T0 .X/D lim
�!0

!T .X;�/
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and
!0.X/D lim

T!1
!T0 .X/:

Moreover, for two fixed numbers t; s 2 RC let us the define the function � on the
family MBC.RC�RC/ by the following formula

�.X/D !0.X/C limsup
k.t;s/k!1

diamX.t;s/;

where k.t; s/k D max.t; s/ and X.t;s/D fx.t; s/ W x 2 Xg. Similar to [8], it can be
shown that the function � is a measure of noncompactness in the space BC.RC �
RC/.
As an application of Theorem 8 we prove the existence of solutions for the infinite
system of integral equations of Hammerstein type in two variables (1.2).

Theorem 9. Assume that the following conditions are satisfied:
.a1/ fn WRC�RC�Rn�R�!R .n 2N/ is continuous. Moreover, there exists a

nondecreasing, right continuity and concave strictly L-function ' such that
jfn.t; s;x1; : : : ;xn;u/�fn.t; s;y1; : : : ;yn;v/j � '. max

1�i�n
jxi �yi j/Cju�vjI (4.1)

.a2/ M WD supfjfn.t; s;0; : : : ;0/j W t; s 2 RC;n 2Ng<1;

.a3/ kn W RC�RC�RC�RC �! R are continuous functions for all n 2N;

.a4/ hn W RC�RC�R! �! R .n 2N/ is continuous and there exist a continuous
function an WRC�RC �!RC and a continuous and nondecreasing function
bn W RC �! RC such that

jhn.t; s; .xj /
1
jD1/j � an.t; s/bn. sup

1�j<1

jxj j/

for all t; s 2 RC and .xj /1jD1 2 R! with sup
1�j<1

jxj j <1. Also the function

.v;w/ �! an.v;w/kn.v;w; t; s/ is integrable over RC �RC for any fixed
t; s 2 RC and n 2N.

.a5/ there exists a positive constant D such that

D D supf
Z 1
0

Z 1
0

an.v;w/jkn.t; s;v;w/jdvdw W t; s 2 RC;n 2Ng<1;

and

lim
kt;sk!1

Z 1
0

Z 1
0

an.v;w/jkn.t; s;v;w/jdvdw D 0I (4.2)

.a6/ the following equalities are hold:

lim
T�!1

�
supf

Z 1
T

Z T

0

an.v;w/jkn.t; s;v;w/jdvdw W t; s 2 RCg

�
D 0; (4.3)

lim
T�!1

�
supf

Z 1
0

Z 1
T

an.v;w/jkn.t; s;v;w/jdvdw W t; s 2 RCg

�
D 0;
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for all n 2N;
.a7/ there exists a positive solution r0 of the inequality

'.r/CM CDbn.r/� r

for all n 2N.

Then the infinite system of equations (1.2) has at least one solution in the space
.BC.RC�RC//! .

Proof. Let us fix arbitrarily n 2N. Define Hn W .BC.RC�RC//
!
�! BC.RC�

RC/ by

Hn..xj /
1
jD1/.t; s/D fn.t; s;x1.t; s/ : : : ;xn.t; s/;Z 1

0

Z 1
0

kn.t; s;v;w/hn.v;w;.xj .v;w//
1
jD1/dvdw/: (4.4)

In light of (4.4) and assumptions .a1/-.a7/, fn is continuous, kn is continuous, hn
is continuous and xi for i 2 N are continuous. On the other hand, integral of con-
tinuous function is continuous. Therefore, we infer that the function Hn..xj /1jD1/ is
continuous for arbitrarily .xj /1jD1 2 .BC.RC�RC//! because it is the composition
of continuous functions. Moreover, in view of our assumptions, for arbitrarily fixed
.xj /

1
jD1 2 .BC.RC�RC//! and t; s 2 RC, we obtain

jHn..xj /
1
jD1/.t; s/j (4.5)

�

ˇ̌̌
fn

�
t; s;x1.t; s/ : : : ;xn.t; s/;

Z 1
0

Z 1
0

kn.t; s;v;w/hn.v;w;.xj .v;w//
1
jD1/dvdw

�
�fn.t; s;0; : : : ;0/

ˇ̌̌
Cjfn.t; s;0; : : : ;0/j

� '. max
1�i�n

jxi .t; s/j/Cjfn.t; s;0; : : : ;0/j

C

Z 1
0

Z 1
0

jkn.t; s;v;w/jjan.v;w/jbn.j.xj .v;w//
1
jD1j/

� '. max
1�i�n

jxi .t; s/j/CM CDbn. sup
1�j<1

jxj .v;w/j/

� '. max
1�i�n

kxik/CM CDbn. sup
1�j<1

kxj k/:

Thus,
kHn.x/k � '. max

1�i�n
kxik/CM CDbn. sup

1�j<1

kxj k/ (4.6)

and Hn..xj /1jD1/ 2 BC.RC�RC/ for any .xj /1jD1 2 .BC.RC�RC//
! . By (4.6)

and using .a7/, the function Hn maps . NBr0
/! into NBr0

.
Now we claim that Hn is a continuous function on . NBr0

/! for all n 2N. To do this,
let us fix 0 < " < 1

2n and take arbitrary x D ..xj /1jD1/;y D ..yj /
1
jD1/ 2 .BC.RC�
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RC//! such that d.x;y/D sup
˚ 1
2i

minf1;kxi�yikg W i 2N
	
<". Then, for t; s;v;w 2

RC, we getˇ̌̌
Hn..xj /

1
jD1/.t; s/�Hn..yj /

1
jD1/.t; s/

ˇ̌̌
�

ˇ̌̌
fn

�
t; s;x1.t; s/; : : : ;xn.t; s/;

Z 1
0

Z 1
0

kn.t; s;v;w/hn.v;w;.xj .v;w//
1
jD1/dvdw

�
�fn

�
t; s;y1.t; s/; : : : ;yn.t; s/;

Z 1
0

Z 1
0

kn.t; s;v;w/hn.v;w;.yj .v;w//
1
jD1/dvdw

�ˇ̌̌
� '. max

1�i�n
jxi .t; s/�yi .t; s/j/

C

ˇ̌̌ Z 1
0

Z 1
0

kn.t; s;v;w/Œhn.v;w;.xj .v;w//
1
jD1/�hn.v;w;.yj .v;w//

1
jD1/�dvdw

ˇ̌̌
:

On the other hand, assumption .a5/ ensure that there exists a positive number T
such that for max.t; s/ > T we haveˇ̌̌

Hn..xj /
1
jD1/.t; s/�Hn..yj /

1
jD1/.t; s/

ˇ̌̌
� '. max

1�i�n
jxi .t; s/�yi .t; s/j/

C2bn.r0/

Z 1
0

Z 1
0
jkn.t; s;v;w/jan.v;w/dvdw

� '.2n"/Cbn.r0/":

Suppose that t; s 2 Œ0;T �. By applying the assumptions, we infer thatˇ̌̌
Hn..xj /

1
jD1/.t; s/�Hn..yj /

1
jD1/.t; s/

ˇ̌̌
� '. max

1�i�n
jxi .t; s/�yi .t; s/j/

C

ˇ̌̌ Z 1
0

Z 1
0

kn.t; s;v;w/Œhn.v;w;.xj .v;w//
1
jD1/�hn.v;w;.yj .v;w//

1
jD1/�dvdw

ˇ̌̌
� '.2n"/C

(Z 1
0

�Z T

0
jkn.t; s;v;w/jjhn.v;w;.xj .v;w//

1
jD1/�hn.v;w;.yj .v;w//

1
jD1/jdv

C

Z 1
T
jkn.t; s;v;w/jŒjhn.v;w;.xj .v;w//

1
jD1/jChn.v;w;.yj .v;w//

1
jD1/j�dv

�
dw

)

� '.2n"/C

Z T

0

Z T

0
jkn.t; s;v;w/jjhn.v;w;.xj .v;w//

1
jD1/�hn.v;w;.yj .v;w//

1
jD1/jdvdw

C

Z T

0

Z 1
T
jkn.t; s;v;w/jŒjhn.v;w;.xj .v;w//

1
jD1/jC jhn.v;w;.yj .v;w//

1
jD1/j�dvdw

C

Z 1
T

Z 1
0
jkn.t; s;v;w/jŒjhn.v;w;.xj .v;w//

1
jD1/jC jhn.v;w;.yj .v;w//

1
jD1/j�dvdw

� '.2n"/CKnT !
T
r0
.hn; "/C2bn.r0/

Z T

0

Z 1
T

an.v;w/jkn.t; s;v;w/jdvdw

C2bn.r0/

Z 1
T

Z 1
0

an.v;w/jkn.t; s;v;w/jdvdw;

where

KnT D supfkn.t; s;v;w/ W t; s;v;w 2 Œ0;T �g
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!Tr0
.hn; "/D supfjhn.v;w;.xj /1jD1/�hn.v;w;.yj /

1
jD1/j

W v;w 2 Œ0;T �; xi ;yi 2 Œ�r0; r0�; jxi �yi j � "g:

From the continuity of the function hn on the compact set Œ0;T �� Œ0;T �� Œ�r0; r0�!

(by using Tychonoff’s theorem), we have !Tr0
.hn; "/ �! 0 as " �! 0 and in view of

assumption .a6/ we can choose T in such a way that three last terms of the above
estimate are sufficiently small. Thus Hn is a continuous function on .BC.RC �
RC//! .
Now we assert thatHn satisfies all the conditions of Theorem 8. LetXi be nonempty
and bounded subsets of NBr0

for all i 2N such that supi .�.Xi // <1 , and assume
that T > 0 and " > 0 are arbitrary constants. Let t1; t2; s1; s2 2 Œ0;T � such that jt2�
t1j � ", js2� s1j � " and xi 2Xi for all i 2N. Then, by the assumptions we have:

ˇ̌̌
Hn..xi /

1
iD1/.t2; s2/�Hn..xi /

1
iD1/.t1; s1/

ˇ̌̌
�

ˇ̌̌
fn

�
t2; s2;x1.t2; s2/; : : : ;xn.t2; s2/;

Z 1
0

Z 1
0

kn.t2; s2;v;w/hn.v;w;.xi .v;w//
1
iD1/dvdw

�
�fn

�
t1; s1;x1.t1; s1/; : : : ;xn.t1; s1/;

Z 1
0

Z 1
0

kn.t1; s1;v;w/hn.v;w;.xi .v;w//
1
iD1/dvdw

�ˇ̌̌
�

ˇ̌̌̌
fn

�
t2; s2;x1.t2; s2/; : : : ;xn.t2; s2/;

Z 1
0

Z 1
0

kn.t2; s2;v;w/hn.v;w;.xi .v;w//
1
jD1/dvdw

�
�fn

�
t2; s2;x1.t1; s1/; : : : ;xn.t1; s1/;

Z 1
0

Z 1
0

kn.t2; s2;v;w/hn.v;w;.xi .v;w//
1
iD1/dvdw

�ˇ̌̌̌
C

ˇ̌̌̌
fn

�
t2; s2;x1.t1; s1/; : : : ;xn.t1; s1/;

Z 1
0

Z 1
0

kn.t2; s2;v;w/hn.v;w;.xi .v;w//
1
iD1/dvdw

�
�fn

�
t1; s1;x1.t1; s1/; : : : ;xn.t1; s1/;

Z 1
0

Z 1
0

kn.t2; s2;v;w/hn.v;w;.xi .v;w//
1
iD1/dvdw

�ˇ̌̌̌
C

ˇ̌̌̌
fn

�
t1; s1;x1.t1; s1/; : : : ;xn.t1; s1/;

Z 1
0

Z 1
0

kn.t2; s2;v;w/hn.v;w;.xi .v;w//
1
iD1/dvdw

�
�fn

�
t1; s1;x1.t1; s1/; : : : ;xn.t1; s1/;

Z 1
0

Z 1
0

kn.t1; s1;v;w/hn.v;w;.xi .v;w//
1
iD1/dvdw

�ˇ̌̌̌
� '. max

1�j�n
jxj .t2; s2/�xj .t1; s1/j/C!

T
r0;D1

.fn; "/

Cj

Z 1
0

Z 1
0
Œkn.t2; s2;v;w/�kn.t1; s1;v;w/�hn.v;w;.xi .v;w//

1
iD1/dvdwj

� '. max
1�j�n

jxj .t2; s2/�xj .t1; s1/j/C!
T
r0;D1

.fn; "/

C

Z T

0

Z T

0
jkn.t2; s2;v;w/�kn.t1; s1;v;w/jjhn.v;w;.xi .v;w//

1
iD1/jdvdw

C

Z T

0

Z 1
T
jkn.t2; s2;v;w/�kn.t1; s1;v;w/jjhn.v;w;.xi .v;w//

1
iD1/jdvdw

C

Z 1
T

Z 1
0
jkn.t2; s2;v;w/�kn.t1; s1;v;w/jjhn.v;w;.xi .v;w//

1
iD1/jdvdw
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� '. max
1�j�n

!T .xj ; "//C!
T
r0;D1

.fn; "/CT
2U Tr0!

T .kn; "/

Cbn.r0/

Z T

0

Z 1
T
Œjkn.t2; s2;v;w/jC jkn.t1; s1;v;w/j�an.v;w/dvdw

Cbn.r0/

Z 1
T

Z 1
0
Œjkn.t2; s2;v;w/jC jkn.t1; s1;v;w/j�an.v;w/dvdw (4.7)

where

D1 D bn.r0/D.see assumption .a5//

!Tr0;D1
.fn; "/D supfjfn.t2; s2;x1; � � � ;xn;y/�fn.t1; s1;x1; � � � ;xn;y/j W t1; s1; t2; s2 2 Œ0;T �;

jt2� t1j � "; js2� s1j � "; jxi j � r0; jyj �D1g;

!T .xi ; "//D supfjxi .t2; s2/�xi .t1; s1/j W t1; s1; t2; s2 2 Œ0;T �; jt2� t1j � "; js2� s1j � "g;

!T .kn; "/D supfjkn.t2; s2;v;w/�kn.t1; s1;v;w/j W

t1; s1; t2; s2;v;w 2 Œ0;T �; jt2� t1j � "; js2� s1j � "g;

U Tr0 D supfjhn.v;w;.xj /1jD1/j W v;w 2 Œ0;T �;xi 2 Œ�r0; r0�g:

Since xi was an arbitrary element of Xi for all i 2N in (4.7), we obtain

!T .Hn.

1Y
iD1

Xi //� '. max
1�i�n

!T .xi ; "//C!
T
r0;D1

.fn; "/CT
2U Tr0

!T .kn; "/

Cbn.r0/

Z T

0

Z 1
T

Œjkn.t2; s2;v;w/jC jkn.t1; s1;v;w/j�an.v;w/dvdw

Cbn.r0/

Z 1
T

Z 1
0

Œjkn.t2; s2;v;w/jC jkn.t1; s1;v;w/j�an.v;w/dvdw;

and by the uniform continuity of fn and kn on the compact sets Œ0;T �� Œ0;T ��
Œ�r0; r0�

n� Œ�D1;D1� and Œ0;T �� Œ0;T �� Œ0;T �� Œ0;T � respectively, we have
!Tr0;D1

.fn; "/ �! 0 and !T .kn; "/ �! 0 as " �! 0. Therefore, we obtain

!T .Hn.

1Y
iD1

Xi //� '. max
1�i�n

!T .xi ; "//

Cbn.r0/

Z T

0

Z 1
T

Œjkn.t2; s2;v;w/jC jkn.t1; s1;v;w/j�an.v;w/dvdw

Cbn.r0/

Z 1
T

Z 1
0

Œjkn.t2; s2;v;w/jC jkn.t1; s1;v;w/j�an.v;w/dvdw:

Now taking T �!1 and by using assumption .a6/ we get

!0.Hn.

1Y
iD1

Xi //� '. max
1�i�n

!0.Xi //: (4.8)
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On the other hand, for all xi ;yi 2Xi .i 2N/ and t; s 2 RC we getˇ̌̌
Hn..xi /

1
iD1/.t; s/�Hn..yi /

1
iD1/.t; s/

ˇ̌̌
� '. max

1�i�n
jxi .t; s/�yi .t; s/j/

C

ˇ̌̌ Z 1
0

Z 1
0

kn.t; s;v;w/Œhn.v;w;.xi .v;w//
1
iD1/�hn.v;w;.yi .v;w//

1
iD1/�dvdw

ˇ̌̌
� '. max

1�i�n
jxi .t; s/�yi .t; s/j/C2bn.r0/

Z 1
0

Z 1
0

an.v;w/jkn.t; s;v;w/jdvdw:

Thus, we obtain

diam.Hn.

1Y
iD1

Xi /.t; s// (4.9)

� '. max
1�i�n

diam.Xi .t; s///C2bn.r0/

Z 1
0

Z 1
0

an.v;w/jkn.t; s;v;w/jdvdw:

Taking k.t; s/k �!1 in the inequality (4.9), then using .a5/ we have

lim
k.t;s/k�!1

diam.Hn.

1Y
iD1

Xi /.t; s//� '. max
1�i�n

lim
k.t;s/k�!1

diam.Xi .t; s///:

(4.10)
Further, combining (4.8) and (4.10) we get

�.Hn.

1Y
iD1

Xi //D !0.Hn.

1Y
iD1

Xi /C lim
k.t;s/k�!1

diamHn.

1Y
iD1

Xi /.t; s/

� '. max
1�i�n

!0.Xi //C'. max
1�i�n

lim
k.t;s/k�!1

diam.Xi .t; s///

� 'Œ max
1�i�n

.!0.Xi /C lim
k.t;s/k�!1

diam.Xi .t; s///�

� 2'Œ max
1�i�n

1

2
.!0.Xi /C lim

k.t;s/k�!1
diam.Xi .t; s///�:

Let us consider the measure of noncompactness �1 D
1

2
�, thus we get

�1.Hn.

1Y
iD1

Xi //� '.sup
i

�1.Xi //:

Now by using Theorem 8, there exist .xi /1iD1 2 .BC.RC�RC//! such that

xn.t; s/

D fn

�
t; s;x1.t; s/ : : : ;xn.t; s/;

Z 1
0

Z 1
0

kn.t; s;v;w/hn.v;w;.xi .v;w//
1
iD1/dvdw

�
and the proof is complete. �
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Example 2. Consider the following system of functional integral equations

xn.t; s/D
t2ns2n

t4ns4nC1
C tanh.

1

n

nX
iD1

jxi .t; s/j/ (4.11)

C

Z 1
0

Z 1
0

e�nw.e�nv�1/

2nŒtnsnC1�

1X
iD1

e�iv 2n�1
p

tanhxi .v;w/dvdw

Eq. (4.11) is a special case of Eq. (1.2) where

fn.t; s;x1; : : : ;xn;´/D
t2ns2n

t4ns4nC1
C tanh.

1

n

nX
iD1

jxi j/C´;

kn.t; s;v;w/D
e�nw.e�nv�1/

2nŒtnsnC1�
;

hn.t; s; .xj /
1
jD1/D

1X
iD1

e�it
2n�1
p

tanhxi ;

an.t; s/D
1

et �1
; bn.r/D

2n�1
p

tanhr:

Suppose that t; s 2 RC. Now, by taking '.t/D tanh.t/ we have

jfn.t; s;x1; : : : ;xn;u/�fn.t; s;y1; : : : ;yn;v/j

� j tanh.
1

n

nX
iD1

jxi j/� tanh.
1

n

nX
iD1

jyi j/jC ju�vj

� tanh.
1

n

nX
iD1

jxi �yi j/Cju�vj

� tanh. max
1�i�n

jxi �yi j/Cju�vj

D '. max
1�i�n

jxi �yi j/Cju�vj/: (4.12)

Thus, we infer that condition .a1/ holds. On the other hand

M D supfjfn.t; s;0; : : : ;0/j W t; s 2 RC;n 2Ng

D supf
t2ns2n

t4ns4nC1
W t; s 2 RC;n 2Ng D

1

2

which shows the condition .a2/ is valid. Also, assumption .a3/ clearly is evident. In
order to show that assumption .a4/ is satisfied, let us assume that sup

1�i<1

jxi j <1,

so we have

jhn.t; s; .xj /
1
jD1/j D

1X
iD1

e�it
2n�1
p

tanhxi (4.13)
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�
1

et �1
2n�1

r
tanh. sup

1�i<1

jxi j/

Dan.t; s/bn. sup
1�i<1

jxi j/:

On the other hand, the function .v;w/ �! an.v;w/kn.v;w; t; s/ is integrable over
RC�RC for any fixed t; s 2 RC and n 2N. Thus, condition .a4/ is valid. Further,
we get:

D Dsupf
1

2nŒtnsnC1�

Z 1
0

Z 1
0

j
e�nw.e�nv�1/

ev�1
jdvdw W t; s 2 RC;n 2Ng

Dsupf
1

2nŒtnsnC1�Z 1
0

Z 1
0

je�nw.e�vC e�2vC : : :C e�nv/jdvdw W t; s 2 RC;n 2Ng

Dsupf
1

2nŒtnsnC1�n
.1C

1

2
C
1

3
C : : :C

1

n
/ W t; s 2 RC;n 2Ng (4.14)

D
1

2
<1

and

lim
kt;sk!1

1

2nŒtnsnC1�

Z 1
0

Z 1
0

e�nw.e�nv�1/

ev�1
dvdw D 0:

This implies that the condition .a5/ holds. Moreover, for arbitrarily fixed T > 0 we
obtain:Z 1

T

Z T

0

an.v;w/jkn.t; s;v;w/jdvdw �
e�nT

2nn
.n� e�T �

e�2T

2
� : : :�

e�nT

n
/

and Z 1
0

Z 1
T

an.v;w/jkn.t; s;v;w/jdvdw �
1

2nn
.e�T C

e�2T

2
C : : :C

e�nT

n
/:

From the above estimate, we infer that condition .a6/ is valid. It is easy to see that
each number r � 4 satisfies the inequality in condition .a7/, i.e.,

'.r/CM CDbn.r/D tanh.r/C
1

2
C
1

2
2n�1
p
r � r:

Thus, as the number r0 we can take r0 D 4. Consequently, all the conditions of
Theorem 9 are satisfied. Hence the system of functional integral equations .4:11/
has at least one solution which belong to the space .BC.RC�RC//

! .
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