

Miskolc Mathematical Notes Vol. 19 (2018), No. 1, pp. 29–35 HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2018.1949

EXISTENCE OF TWO SYMMETRIC SOLUTIONS FOR NEUMANN PROBLEMS

GHASEM A. AFROUZI, MAHNAZ BAGHERI, AND ARMIN HADJIAN

Received 06 April, 2016

Abstract. In this paper, we investigate the existence of at least two distinct cylindrically symmetric weak solutions for some elliptic problems involving a *p*-Laplace operator, subject to Neumann boundary conditions in a strip-like domain of the Euclidean space.

2010 Mathematics Subject Classification: 35J35; 35J60

Keywords: p-Laplace operator, variational methods, critical point

1. INTRODUCTION

Let $\mathcal{O} \subset \mathbb{R}^m$ be a bounded domain with smooth boundary and $\Omega := \mathcal{O} \times \mathbb{R}^n$ be a strip-like domain. Define the space of cylindrically symmetric functions by

 $W_c^{1,p}(\Omega) := \{ u \in W^{1,p}(\Omega) : u(x, \cdot) \text{ is radially symmetric for all } x \in \mathcal{O} \}.$

In this space, Molica Bisci and Rădulescu in [7, Theorem 2.1] studied the existence of at least three cylindrically symmetric solutions for the following elliptic Neumann problem

$$\begin{cases} -\Delta_p u + |u|^{p-2} u = \lambda \alpha(x, y) f(u) & \text{in } \Omega, \\ \frac{\partial u}{\partial v} = 0, & \text{on } \partial \Omega, \end{cases}$$
(1.1)

where ν denotes the outward unit normal to $\partial \Omega$, p > m + n is a real number, λ is a positive real parameter and $\Delta_p u := \operatorname{div}(|\nabla u|^{p-2}\nabla u)$. Moreover, $\alpha \in L^1(\Omega)$ is a non-negative cylindrically symmetric function and $f : \mathbb{R} \to \mathbb{R}$ is a continuous function.

In this paper, our goal is to obtain the existence of at least two distinct cylindrically symmetric weak solutions for problem (1.1) under suitable conditions on α and f.

We denote by c_p the best embedding constant of $W_c^{1,p}(\Omega)$ into $L^{\infty}(\Omega)$, i.e.,

$$c_p := \sup_{u \in W^{1,p}(\Omega)} \frac{\|u\|_{L^{\infty}(\Omega)}}{\|u\|_{W^{1,p}(\Omega)}},$$
(1.2)

© 2018 Miskolc University Press

where

$$||u||_{L^{\infty}} := \operatorname{esssup}_{(x,y)\in\Omega} |u(x,y)|;$$

see [4, Theorem 2.2]. Further, Let $\alpha \in L^1(\Omega)$ is a non-negative cylindrically symmetric function such that

$$\alpha_0 := \inf_{(x,y) \in \Omega} \alpha(x,y) > 0,$$

and $f : \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying the following condition:

(f₁)
$$|f(t)| \le a_1 + a_2 |t|^{s-1}, \quad \forall t \in \mathbb{R},$$

for some non-negative constants a_1, a_2 and s > p. We put $F(\xi) := \int_0^{\xi} f(t)dt$, for every $\xi \in \mathbb{R}$. Moreover, we introduce the functional $I_{\lambda} : W^{1,p}(\Omega) \to \mathbb{R}$ associated with problem (1.1),

 $I_1(u) :=$

$$\frac{1}{p} \left(\int_{\Omega} |\nabla u(x,y)|^p dx dy + \int_{\Omega} |u(x,y)|^p dx dy \right) - \lambda \int_{\Omega} \alpha(x,y) F(u(x,y)) dx dy.$$

Fixing the real parameter λ , a function $u \in W^{1,p}(\Omega)$ is said to be a weak solution of (1.1) if for all $v \in W^{1,p}(\Omega)$,

$$\begin{split} &\int_{\Omega} |\nabla u(x,y)|^{p-2} \nabla u(x,y) \cdot \nabla v(x,y) dx dy + \int_{\Omega} |u(x,y)|^{p-2} u(x,y) v(x,y) dx dy \\ &= \lambda \int_{\Omega} \alpha(x,y) f(u(x,y)) v(x,y) dx dy. \end{split}$$

Hence, the critical points of I_{λ} are exactly the weak solutions of problem (1.1).

Definition 1. A Gâteaux differentiable function I satisfies the Palais-Smale condition (in short (PS)-condition) if any sequence $\{u_n\}$ such that

(a) $\{I_{\lambda}(u_n)\}$ is bounded,

(b)
$$||I'_{\lambda}(u_n)||_{X^*} \to 0$$
, as $n \to \infty$,

has a convergent subsequence.

We shall prove our results applying the following critical point theorem, which is a more precise version of Ricceri's variational principle [12, Theorem 2.5]. We point out that Ricceri's variational principle generalizes the celebrated three critical point theorem of Pucci and Serrin [9, 10] and is an useful result that gives alternatives for the multiplicity of critical points of certain functions depending on a parameter.

Theorem 1 (see [2, Theorem 3.2]). Let X be a real Banach space and let Φ, Ψ : $X \to \mathbb{R}$ be two continuously Gâteaux differentiable functionals such that Φ is bounded from below and $\Phi(0) = \Psi(0) = 0$. Fix r > 0 such that $\sup_{u \in \Phi^{-1}(]-\infty,r[)} \Psi(u) < +\infty$ and assume that, for each

$$\lambda \in \left]0, \frac{r}{\sup_{u \in \Phi^{-1}(]-\infty, r[)} \Psi(u)}\right[,$$

30

the functional $I_{\lambda} := \Phi - \lambda \Psi$ satisfies (PS)-condition and it is unbounded from below. Then, for each $\lambda \in \left]0, \frac{r}{\sup_{u \in \Phi^{-1}(]-\infty, r[)} \Psi(u)}\right[$, the functional I_{λ} admits two distinct critical points.

For completeness, we refer the interested reader to the recent papers [3, 6] where Ricceri's variational principle has been developed on studying nonlinear Neumann problems. See also [1, 5].

2. MAIN RESULTS

In this section we establish the main abstract result of this paper. We recall that c_p is the constant of the continuous embedding $W_c^{1,p}(\Omega) \hookrightarrow L^{\infty}(\Omega)$; see (1.2).

Theorem 2. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying condition (f_1) . Moreover, assume that

(f₂) there exist two constants $\eta > p$ and L > 0 such that

$$0 < \eta F(t) \le t f(t), \qquad |t| \ge L.$$

Then, for each $\lambda \in]0, \lambda^*[$, problem (1.1) admits at least two distinct cylindrically symmetric weak solutions, where

$$\lambda^{\star} := \frac{s}{\left(sa_1c_p p^{1/p} + a_2c_p^s p^{s/p}\right) \|\alpha\|_{L^1}}.$$

Proof. Our aim is to apply Theorem 1 to problem (1.1) in the case r = 1 to the Banach space $X := W_c^{1,p}(\Omega)$ endowed with the norm

$$||u||_{W^{1,p}} := \left(\int_{\Omega} |\nabla u(x,y)|^p dx dy + \int_{\Omega} |u(x,y)|^p dx dy \right)^{1/p}$$

For every $u \in X$ we set

$$\Phi(u) := \frac{\|u\|_{W^{1,p}}^p}{p}, \qquad \Psi(u) := \int_{\Omega} \alpha(x,y) F(u(x,y)) dx dy.$$

Clearly Φ and Ψ are continuously Gâteaux differentiable and

$$\Phi'(u)(v) := \int_{\Omega} |\nabla u(x,y)|^{p-2} \nabla u(x,y) \cdot \nabla v(x,y) dx dy + \int_{\Omega} |u(x,y)|^{p-2} u(x,y) v(x,y) dx dy,$$

and

$$\Psi'(u)(v) := \int_{\Omega} \alpha(x, y) f(u(x, y))v(x, y)dxdy,$$

for every $v \in X$. Moreover, Φ' admits a continuous inverse on X^* and Ψ' is a compact operator.

Now we prove that $I_{\lambda} := \Phi - \lambda \Psi$ satisfies (PS)-condition for every $\lambda > 0$. Namely, we will prove that any sequence $\{u_n\} \subset X$ satisfying

$$m := \sup_{n} I_{\lambda}(u_n) < +\infty, \quad \lim_{n \to +\infty} \|I'_{\lambda}(u_n)\|_{X^*} = 0,$$

contains a convergent subsequence. From above, we can actually assume that

$$\left|\frac{1}{\eta}\langle I_{\lambda}'(u_n), u_n\rangle\right| \leq \|u_n\|_{W_{1,p}}.$$

For *n* large enough, we have

$$m \ge I_{\lambda}(u_n) = \frac{1}{p} \left(\int_{\Omega} |\nabla u_n(x, y)|^p dx dy + \int_{\Omega} |u_n(x, y)|^p dx dy \right)$$
$$-\lambda \int_{\Omega} \alpha(x, y) F(u_n(x, y)) dx dy,$$

then

$$\begin{split} I_{\lambda}(u_{n}) &\geq \frac{1}{p} \left(\int_{\Omega} |\nabla u_{n}(x,y)|^{p} dx dy + \int_{\Omega} |u_{n}(x,y)|^{p} dx dy \right) \\ &- \frac{\lambda}{\eta} \int_{\Omega} \alpha(x,y) f(u_{n}(x,y)) u_{n}(x,y) dx dy \\ &= \left(\frac{1}{p} - \frac{1}{\eta} \right) \left(\int_{\Omega} |\nabla u_{n}(x,y)|^{p} dx dy + \int_{\Omega} |u_{n}(x,y)|^{p} dx dy \right) \\ &+ \frac{1}{\eta} \left(\int_{\Omega} |\nabla u_{n}(x,y)|^{p} dx dy + \int_{\Omega} |u_{n}(x,y)|^{p} dx dy \right) \\ &- \lambda \int_{\Omega} \alpha(x,y) f(u_{n}(x,y)) u_{n}(x,y) dx dy \Big) \\ &= \left(\frac{1}{p} - \frac{1}{\eta} \right) \|u_{n}\|_{W^{1,p}}^{p} + \frac{1}{\eta} \langle I_{\lambda}'(u_{n}), u_{n} \rangle. \end{split}$$

Thus,

$$m + \|u_n\|_{W^{1,p}} \ge I_{\lambda}(u_n) - \frac{1}{\eta} \langle I'_{\lambda}(u_n), u_n \rangle \ge \left(\frac{1}{p} - \frac{1}{\eta}\right) \|u_n\|_{W^{1,p}}^p.$$

Consequently, $\{||u_n||\}$ is bounded. By the Eberlian-Smulyan theorem, without loss of generality, we assume that $u_n \rightarrow u$. Then $\Psi'(u_n) \rightarrow \Psi'(u)$ because of compactness. Since $I'_{\lambda}(u_n) = \Phi'(u_n) - \lambda \Psi'(u_n) \rightarrow 0$, then $\Phi'(u_n) \rightarrow \lambda \Psi'(u)$. Since Φ' has a continuous inverse, then $u_n \rightarrow u$ and so I_{λ} satisfies (PS)-condition.

From (f_2) , there is a positive constant *C* such that

$$F(t) \ge C |t|^{\eta} \tag{2.1}$$

for all |t| > L. In fact, setting $b := \min_{|\xi|=L} F(\xi)$ and

$$\varphi_t(\beta) := F(\beta t), \quad \forall \beta > 0, \tag{2.2}$$

by (f₂), for every |t| > L one has

$$0 < \eta \varphi_t(\beta) = \eta F(\beta t) \le \beta t \cdot f(\beta t) = \beta \varphi_t'(\beta), \quad \forall \beta > \frac{L}{|t|}.$$

Therefore,

$$\int_{L/|t|}^{1} \frac{\varphi_t'(\beta)}{\varphi_t(\beta)} d\beta \ge \int_{L/|t|}^{1} \frac{\eta}{\beta} d\beta.$$

Then

$$\varphi_t(1) \ge \varphi_t\left(\frac{L}{|t|}\right) \frac{|t|^{\eta}}{L^{\eta}}.$$

Taking into account of (2.2), we obtain

$$F(t) \ge F\left(\frac{L}{|t|}t\right)\frac{|t|^{\eta}}{L^{\eta}} \ge b\frac{|t|^{\eta}}{L^{\eta}} \ge C|t|^{\eta},$$

where C > 0 is a constant. Thus, (2.1) is proved.

Fixed $u_0 \in X \setminus \{0\}$, for each t > 1 one has

$$I_{\lambda}(tu_{0}) \leq \frac{1}{p} t^{p} \|u_{0}\|_{W^{1,p}}^{p} - \lambda \alpha_{0} C t^{\eta} \int_{\Omega} |u_{0}(x,y)|^{\eta} dx dy.$$

Since $\eta > p$, this condition guarantees that I_{λ} is unbounded from below. Fixed $\lambda \in]0, \lambda^*[$, from definition of Φ it follows that

$$\|u\|_{W^{1,p}} < p^{1/p}, (2.3)$$

for each $u \in X$ such that $u \in \Phi^{-1}(]-\infty, 1[)$. Moreover, (f_1) , the compact embedding $X \hookrightarrow L^{\infty}(\Omega)$ and (2.3) imply that, for each $u \in \Phi^{-1}(]-\infty, 1[)$, we have

$$\begin{split} \Psi(u) &\leq \int_{\Omega} \alpha(x, y) (a_1 | u(x, y) | + \frac{a_2}{s} | u(x, y) |^s) dx dy \\ &\leq (a_1 \| u \|_{L^{\infty}} + \frac{a_2}{s} \| u \|_{L^{\infty}}^s) \| \alpha \|_{L^1} \\ &\leq (a_1 c_p \| u \|_{W^{1,p}} + \frac{a_2 c_p^s}{s} \| u \|_{W^{1,p}}^s) \| \alpha \|_{L^1} \\ &< (a_1 c_p p^{1/p} + \frac{a_2}{s} c_p^s p^{s/p}) \| \alpha \|_{L^1}, \end{split}$$

and so,

$$\sup_{u \in \Phi^{-1}(]-\infty,1[)} \Psi(u) \le (a_1 c_p p^{1/p} + \frac{a_2}{s} c_p^s p^{s/p}) \|\alpha\|_{L^1} = \frac{1}{\lambda^*} < \frac{1}{\lambda}$$
(2.4)

From (2.4) one has

$$\lambda \in]0, \lambda^{\star}[\subseteq \left]0, \frac{1}{\sup_{u \in \Phi^{-1}(]-\infty, 1[)} \Psi(u)}\right[.$$

Hence, Theorem 1.2 assures the existence of at least two distinct critical points for problem (1.1). Also, it is proved in [7, proof of Theorem 2.1] that I_{λ} is an invariant functional with respect to the action of the compact group of linear isometries of \mathbb{R}^n . Thus, we can apply the principle of symmetric criticality (see [8]) to the smooth and isometric invariant functional I_{λ} and deduce that problem (1.1) admits at least two distinct cylindrically symmetric weak solutions. The proof is complete.

Remark 1. We observe that, if f is non-negative and $f(0) \neq 0$, then Theorem 2 ensures the existence of two positive cylindrically symmetric weak solutions for problem (1.1) (see, e.g., [11, Theorem 11.1]).

REFERENCES

- L. Barbu and C. Enache, "Maximum principles, Liouville-type theorems and symmetry results for a general class of quasilinear anisotropic equations." *Adv. Nonlinear Anal.*, vol. 5, no. 4, pp. 395–405, 2016, doi: 10.1515/anona-2015-0127.
- [2] G. Bonanno, "Relations between the mountain pass theorem and local minima." Adv. Nonlinear Anal., vol. 1, no. 3, pp. 205–220, 2012, doi: 10.1515/anona-2012-0003.
- [3] G. Bonanno, G. Molica-Bisci, and V. Rădulescu, "Weak solutions and energy estimates for a class of nonlinear elliptic Neumann problems." *Adv. Nonlinear Stud.*, vol. 13, no. 2, pp. 373–389, 2013, doi: 10.1515/ans-2013-0207.
- [4] F. Faraci, A. Iannizzotto, and A. Kristály, "Low-dimensional compact embeddings of symmetric Sobolev spaces with applications." *Proc. Roy. Soc. Edinburgh Sect. A*, vol. 141, no. 2, pp. 383– 395, 2011, doi: 10.1017/S0308210510000168.
- [5] N. Labropoulos and V. Rădulescu, "On the best constants in Sobolev inequalities on the solid torus in the limit case p = 1." Adv. Nonlinear Anal., vol. 5, no. 3, pp. 261–291, 2016, doi: 10.1515/anona-2015-0125.
- [6] G. Molica-Bisci and D. Repovš, "Nonlinear Neumann problems driven by a nonhomogeneous differential operator." *Bull. Math. Soc. Sci. Math. Roumanie* (N.S.), vol. 57(105), no. 1, pp. 13–25, 2014.
- [7] G. Molica-Bisci and V. Rădulescu, "Multiple symmetric solutions for a Neumann problem with lack of compactness." C. R. Math. Acad. Sci. Paris, vol. 351, no. 1-2, pp. 37–42, 2013, doi: 10.1016/j.crma.2012.12.001.
- [8] R. Palais, "The principle of symmetric criticality." *Comm. Math. Phys.*, vol. 69, no. 1, pp. 19–30, 1979, doi: 10.1007/BF01941322.
- [9] P. Pucci and J. Serrin, "Extensions of the mountain pass theorem." J. Funct. Anal., vol. 59, no. 2, pp. 185–210, 1984, doi: 10.1016/0022-1236(84)90072-7.
- [10] P. Pucci and J. Serrin, "A mountain pass theorem." J. Differential Equations, vol. 60, no. 1, pp. 142–149, 1985, doi: 10.1016/0022-0396(85)90125-1.
- [11] P. Pucci and J. Serrin, "The strong maximum principle revisited." J. Differential Equations, vol. 196, no. 1, pp. 1–66, 2004, doi: 10.1016/j.jde.2003.05.001.
- [12] B. Ricceri, "A general variational principle and some of its applications." J. Comput. Appl. Math., vol. 113, no. 1–2, pp. 401–410, 2000, doi: 10.1016/S0377-0427(99)00269-1.

Authors' addresses

Ghasem A. Afrouzi

Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

E-mail address: afrouzi@umz.ac.ir

Mahnaz Bagheri

Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

E-mail address: m.bagheri@yahoo.com

Armin Hadjian

Department of Mathematics, Faculty of Basic Sciences, University of Bojnord, P.O. Box 1339, Bojnord 94531, Iran

E-mail address: hadjian83@gmail.com, a.hadjian@ub.ac.ir