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EXISTENCE OF TWO SYMMETRIC SOLUTIONS FOR
NEUMANN PROBLEMS
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Abstract. In this paper, we investigate the existence of at least two distinct cylindrically sym-
metric weak solutions for some elliptic problems involving a p-Laplace operator, subject to
Neumann boundary conditions in a strip-like domain of the Euclidean space.
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1. INTRODUCTION

Let O � Rm be a bounded domain with smooth boundary and ˝ WD O�Rn be a
strip-like domain. Define the space of cylindrically symmetric functions by

W 1;p
c .˝/ WD fu 2W 1;p.˝/ W u.x; �/ is radiallysymmetric for all x 2Og:

In this space, Molica Bisci and Rădulescu in [7, Theorem 2.1] studied the existence
of at least three cylindrically symmetric solutions for the following elliptic Neumann
problem 8<: ��puCjuj

p�2uD �˛.x;y/f .u/ in ˝;
@u

@�
D 0; on @˝;

(1.1)

where � denotes the outward unit normal to @˝, p > mC n is a real number, �
is a positive real parameter and �pu WD div.jrujp�2ru/. Moreover, ˛ 2 L1.˝/
is a non-negative cylindrically symmetric function and f W R! R is a continuous
function.

In this paper, our goal is to obtain the existence of at least two distinct cylindrically
symmetric weak solutions for problem (1.1) under suitable conditions on ˛ and f .

We denote by cp the best embedding constant of W 1;p
c .˝/ into L1.˝/, i.e.,

cp WD sup
u2W 1;p.˝/

kukL1.˝/

kukW 1;p.˝/

; (1.2)
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where
kukL1 WD esssup.x;y/2˝ ju.x;y/jI

see [4, Theorem 2.2]. Further, Let ˛ 2 L1.˝/ is a non-negative cylindrically sym-
metric function such that

˛0 WD inf.x;y/2˝˛.x;y/ > 0;

and f W R! R be a continuous function satisfying the following condition:
.f1/ jf .t/j � a1Ca2jt j

s�1; 8t 2 R,

for some non-negative constants a1;a2 and s > p: We put F.�/ WD
R �
0 f .t/dt , for

every � 2 R: Moreover, we introduce the functional I� W W 1;p.˝/! R associated
with problem (1.1),

I�.u/ WD

1

p

�Z
˝

jru.x;y/jpdxdyC

Z
˝

ju.x;y/jpdxdy

�
��

Z
˝

˛.x;y/F.u.x;y//dxdy:

Fixing the real parameter �; a function u 2W 1;p.˝/ is said to be a weak solution of
(1.1) if for all v 2W 1;p.˝/;Z
˝

jru.x;y/jp�2ru.x;y/ �rv.x;y/dxdyC

Z
˝

ju.x;y/jp�2u.x;y/v.x;y/dxdy

D �

Z
˝

˛.x;y/f .u.x;y//v.x;y/dxdy:

Hence, the critical points of I� are exactly the weak solutions of problem (1.1).

Definition 1. A Gâteaux differentiable function I satisfies the Palais-Smale con-
dition (in short .PS/-condition) if any sequence fung such that

(a) fI�.un/g is bounded,
(b) kI 0

�
.un/kX� ! 0; as n!1;

has a convergent subsequence.

We shall prove our results applying the following critical point theorem, which is
a more precise version of Ricceri’s variational principle [12, Theorem 2.5]. We point
out that Ricceri’s variational principle generalizes the celebrated three critical point
theorem of Pucci and Serrin [9, 10] and is an useful result that gives alternatives for
the multiplicity of critical points of certain functions depending on a parameter.

Theorem 1 (see [2, Theorem 3.2]). Let X be a real Banach space and let ˚;	 W
X!R be two continuously Gâteaux differentiable functionals such that˚ is bounded
from below and˚.0/D	.0/D 0: Fix r > 0 such that supu2˚�1.��1;rŒ/	.u/<C1
and assume that, for each

� 2

#
0;

r

supu2˚�1.��1;rŒ/	.u/

"
;
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the functional I� WD˚��	 satisfies .PS/-condition and it is unbounded from below.
Then, for each � 2

i
0; r

sup
u2˚�1.��1;rŒ/

	.u/

h
; the functional I� admits two distinct

critical points.

For completeness, we refer the interested reader to the recent papers [3, 6] where
Ricceri’s variational principle has been developed on studying nonlinear Neumann
problems. See also [1, 5].

2. MAIN RESULTS

In this section we establish the main abstract result of this paper. We recall that cp
is the constant of the continuous embedding W 1;p

c .˝/ ,! L1.˝/; see (1.2).

Theorem 2. Let f W R! R be a continuous function satisfying condition .f1/.
Moreover, assume that
.f2/ there exist two constants � > p and L> 0 such that

0 < �F.t/� tf .t/; jt j � L:

Then, for each � 2�0;�?Œ; problem (1.1) admits at least two distinct cylindrically
symmetric weak solutions, where

�? WD
s�

sa1cpp1=pCa2cspp
s=p
�
k˛kL1

:

Proof. Our aim is to apply Theorem 1 to problem (1.1) in the case r D 1 to the
Banach space X WDW 1;p

c .˝/ endowed with the norm

kukW 1;p WD

�Z
˝

jru.x;y/jpdxdyC

Z
˝

ju.x;y/jpdxdy

�1=p
:

For every u 2X we set

˚.u/ WD
kuk

p

W 1;p

p
; 	.u/ WD

Z
˝

˛.x;y/F.u.x;y//dxdy:

Clearly ˚ and 	 are continuously Gâteaux differentiable and

˚ 0.u/.v/ WDZ
˝

jru.x;y/jp�2ru.x;y/ �rv.x;y/dxdyC

Z
˝

ju.x;y/jp�2u.x;y/v.x;y/dxdy;

and

	 0.u/.v/ WD

Z
˝

˛.x;y/f .u.x;y//v.x;y/dxdy;

for every v 2X:Moreover,˚ 0 admits a continuous inverse onX� and	 0 is a compact
operator.
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Now we prove that I� WD˚��	 satisfies .PS/-condition for every �>0. Namely,
we will prove that any sequence fung �X satisfying

m WD sup
n
I�.un/ <C1; lim

n!C1
kI 0�.un/kX� D 0;

contains a convergent subsequence. From above, we can actually assume that

j
1

�
hI 0�.un/;unij � kunkW1;p :

For n large enough, we have

m� I�.un/D
1

p

�Z
˝

jrun.x;y/j
pdxdyC

Z
˝

jun.x;y/j
pdxdy

�
��

Z
˝

˛.x;y/F.un.x;y//dxdy;

then

I�.un/�
1

p

�Z
˝

jrun.x;y/j
pdxdyC

Z
˝

jun.x;y/j
pdxdy

�
�
�

�

Z
˝

˛.x;y/f .un.x;y//un.x;y/dxdy

D

�
1

p
�
1

�

��Z
˝

jrun.x;y/j
pdxdyC

Z
˝

jun.x;y/j
pdxdy

�
C
1

�

�Z
˝

jrun.x;y/j
pdxdyC

Z
˝

jun.x;y/j
pdxdy

��

Z
˝

˛.x;y/f .un.x;y//un.x;y/dxdy
�

D

�
1

p
�
1

�

�
kunk

p

W 1;p C
1

�
hI 0�.un/;uni:

Thus,

mCkunkW 1;p � I�.un/�
1

�
hI 0�.un/;uni �

�
1

p
�
1

�

�
kunk

p

W 1;p :

Consequently, fkunkg is bounded. By the Eberlian-Smulyan theorem, without loss of
generality, we assume that un*u: Then 	 0.un/! 	 0.u/ because of compactness.
Since I 0

�
.un/ D ˚

0.un/� �	
0.un/! 0; then ˚ 0.un/! �	 0.u/. Since ˚ 0 has a

continuous inverse, then un! u and so I� satisfies .PS/-condition.
From .f2/; there is a positive constant C such that

F.t/� C jt j� (2.1)

for all jt j>L. In fact, setting b WDminj�jDLF.�/ and

't .ˇ/ WD F.ˇt/; 8ˇ > 0; (2.2)
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by .f2/; for every jt j>L one has

0 < �'t .ˇ/D �F.ˇt/� ˇt �f .ˇt/D ˇ'
0
t .ˇ/; 8ˇ >

L

jt j
:

Therefore, Z 1

L=jt j

'0t .ˇ/

't .ˇ/
dˇ �

Z 1

L=jt j

�

ˇ
dˇ:

Then

't .1/� 't

� L
jt j

�
jt j�

L�
:

Taking into account of (2.2), we obtain

F.t/� F
� L
jt j
t
�
jt j�

L�
� b
jt j�

L�
� C jt j�;

where C > 0 is a constant. Thus, (2.1) is proved.
Fixed u0 2Xnf0g; for each t > 1 one has

I�.tu0/�
1

p
tpku0k

p

W 1;p ��˛0Ct
�

Z
˝

ju0.x;y/j
�dxdy:

Since � > p; this condition guarantees that I� is unbounded from below. Fixed � 2
�0;�?Œ, from definition of ˚ it follows that

kukW 1;p < p1=p; (2.3)

for each u 2X such that u 2˚�1.��1;1Œ/:Moreover, .f1/, the compact embedding
X ,! L1.˝/ and (2.3) imply that, for each u 2 ˚�1.��1;1Œ/, we have

	.u/�

Z
˝

˛.x;y/.a1ju.x;y/jC
a2

s
ju.x;y/js/dxdy

� .a1kukL1C
a2

s
kuksL1/k˛kL1

� .a1cpkukW 1;p C
a2c

s
p

s
kuks

W 1;p /k˛kL1

< .a1cpp
1=p
C
a2

s
cspp

s=p/k˛kL1 ;

and so,

sup
u2˚�1.��1;1Œ/

	.u/� .a1cpp
1=p
C
a2

s
cspp

s=p/k˛kL1 D
1

��
<
1

�
(2.4)

From (2.4) one has

� 2�0;�?Œ�

#
0;

1

supu2˚�1.��1;1Œ/	.u/

"
:
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Hence, Theorem 1.2 assures the existence of at least two distinct critical points for
problem (1.1). Also, it is proved in [7, proof of Theorem 2.1] that I� is an invariant
functional with respect to the action of the compact group of linear isometries of Rn:
Thus, we can apply the principle of symmetric criticality (see [8]) to the smooth and
isometric invariant functional I� and deduce that problem (1.1) admits at least two
distinct cylindrically symmetric weak solutions. The proof is complete. �

Remark 1. We observe that, if f is non-negative and f .0/ ¤ 0, then Theorem
2 ensures the existence of two positive cylindrically symmetric weak solutions for
problem (1.1) (see, e.g., [11, Theorem 11.1]).
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