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Abstract. In this article, we introduce some new class of convex functions involving two arbitrary
auxiliary functions h1;h2 W I ! R; which are called .h1;h2/-convex functions. We derive some
new integral inequalities for these classes of convex functions. We also discuss some special
cases which can be deduced from our main results. Results obtained in this paper may be viewed
as a significant refinement and improvement of the previously known results. The ideas and
techniques of this work may be a starting point for future research.
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1. INTRODUCTION

A set C � R is said to be a convex set, if

txC .1� t /y 2 C ; 8x;y 2 C ; t 2 Œ0;1�:

A function f W C ! R is said to be a convex function in the classical sense, if

f .txC .1� t /y/� tf .x/C .1� t /f .y/; 8x;y 2 C ; t 2 Œ0;1�:

In recent years several new generalizations of classical convexity have been given,
for example see [1–3,8,17,18]. Varosanec [18] introduced the notion of h-convexity
which along with classical convex functions generalizes several other class of convex
functions. The formal definition of h-convex functions is given as:

Definition 1 ([18]). Let h W .0;1/� J ! R be a non-negative function, h 6� 0. We
say that f W C! R is an h-convex function, if f is non-negative and for all x;y 2 C ,
t 2 .0;1/, we have

f .txC .1� t /y/� h.t/f .x/Ch.1� t /f .y/:
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For the different choices of the auxiliary function h.:/, we have different other
classes of convex functions such as: Breckner type of s-convex functions [1], Godu-
nova-Levin-Dragomir type of s-convex functions [4], Godunova-Levin type of func-
tions [8] and P -functions [7]. Since the appearance of this definition many research-
ers shown their special interest in studying this class of convex functions. Sarikaya
et al. [15] has improved the Hermite-Hadamard’s inequality for this class of convex
functions. Recent trend of the research in this field has shown that theory of con-
vexity and theory of inequalities have a close relationship. Many inequalities can be
obtained via convex functions and naturally they can be extended for generalizations
of convex functions, see [5, 6, 10–12, 14, 16].

Motivated by the research going on in this field, we introduce the notion of so-
called .h1;h2/-convex functions, which is the main motivation of this paper. These
classes involves two auxiliary functions namely h1;h2 W J ! R. We show that these
classes include several new and known classes of convex functions as special cases.
We also derive some new estimates for Hermite-Hadamard type of inequalities and

for the integral
bR
a

.u�a/˛.b�u/ˇf .u/du via .h1;h2/-convex functions. Some new

and known special cases which can be deduced from our main results, are also dis-
cussed.

2. PRELIMINARIES

We now define the new classes of convex functions involving two arbitrary func-
tions.

Definition 2. Let h1;h2 W .0;1/ � J ! R be two real functions, h1;h2 6� 0. We
say that f W C ! R is an .h1;h2/-convex function, if

f .txC.1�t /y/� h1.t/h2.1�t /f .x/Ch1.1�t /h2.t/f .y/; 8x;y 2C ; t 2 .0;1/:

We now discuss several special cases.

I. If h2.t/D 1, then Definition 2 reduces to the definition for h-convex functions [18].

II. If h1.t/D 1D h2.t/, then Definition 2 reduces to the definition for P -functions
[7].

III. If h1.t/D ts and h2.t/D ts in Definition 2, then we have the class of s-convex
functions of third kind.

Definition 3. Let s 2 Œ0;1� be a real number. We say that f W C ! R is an s-tgs-
convex functions, if

f .txC .1� t /y/� ts.1� t /sŒf .x/Cf .y/�; 8x;y 2 C ; t 2 Œ0;1�:
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Note that if we take sD 1 in Definition 3, then we have the definition of tgs-convex
functions [17].
IV. If h1.t/ D t�s and h2.t/ D t�s in Definition 2, then we have the class of s-
Godunova-Levin-Dragomir tgs-convex functions.

Definition 4. Let s 2 .0;1� be a real number. We say that f W C ! R is an s-
Godunova-Levin-Dragomir tgs-convex function, if

f .txC .1� t /y/�
1

ts
1

.1� t /s
Œf .x/Cf .y/�; 8x;y 2 C ; t 2 Œ0;1�:

Note that if we take sD 1 in Definition 4, then we have the definition of Godunova-
Levin type of tgs-convex functions, which appears to be a new definition.
V. If h1.t/D ts1 and h2.t/D ts2 in Definition 2, then we have a new class of convex
functions which is called as Breckner type of .s1; s2/-convex functions.

Definition 5. Let s1; s2 2 .0;1� be two real numbers. We say that f W C! R is an
.s1; s2/-convex function, if

f .txC .1� t /y/� ts1.1� t /s2f .x/C .1� t /s1 ts2f .y/; 8x;y 2 C ; t 2 Œ0;1�:

VI. If h1.t/ D t�s1 and h2.t/ D t�s2 in Definition 2, then we have a new class
of convex functions which is called as Godunova-Levin-Dragomir type of .s1; s2/-
convex functions.

Definition 6. Let s1; s2 2 .0;1� be two real numbers. We say that f W C! R is an
.s1; s2/-convex function, if

f .txC .1� t /y/�
1

ts1.1� t /s2
f .x/C

1

.1� t /s1 ts2
f .y/; 8x;y 2 C ; t 2 Œ0;1�:

It is clear that these new classes of convex functions are quite general and include
several new and previously known classes of convex functions as special cases.

The following results will be helpful in deriving our main results in this paper.

Lemma 1 ([13]). Let f W I D Œa;b� � R! R be a continuous function such that
f 2L Œa;b�, then

bZ
a

.u�a/˛.b�u/ˇf .u/duD .b�a/˛CˇC1
1Z
0

t˛.1� t /ˇf ..1� t /aC tb/dt:

Lemma 2 ([9]). Let Iı � R! R, a;b 2 Iı with a < b where Iı is the interior of
Iı. If f .n/ exists on Iı and f .n/ 2L Œa;b�, then for n� 1, we have

f .a/Cf .b/

2
�

1

b�a

bZ
a

f .x/dx�
n�1X
kD2

.k�1/.b�a/k

2.kC1/Š
f .k/.a/
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D
.b�a/n

2nŠ

1Z
0

tn�1.n�2t/f .n/.taC .1� t /b/dt:

3. MAIN RESULTS

In this section we derive our main results.

Theorem 1. Let f W I D Œa;b� � R! R be a .h1;h2/-convex function. If f 2
L Œa;b�, then for h1

�
1
2

�
h2
�
1
2

�
¤ 0, we have

1

2h1
�
1
2

�
h2
�
1
2

�f �aCb
2

�
�

1

b�a

bZ
a

f .x/dx � Œf .a/Cf .b/�

1Z
0

h1.t/h2.1� t /dt:

Proof. Since f is an .h1;h2/-convex function, for x D ta C .1 � t /b, y D
.1� t /aC tb and t D 1

2
, we have

f

�
aCb

2

�
� h1

�1
2

�
h2

�1
2

�
Œf .taC .1� t /b/Cf ..1� t /aC tb/�:

Integrating both sides of the above inequality with respect to t on Œ0;1�, we have

1

2h1
�
1
2

�
h2
�
1
2

�f �aCb
2

�
�

1

b�a

bZ
a

f .x/dx: (3.1)

Also

f .taC .1� t /b/� h1.t/h2.1� t /f .x/Ch1.1� t /h2.t/f .y/:

Integrating both sides of the above inequality with respect to t on Œ0;1�, we have

1

b�a

bZ
a

f .x/dx � Œf .a/Cf .b/�

1Z
0

h1.t/h2.1� t /dt: (3.2)

On summation of inequalities (3.1) and (3.2) the proof is complete. �

We now discuss a new special case of Theorem 1.
If h1.t/D ts1 and h2 D ts2 in Theorem 1, then we have a result for Brecker type

of .s1; s2/-convex functions.

Corollary 1. Let f W I D Œa;b� � R! R be a Brecker type of .s1; s2/-convex
function. If f 2L Œa;b�, then for s1; s2 2 Œ0;1� we have

1

21�s1�s2
f

�
aCb

2

�
�

1

b�a

bZ
a

f .x/dx � Œf .a/Cf .b/�B.s1C1;s2C1/:
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If h1.t/D t�s1 and h2 D t�s2 in Theorem 1, then we have a result for Godunova-
Levin-Dragomir type of .s1; s2/-convex functions.

Corollary 2. Let f W I D Œa;b�� R! R be a Godunova-Levin-Dragomir type of
.s1; s2/-convex function. If f 2L Œa;b�, then for s1; s2 2 Œ0;1�, we have

1

21Cs1Cs2
f

�
aCb

2

�
�

1

b�a

bZ
a

f .x/dx � Œf .a/Cf .b/�B.1� s1;1� s2/:

Our next result is a lower bound for Hermite-Hadamard’s inequality via product
of two .h1;h2/-convex functions.

Theorem 2. Let f;g W I D Œa;b� � R! R be two .h1;h2/-convex functions such
that h21

�
1
2

�
h22
�
1
2

�
¤ 0. If fg 2L Œa;b�, then, we have

1

2h21
�
1
2

�
h22
�
1
2

�f �aCb
2

�
g

�
aCb

2

�

�

"
M.a;b/

1Z
0

Œh1.t/h2.t/h1.1� t /h2.1� t /�dtCN.a;b/

1Z
0

h21.t/h
2
2.1� t /dt

#

�
1

b�a

1Z
0

f .x/g.x/dx:

where
M.a;b/D f .a/g.a/Cf .b/g.b/; (3.3)

and
N.a;b/D f .a/g.b/Cf .b/g.a/; (3.4)

respectively.

Proof. Since f and g are .h1;h2/-convex functions, so

f

�
aCb

2

�
g

�
aCb

2

�
� h1

�1
2

�
h2

�1
2

�
Œf .taC .1� t /b/Cf ..1� t /aC tb/�

�h1

�1
2

�
h2

�1
2

�
Œg.taC .1� t /b/Cg..1� t /aC tb/�

D h21

�1
2

�
h22

�1
2

�
Œf .taC .1� t /b/g.taC .1� t /b/

f ..1� t /aC tb/g..1� t /aC tb/Cf .taC .1� t /b/g..1� t /aC tb/

Cf ..1� t /aC tb/g.taC .1� t /b/�



82 M U AWAN, M A NOOR, K I NOOR, AND A G KHAN

� h21

�1
2

�
h22

�1
2

�
Œf .taC .1� t /b/g.taC .1� t /b/

Cf ..1� t /aC tb/g..1� t /aC tb/

CŒ2h1.t/h2.t/h1.1� t /h2.1� t /�Œf .a/g.a/Cf .b/g.b/�

CŒh21.1� t /h
2
2.t/Ch

2
1.t/h

2
2.1� t /�Œf .a/g.b/Cf .b/g.a/�

�
:

Integrating the above inequality with respect to t on Œ0;1�, we have

f

�
aCb

2

�
g

�
aCb

2

�

� 2h21

�1
2

�
h22

�1
2

�24 1

b�a

1Z
0

f .x/g.x/dx

CM.a;b/

1Z
0

Œh1.t/h2.t/h1.1� t /h2.1� t /�dtCN.a;b/

1Z
0

h21.t/h
2
2.1� t /dt

35 :
This implies

1

2h21
�
1
2

�
h22
�
1
2

�f �aCb
2

�
g

�
aCb

2

�

�
1

b�a

1Z
0

f .x/g.x/dx

CM.a;b/

1Z
0

Œh1.t/h2.t/h1.1� t /h2.1� t /�dtCN.a;b/

1Z
0

h21.t/h
2
2.1� t /dt:

This completes the proof. �

Next we discuss a new special case of Theorem 2.
If h1.t/D ts1 and h2 D ts2 in Theorem 2, then we have a result for Breckner type

of .s1; s2/-convex functions.

Corollary 3. Let f;g W I D Œa;b� � R! R be two .s1; s2/-convex functions such
that s1; s2 2 Œ0;1�. If fg 2L Œa;b�, then we have

1

21�2s1�2s2
f

�
aCb

2

�
g

�
aCb

2

�
�

"
M.a;b/B.s1C s2C1;s1C s2C1/CN.a;b/B.2s1C1;2s2C1/

#
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�
1

b�a

1Z
0

f .x/g.x/dx

where M.a;b/ and N.a;b/ are given in (3.3) and (3.4) respectively.

If h1.t/D t�s1 and h2 D t�s2 in Theorem 2, then we have a result for Godunova-
Levin-Dragomir type of .s1; s2/-convex functions.

Corollary 4. Let f;g W ID Œa;b��R!R be two Godunova-Levin-Dragomir type
of .s1; s2/-convex functions such that s1; s2 2 Œ0;1�. If fg 2L Œa;b�, then we have

1

21C2s1C2s2
f

�
aCb

2

�
g

�
aCb

2

�
�

"
M.a;b/B.1� s1� s2;1� s1� s2/CN.a;b/B.1�2s1;1�2s2/

#

�
1

b�a

1Z
0

f .x/g.x/dx

where M.a;b/ and N.a;b/ are given in (3.3) and (3.4) respectively.

Our next result is the extension of the upper bound of Hermite-Hadamard type
inequality via product of two .h1;h2/-convex functions.

Theorem 3. Left f;g W I D Œa;b�! R be two .h1;h2/-convex functions. If fg 2
L Œa;b�, then, we have

1

b�a

bZ
a

f .x/g.x/dx

�M.a;b/

1Z
0

h21.t/h
2
2.1� t /dtCN.a;b/

1Z
0

h1.t/h2.1� t /h1.1� t /h2.t/dt;

where M.a;b/ and N.a;b/ are given by (3.3) and (3.4) respectively.

Proof. Since f and g are .h1;h2/-convex functions, then

f .taC .1� t /b/� h1.t/h2.1� t /f .a/Ch1.1� t /h2.t/f .b/;

and

g.taC .1� t /b/� h1.t/h2.1� t /g.a/Ch1.1� t /h2.t/g.b/:
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Multiplying both sides of the above inequality and then integrating it with respect to
t on Œ0;1�, we have

1Z
0

f .taC .1� t /b/g.taC .1� t /b/dt

� Œf .a/g.a/Cf .b/g.b/�

1Z
0

h21.t/h
2
2.1� t /dt

C Œf .a/g.b/Cf .b/g.a/�

1Z
0

h1.t/h2.1� t /h1.1� t /h2.t/dt:

This implies

1

b�a

bZ
a

f .x/g.x/dx

�M.a;b/

1Z
0

h21.t/h
2
2.1� t /dtCN.a;b/

1Z
0

h1.t/h2.1� t /h1.1� t /h2.t/dt:

This completes the proof. �

The next result is a special case of Theorem 3.
If h1.t/D ts1 and h2 D ts2 in Theorem 3, then we have a result for Breckner type

of .s1; s2/-convex functions.

Corollary 5. Let f;g W I D Œa;b�! R be two Breckner type of .s1; s2/-convex
functions where s1; s2 2 Œ0;1�. If fg 2L Œa;b�, then we have

1

b�a

bZ
a

f .x/g.x/dx

�M.a;b/B.2s1C1;2s2C1/CN.a;b/B.s1C s2C1;s1C s2C1/;

where M.a;b/ and N.a;b/ are given by (3.3) and (3.4) respectively.

If h1.t/D t�s1 and h2 D t�s2 in Theorem 3, then we have a result for Godunova-
Levin-Dragomir type of .s1; s2/-convex functions.
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Corollary 6. Let f;g W I D Œa;b�! R be two Godunova-Levin-Dragomir type of
.s1; s2/-convex functions where s1; s2 2 Œ0;1�. If fg 2L Œa;b�, then we have

1

b�a

bZ
a

f .x/g.x/dx

�M.a;b/B.1�2s1;1�2s2/CN.a;b/B.1� s1� s2;1� s1� s2/;

where M.a;b/ and N.a;b/ are given by (3.3) and (3.4) respectively.

Theorem 4. Let f W I D Œa;b� � R! R be a continuous function such that f 2
L Œa;b�. If f is an .h1;h2/-convex function, then we have

bZ
a

.u�a/˛.b�u/ˇf .u/du� .b�a/˛CˇC1 Œ 1.t/f .a/C 2.t/f .b/� ;

where

 1.t/ WD

1Z
0

t˛.1� t /ˇh1.1� t /h2.t/dt; (3.5)

and

 2.t/ WD

1Z
0

t˛.1� t /ˇh1.t/h2.1� t /dt; (3.6)

respectively.

Proof. Using Lemma 1 and the fact that f is an .h1;h2/-convex function, we have
bZ
a

.u�a/˛.b�u/ˇf .u/du

D .b�a/˛CˇC1
1Z
0

t˛.1� t /ˇf ..1� t /aC tb/dt

� .b�a/˛CˇC1
1Z
0

t˛.1� t /ˇ Œh1.1� t /h2.t/f .a/Ch1.t/h2.1� t /f .b/�dt

D .b�a/˛CˇC1 Œ 1.t/f .a/C 2.t/f .b/� :

This completes the proof. �

If h1.t/D ts1 and h2.t/D ts2 in Theorem 4, then we have
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Corollary 7. Let f W I D Œa;b�� R! R be a continuous function such that f 2
L Œa;b�. If f is a Breckner type of .s1; s2/-convex function, where s1; s2 2 Œ0;1�, then
we have

bZ
a

.u�a/˛.b�u/ˇf .u/du� .b�a/˛CˇC1
�
 01.t/f .a/C 

0
2.t/f .b/

�
;

where

 01.t/ WD B.˛C s2C;ˇC s1C1/; (3.7)

and

 02.t/ WD B.˛C s1C1;ˇC s2C1/; (3.8)

respectively.

If h1.t/D t�s1 and h2.t/D t�s2 in Theorem 4, then we have

Corollary 8. Let f W I D Œa;b�� R! R be a continuous function such that f 2
L Œa;b�. If f is a Godunova-Levin-Dragomir type of .s1; s2/-convex function, where
s1; s2 2 Œ0;1�, then we have

bZ
a

.u�a/˛.b�u/ˇf .u/du� .b�a/˛CˇC1
�
 001 .t/f .a/C 

00
2 .t/f .b/

�
;

where

 001 .t/ WD B.˛� s2C1;ˇ� s1C1/; (3.9)

and

 002 .t/ WD B.˛� s1C1;ˇ� s2C1/; (3.10)

respectively.

Theorem 5. Let f W I D Œa;b� � R! R be a continuous function such that f 2
L Œa;b�. If jf j

r
r�1 is a .h1;h2/-convex function, then we have

bZ
a

.u�a/˛.b�u/ˇf .u/du

� .b�a/˛CˇC1B.r˛C1;rˇC1/

24njf .a/j r
r�1 Cjf .b/j

r
r�1

o 1Z
0

h1.t/h2.1� t /dt

35
r�1

r

:
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Proof. Using Lemma 1, Holder’s inequality and the fact that jf j
r

r�1 is an .h1;h2/-
convex function, then

bZ
a

.u�a/˛.b�u/ˇf .u/du

� .b�a/˛CˇC1

24 1Z
0

tr˛.1� t /rˇdt

35
1
r
24 1Z
0

jf ..1� t /aC tb/j
r

r�1 dt

35
r�1

r

� .b�a/˛CˇC1B.r˛C1;rˇC1/24 1Z
0

n
h1.1� t /h2.t/jf .a/j

r
r�1 Ch1.t/h2.1� t /jf .b/j

r
r�1

o
dt

35
r�1

r

� .b�a/˛CˇC1B.r˛C1;rˇC1/24njf .a/j r
r�1 Cjf .b/j

r
r�1

o 1Z
0

h1.t/h2.1� t /dt

35
r�1

r

:

This completes the proof. �

If h1.t/D ts1 and h2.t/D ts2 in Theorem 5, then we have

Corollary 9. Let f W I D Œa;b�� R! R be a continuous function such that f 2
L Œa;b�. If jf j

r
r�1 is a Breckner type of .s1; s2/-convex function, where s1; s2 2 Œ0;1�,

then we have
bZ
a

.u�a/˛.b�u/ˇf .u/du

� .b�a/˛CˇC1B.r˛C1;rˇC1/
hn
jf .a/j

r
r�1 Cjf .b/j

r
r�1

o
B.˛C s1C1;ˇC s2C1/

i r�1
r

:

If h1.t/D t�s1 and h2.t/D t�s2 in Theorem 5, then we have

Corollary 10. Let f W ID Œa;b�� R! R be a continuous function such that f 2
L Œa;b�. If jf j

r
r�1 is a Godunova-Levin-Dragomir type of .s1; s2/-convex function,

where s1; s2 2 Œ0;1�, then we have
bZ
a

.u�a/˛.b�u/ˇf .u/du

� .b�a/˛CˇC1B.1� r˛;1� rˇ/
hn
jf .a/j

r
r�1 Cjf .b/j

r
r�1

o
B.1�˛� s1;1�ˇ� s2/

i r�1
r

:
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Theorem 6. Let f W I D Œa;b� � R! R be a continuous function such that f 2
L Œa;b�. If jf jr is an .h1;h2/-convex function, then we have

bZ
a

.u�a/˛.b�u/ˇf .u/du

� .b�a/˛CˇC1 ŒB.˛C1;ˇC1/�
r�1

r

�
 1.t/jf .a/j

r
C 2.t/jf .b/j

r
� 1

r ;

where  1.t/ and  2.t/ are given by (3.5) and (3.6) respectively.

Proof. Using Lemma 1, Holder’s inequality and the fact that jf jr is an .h1;h2/-
convex function, then

bZ
a

.u�a/˛.b�u/ˇf .u/du

� .b�a/˛CˇC1

24 1Z
0

.1� t /˛tˇdt

35
r�1

r
24 1Z
0

t˛.1� t /ˇ jf ..1� t /aC tb/jr dt

35
1
r

� .b�a/˛CˇC1 ŒB.˛C1;ˇC1/�
r�1

r

�

24 1Z
0

t˛.1� t /ˇ
�
h1.1� t /h2.t/jf .a/j

r
Ch1.t/h2.1� t /jf .b/j

r
�
dt

35
1
r

D .b�a/˛CˇC1 ŒB.˛C1;ˇC1/�
r�1

r

�
 1.t/jf .a/j

r
C 2.t/jf .b/j

r
� 1

r :

This completes the proof. �

If h1.t/D ts1 and h2.t/D ts2 in Theorem 6, then we have

Corollary 11. Let f W ID Œa;b�� R! R be a continuous function such that f 2
L Œa;b�. If jf jr is a Breckner type of .s1; s2/-convex function, where s1; s2 2 Œ0;1�,
then we have

bZ
a

.u�a/˛.b�u/ˇf .u/du

� .b�a/˛CˇC1 ŒB.˛C1;ˇC1/�
r�1

r

�
 01.t/jf .a/j

r
C 02.t/jf .b/j

r
� 1

r ;

where  01.t/ and  02.t/ are given by (3.7) and (3.8) respectively.

If h1.t/D t�s1 and h2.t/D t�s2 in Theorem 6, then we have
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Corollary 12. Let f W I D Œa;b� � R! R be a continuous function such that
f 2L Œa;b�. If jf jr is a Godunova-Levin-Dragomir type of .s1; s2/-convex function,
where s1; s2 2 Œ0;1�, then we have

bZ
a

.u�a/˛.b�u/ˇf .u/du

� .b�a/˛CˇC1 ŒB.1�˛;1�ˇ/�
r�1

r

�
 001 .t/jf .a/j

r
C 002 .t/jf .b/j

r
� 1

r ;

where  001 .t/ and  002 .t/ are given by (3.9) and (3.10) respectively.

Now using Lemma 2, we derive some new inequalities for n-times differentiable
.h1;h2/-convex functions.

Theorem 7. Let f W Iı � R! R, a;b 2 Iı with a < b where Iı is the interior
of Iı. Also suppose f .n/ exists on Iı and f .n/ 2L Œa;b�. If jf .n/jq is an .h1;h2/-
convex function, then for n;q � 1, we haveˇ̌̌̌

ˇ̌f .a/Cf .b/2
�

1

b�a

bZ
a

f .x/dx�
n�1X
kD2

.k�1/.b�a/k

2.kC1/Š
f .k/.a/

ˇ̌̌̌
ˇ̌

�
.b�a/n

2nŠ

�
n�1

nC1

�1� 1
q �
�1.t/jf

n.a/jqC�2.t/jf
n.b/jq

� 1
q ;

where

�1.t/ WD

1Z
0

tn�1.n�2t/h1.t/h2.1� t /dt; (3.11)

and

�2.t/ WD

1Z
0

tn�1.n�2t/h1.1� t /h2.t/dt; (3.12)

respectively.

Proof. Using Lemma 2, property of modulus, power means inequality and the fact
that jf .n/jq is an .h1;h2/-convex function, we haveˇ̌̌̌
ˇ̌f .a/Cf .b/2

�
1

b�a

bZ
a

f .x/dx�
n�1X
kD2

.k�1/.b�a/k

2.kC1/Š
f .k/.a/

ˇ̌̌̌
ˇ̌

D

ˇ̌̌̌
ˇ̌.b�a/n2nŠ

1Z
0

tn�1.n�2t/f .n/.taC .1� t /b/dt

ˇ̌̌̌
ˇ̌
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�
.b�a/n

2nŠ

1Z
0

tn�1.n�2t/jf .n/.taC .1� t /b/jdt

�
.b�a/n

2nŠ

0@ 1Z
0

tn�1.n�2t/dt

1A1�
1
q
0@ 1Z
0

tn�1.n�2t/jf .n/.taC .1� t /b/jqdt

1A
1
q

�
.b�a/n

2nŠ

�
n�1

nC1

�1� 1
q

�

0@ 1Z
0

tn�1.n�2t/Œh1.t/h2.1� t /jf
n.a/jqCh1.1� t /h2.t/jf

n.b/jq�dt

1A
1
q

D
.b�a/n

2nŠ

�
n�1

nC1

�1� 1
q �
�1.t/jf

n.a/jqC�2.t/jf
n.b/jq

� 1
q :

This completes the proof. �

If h1.t/D ts1 and h2.t/D ts2 in Theorem 7, then we have

Corollary 13. Let f W Iı � R! R, a;b 2 Iı with a < b where Iı is the interior
of Iı. Also suppose f .n/ exists on Iı and f .n/ 2L Œa;b�. If jf .n/jq is a Breckner
type of .s1; s2/-convex function, then for s1; s2 2 Œ0;1� and n;q � 1, we haveˇ̌̌̌

ˇ̌f .a/Cf .b/2
�

1

b�a

bZ
a

f .x/dx�
n�1X
kD2

.k�1/.b�a/k

2.kC1/Š
f .k/.a/

ˇ̌̌̌
ˇ̌

�
.b�a/n

2nŠ

�
n�1

nC1

�1� 1
q �
� 01.t/jf

n.a/jqC� 02.t/jf
n.b/jq

� 1
q ;

where

� 01.t/ WD nB.nC s1; s2C1/�2B.nC s1C1;s2C1/;

and

� 02.t/ WD nB.nC s2; s1C1/�2B.nC s2C1;s2C1/;

respectively.

If h1.t/D t�s1 and h2.t/D t�s2 in Theorem 7, then we have

Corollary 14. Let f W Iı � R! R, a;b 2 Iı with a < b where Iı is the interior
of Iı. Also suppose f .n/ exists on Iı and f .n/ 2L Œa;b�. If jf .n/jq is a Godunova-
Levin-Dragomir type of .s1; s2/-convex function, then for s1; s2 2 Œ0;1� and n;q � 1,
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we have ˇ̌̌̌
ˇ̌f .a/Cf .b/2

�
1

b�a

bZ
a

f .x/dx�
n�1X
kD2

.k�1/.b�a/k

2.kC1/Š
f .k/.a/

ˇ̌̌̌
ˇ̌

�
.b�a/n

2nŠ

�
n�1

nC1

�1� 1
q �
� 001 .t/jf

n.a/jqC� 002 .t/jf
n.b/jq

� 1
q ;

where

� 001 .t/ WD nB.n� s1;1� s2/�2B.n� s1C1;1� s2/;

and

� 002 .t/ WD nB.n� s2;1� s1/�2B.n� s2C1;1� s2/;

respectively.

Theorem 8. Let f W Iı � R! R, a;b 2 Iı with a < b where Iı is the interior
of Iı. Also suppose f .n/ exists on Iı and f .n/ 2L Œa;b�. If jf .n/jP is a .h1;h2/-
convex function, then for n;q � 1, we haveˇ̌̌̌

ˇ̌f .a/Cf .b/2
�

1

b�a

bZ
a

f .x/dx�
n�1X
kD2

.k�1/.b�a/k

2.kC1/Š
f .k/.a/

ˇ̌̌̌
ˇ̌

�
.b�a/n

2n.n�1/
1
q

�
�1.t/jf

n.a/jqC�2.t/jf
n.b/jq

� 1
q ;

where

�1.t/ WD

1Z
0

tq.n�1/.n�2t/h1.t/h2.1� t /dt; (3.13)

and

�2.t/ WD

1Z
0

tq.n�1/.n�2t/h1.1� t /h2.t/dt; (3.14)

respectively.

Proof. Using Lemma 2, property of modulus, Holder’s inequality and the fact that
jf .n/jq is an .h1;h2/-convex function, we haveˇ̌̌̌
ˇ̌f .a/Cf .b/2

�
1

b�a

bZ
a

f .x/dx�
n�1X
kD2

.k�1/.b�a/k

2.kC1/Š
f .k/.a/

ˇ̌̌̌
ˇ̌
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D

ˇ̌̌̌
ˇ̌.b�a/n2nŠ

1Z
0

tn�1.n�2t/f .n/.taC .1� t /b/dt

ˇ̌̌̌
ˇ̌

�
.b�a/n

2nŠ

1Z
0

tn�1.n�2t/jf .n/.taC .1� t /b/jdt

�
.b�a/n

2nŠ

0@ 1Z
0

.n�2t/dt

1A1�
1
q
0@ 1Z
0

tq.n�1/.n�2t/jf .n/.taC .1� t /b/jqdt

1A
1
q

�
.b�a/n

2nŠ
.n�1/1�

1
q

�

0@ 1Z
0

tq.n�1/.n�2t/Œh1.t/h2.1� t /jf
n.a/jqCh1.1� t /h2.t/jf

n.b/jq�dt

1A
1
q

D
.b�a/n

2n.n�1/
1
q

�
�1.t/jf

n.a/jqC�2.t/jf
n.b/jq

� 1
q :

This completes the proof. �

If h1.t/D ts1 and h2.t/D ts2 in Theorem 8, then we have

Corollary 15. Let f W Iı � R! R, a;b 2 Iı with a < b where Iı is the interior
of Iı. Also suppose f .n/ exists on Iı and f .n/ 2L Œa;b�. If jf .n/jP is a Breckner
type of .s1; s2/-convex function, then for s1; s2 2 Œ0;1� and n;q � 1, we haveˇ̌̌̌

ˇ̌f .a/Cf .b/2
�

1

b�a

bZ
a

f .x/dx�
n�1X
kD2

.k�1/.b�a/k

2.kC1/Š
f .k/.a/

ˇ̌̌̌
ˇ̌

�
.b�a/n

2n.n�1/
1
q

�
�01.t/jf

n.a/jqC�02.t/jf
n.b/jq

� 1
q ;

where

�01.t/ WD nB.nqC s1�qC1;s2C1/�2B.nqC s1�qC2;s2C1/;

and

�02.t/ WD nB.nqC s2�qC1;s1C1/�2B.nqC s2�qC2;s1C1/;

respectively.

If h1.t/D t�s1 and h2.t/D t�s2 in Theorem 8, then we have
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Corollary 16. Let f W Iı � R! R, a;b 2 Iı with a < b where Iı is the interior
of Iı. Also suppose f .n/ exists on Iı and f .n/ 2L Œa;b�. If jf .n/jP is a Godunova-
Levin-Dragomir type of .s1; s2/-convex function, then for s1; s2 2 Œ0;1� and n;q � 1,
we have ˇ̌̌̌

ˇ̌f .a/Cf .b/2
�

1

b�a

bZ
a

f .x/dx�
n�1X
kD2

.k�1/.b�a/k

2.kC1/Š
f .k/.a/

ˇ̌̌̌
ˇ̌

�
.b�a/n

2n.n�1/
1
q

�
�001.t/jf

n.a/jqC�002.t/jf
n.b/jq

� 1
q ;

where

�001.t/ WD nB.nq� s1�qC1;1� s2/�2B.nq� s1�qC2;1� s2/;

and

�002.t/ WD nB.nq� s2�qC1;1� s1/�2B.nq� s2�qC2;1� s1/;

respectively.

CONCLUSION

In this paper, we have introduced a new extension of convex functions which is
called as .h1;h2/-convex functions. We have noticed that it contains some new and
known classes of convex functions among one of those is h-convex functions. We
have derived several new generalizations of Hermite-Hadamard type inequalities via
.h1;h2/-convex functions. We have also discussed some of new special cases which
can be easily deduced from our main results. It is expected that the interested readers
may further explore the property of .h1;h2/-convexity of functions.
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