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Abstract. In this paper, we study a generalized Tanaka-Webster connection on a Kenmotsu mani-
fold. We study the conharmonic curvature tensor with respect to the generalized Tanaka-Webster
connection er and also characterize conharmonically flat and locally �-conharmonically sym-
metric Kenmotsu manifold with respect to the connectioner. Besides these we also classify Ken-
motsu manifolds which satisfy eK �eR D 0 andeP �eK D 0, where eK andeP are the conharmonic
curvature tensor, the projective curvature tensor and Riemannian curvature tensor, respectively
with respect to the connectioner.
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1. INTRODUCTION

In [15], Tanno classified almost contact metric manifold M whose automorphism
group attains the maximum dimension. For such a manifold, the sectional curvature
of plane section containing � is a constant, say c. (1) If c > 0, M is a homogen-
eous Sasakian manifold of constant �-sectional curvature. (2) If c D 0, M is global
Riemannian product of a line or circle with a K Rahler manifold of constant holo-
morphic sectional curvature. (3) If c < 0, M is warped product space R�f Cn. In
1972, Kenmotsu [9] characterized the differential geometric properties of manifolds
of class (3); the structure so obtained is now known as Kenmotsu structure. A Ken-
motsu structure is not Sasakian (see [9]). Kenmotsu manifolds have also been studied
in several papers [5, 8, 11] and the references therein.

On the other hand, Tanaka-Webster connection is canonical affine connection defined
on a non-degenerate pseudo-Hermition CR-manifold (see [14, 17]). The generalized
Tanaka-Webster connection for contact metric manifolds by the canonical connection
was first studied by Tanno [16]. This connection coincides with the Tanaka-Webster
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connection if the associated CR-structure is integrable. Acet et al [10] studied a Ken-
motsu manifold with respect to the generalized Tanaka-Webster connection.

The paper is organized as follws: After preliminaries, in Section 3, we give a brief
account of information regarding the generalized Tanaka-Webster connection er on
Kenmotsu manifolds and obtain some results. In Section 4, we study a conharmon-
ically flat Kenmotsu manifold with respect to the connection er. Section 5 deals with
the study of locally �-conharmonically symmetric Kenmotsu manifold with respect
to the connection er. Sections 6 and 7 are devoted to the study of Kenmotsu mani-
folds with respect to the connection er satisfying the conditions eK.�;X/ �RD 0 andeP .�;X/ �eRD 0, respectively.

2. PRELIMINARIES

An n.D 2mC1/-dimensional differentiable manifold M is called an almost con-
tact Riemannian manifold if either its structural group can be reduced toU.n/�fI g or
equivalently, there is an almost contact structure .�;�;�/ consisting of a (1,1) tensor
field �, a vector field � , and 1-form �-satisfying

�2
D�I C�˝ �; (2.1)

�.�/D 1; �� D 0: � �� D 0: (2.2)

Let g be Riemannian metric compatible with .�;�;�/, that is

g.�X;�Y /D g.X;Y /��.X/�.Y / (2.3)

or equivalently,

g.X;�Y /D�g.�X;Y / and g.X;�/D �.X/ (2.4)

for any vector fields X ,Y on M [2]. If moreover,

.rX�/Y D��.Y /�X �g.X;�Y /�; (2.5)

rX� DX ��.X/�; (2.6)

where r denotes the Riemannian connection of g hold, then .M;�;�;�;g/ is called
an almost Kenmotsu manifold. An almost Kenmotsu manifold becomes a Kenmotsu
manifold if

g.X;�Y /D d�.X;Y /: (2.7)

In a Kenmotsu manifold M , the following relation holds [9]:

.rX�/Y D g.X;Y /��.X/�.Y /; (2.8)

R.X;Y /� D �.X/Y ��.Y /X; (2.9)

R.�;X/Y D �.Y /X �g.X;Y /�; (2.10)

S.X;�/D�.n�1/�.X/; (2.11)
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whereR is the Riemannian curvature tensor and S is Ricci tensor defined by S.X;Y /D
g.QX;Y /, where Q is Ricci operator.

A Kenmotsu manifold M is said to be an �-Einstein manifold if its Ricci tensor S
of the form

S D agCb�˝�; (2.12)

for some smooth functions a and b.

Lemma 1 ([8]). Any �-Einstein Kenmotsu manifold of dimension � 5 with b D
constant is Einstein.

3. GENERALIZED TANAKA-WEBSTER CONNECTION ON A KENMOTSU
MANIFOLD

In the following, we consider the generalized Tanaka-Webster connection er for a
Riemannian manifold M defined byerXY DrXY C .rX�/Y:���.Y /rX�C�.X/�Y; (3.1)

for all vector fields X and Y , where r is Levi-Civita connection on M .
If we use (2.6) and (2.8) in (3.1), we obtainerXY DrXY Cg.X;Y /���.Y /XC�.X/�Y; (3.2)

for all vector fields X and Y . We call the connection er defined by (3.2) on a Ken-
motsu manifold, the generalized Tanaka-Webster connection on a Kenmotsu mani-
fold.

Let M be an n-dimensional Kenmotsu manifold. The curvature tensor eR of M
with respect to the connection er is defined byeR.X;Y /Z D erX

erYZ�erY
erXZ�erŒX;Y �Z: (3.3)

Then, in a Kenmotsu manifold, we haveeR.X;Y /Z DR.X;Y /ZCg.Y;Z/X �g.X;Z/Y; (3.4)

where R.X;Y /Z D rXrYZ �rYrXZ �rŒX;Y �Z, is the curvature tensor of M
with respect to the connection r.

The Ricci tensor eS and the scalar curvatureer of the Kenmotsu manifold M with
respect to the connection er is given by

eS.X;Y /D nX
iD1

g.eR.ei ;X/Y;ei /D S.X;Y /C .n�1/g.X;Y / (3.5)

and

er D nX
iD1

eS.ei ; ei /D rCn.n�1/; (3.6)
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whereer and r are the scalar curvatures of the connection er and r, respectively. So
with the above background, we obtain the following theorem:

Theorem 1. For a Kenmotsu manifold M with generalized Tanaka-Webster con-
nection er,
a) the curvature tensor eR is given by (3.3),
b) the Ricci tensor eS is given by (3.5),
c) eR.X;Y /ZCeR.Y;Z/XCeR.Z;X/Y D 0,
d) eR.X;Y;Z;W /CeR.X;Y;W;Z/D 0,
e) eR.X;Y;Z;W /CeR.Y;X;Z;W /D 0,
f) eR.X;Y;Z;W /�eR.Z;W;X;Y /D 0,
g) eR.X;Y /� D eR.�;X/Y D eR.�;X/� D 0,
h) eS.X;�/D 0,
i)er D rCn.n�1/,
j) The Ricci tensor eS is symmetric.

Now we begin with the following:

Corollary 1. If a Kenmotsu manifold is Ricci-flat with respect to generalized
Tanaka-webster connection, then it is an Einstein manifold.

Proof : The Proof follows immediately from (3.5).

Theorem 2. Let M be a Kenmotsu manifold. If the curvature tensor eR of the
generalized Tanaka-Webster connection er vanishes, thenM is locally isomorphic to
the hyperbolic space Hn.�1/.

Proof : Let the curvature tensor eR of the connection er vanishes. That is, eR D 0.
In view of Eq.(3.4), we have

R.X;Y /Z D g.X;Z/Y �g.Y;Z/X: (3.7)

This gives

R.X;Y;Z;W /D�Œg.Y;Z/g.X;W /�g..X;Z/g.Y;W /�: (3.8)

This shows that, M is of constant negative curvature -1.
A space form is said to be hyperbolic if and only if the sectional curvature is

negative [3]. Thus, M is locally isometric to the hyperbolic space Hn.�1/.

Theorem 3. Let M be a Kenmotsu manifold. If M is of constant curvature c with
respect to the connection er, thenM is of constant curvature c�1 with respect to the
connection r.

Proof : Let M be of constant curvature c. Then from (3.3) we haveeR.X;Y;Z;W /D cŒg.Y;Z/g.X;W /�g.X;Z/g.Y;W /�: (3.9)

By taking account of (3.9) in (3.4), it follows that

R.X;Y;Z;W /D .c�1/Œg.Y;Z/g.X;W /�g.X;Z/g.Y;W /�: (3.10)
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This shows that, M is of constant scalar curvature c�1. This completes the proof.
The notion of a conharmonic curvature tensor was first studied by Ishii [7]. A

rank four tensor K 0 that remains invariant under conharmonic transformation for an
n-dimensional Riemannian Manifold M , is given by

K 0.X;Y;Z;W /DR0.X;Y;Z;W /

�
1

2n�1
g.Y;Z/S.X;W /�g.X;Z/S.Y;W /

CS.Y;Z/g.X;W /�S.X;Z/g.Y;W /�; (3.11)

where R0 denotes the Riemannian curvature tensor type .0;4/ and K 0 denotes the
conharmonic curvature tensor of type .0;4/ defined by

R0.X;Y;Z:W /D g.R.X;Y /Z;W /; (3.12)

K 0.X;Y;Z;W /D g.K.X;Y /Z;W /: (3.13)

where R is the Riemannian tensor of type .0;3/, K is the conharmonic curvature
tensor of type .0;3/ and S denotes the Ricci tensor of type .0;2/. The curvature tensor
defined by Eq.(3.11) is known as conharmonic curvature tensor [7]. A manifold
whose conharmonic curvature vanishes at every point of the manifold is called con-
harmonically flat manifold. Thus this tensor represents the deviation of the manifold
from conharmonic flatness. It satisfies all the symmetry properties of the Riemannian
curvature tensor R. There are many physical applications of tensor K. For example,
we refer the readers to see [1]. A conharmonic curvature tensor on a Kenmotsu man-
ifold has been studied in [4].

Analogous to the conharmonic curvature tensorK with respect to Levi-Civita con-
nection r, we give the conharmonic curvature tensor eK with respect to generalized
Tanaka-Webster connection er.

In a Kenmotsu manifoldM of dimension n > 2, the conharmonic curvature tensoreK with respect to the Tanaka-Webster connection er is given by

eK.X;Y /Z D eR.X;Y /Z� 1

.n�2/
ŒeS.Y;Z/X �eS.X;Z/Y

Cg.Y;Z/eQX �g.X;Z/eQY � (3.14)

for all vector fields X , Y and Z on M , where eR, eS and eQ are the Riemannian
curvature tensor, Ricci tensor and Ricci operator, respectively with respect to the
connection er.
Using (3.4) and (3.5) in (3.14), we geteK.X;Y /Z DK.X;Y /ZC Œg.Y;Z/X �g.X;Z/Y � (3.15)

or eK.X;Y /Z DR.X;Y /Z� n

n�2
Œg.Y;Z/X �g.X;Z/Y �
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�
1

n�2
ŒS.Y;Z/X �S.X;Z/Y

Cg.Y;Z/QX �g.X;Z/QY �: (3.16)

In a Kenmotsu manifold, using (2.10) and (2.11), the equation (3.16) gives

eK.�;Y /Z D .n�3/

.n�2/
Œ�.Z/Y �g.Y;Z/��

C
1

.n�2/
Œ�.Z/QY �S.Y;Z/��D�eK.Y;�/Z (3.17)

and

�.eK.X;Y /Z/D .n�3/

.n�2/
Œg.X;Z/�.Y /�g.Y;Z/�.X/�

C
1

.n�2/
ŒS.X;Z/�.Y /�S.Y;Z/�.X/�: (3.18)

4. CONHARMONICALLY FLAT KENMOTSU MANIFOLD WITH RESPECT TO THE
CONNECTION er

A conhormonic curvature tensor K with respect to Levi-Civita connection r is
said to be flat if it vanishes identically(that is, K D 0) with respect to the connection
r. A conharmonically flat Kenmotsu manifold with respect to the semi-symmetric
metric connection has been studied in [12].

Assume that, M is conharmonically flat Kenmotsu manifold with respect to the
connection r. That is, eK D 0. Then from (3.14), we have

eR.X;Y /Z D 1

n�2
Œg.Y;Z/eQX �g..X;Z/eQY

CeS.Y;Z/Y �eS.X;Z/X�: (4.1)

This gives,

K.X;Y /Z D Œg.Y;Z/X �g.X;Z/Y � (4.2)

or equivalently,

R.Y;X/Z D
1

n�2
ŒS.Y;Z/X �S.X;Z/Y Cg.Y;Z/QX �g.X;Z/QY �

C
n

.n�2/
Œg.Y;Z/X �g.X;Z/Y �: (4.3)

Taking inner product with W in (4.3), then

R0.X;Y;Z;W /

D
1

.n�2/
ŒS.Y;Z/g.X;W /�S.X;Z/g.Y;W /Cg.Y;Z/S.X;W /
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�g.X;Z/S.Y;W /�C
n

n�2
Œg.Y;Z/g.X;W /�g.X;Z/g.Y;W /�: (4.4)

where R0.X;Y;Z;W /D g.R.X;Y /Z;W /.
Putting X DW D � in (4.4) and using (2.10) and (2.11), we have

S.Y;Z/D�.n�1/g.Y;Z/: (4.5)

Thus, we can state the following:

Theorem 4. A conharmonically flat Kenmotsu manifoldM.n > 2/ with respect to
generalized Tanaka-Webster connection er is an Einstein manifold.

In view of (4.5), (4.3) reduces to

R.Y;X/Z D�Œg.Y;Z/X �g.X;Z/Y �: (4.6)

That is, M is locally isometric to the locally hyperbolic space Hn.�1/.
On the other hand, If M is locally isometric to the hyperbolic space Hn.�1/. Then
(4.6) holds.
By the virtue of (4.6), (3.2) gives eR.X;Y /Z D 0: (4.7)

Similarly, by taking account of (4.5) in (3.5), we haveeS.Y;Z/D 0: (4.8)

Using (4.7) and (4.8) in (3.14) we obtaineK.X;Y /Z D 0: (4.9)

Thus, M is conharmonically flat with respect to the connection er. This leads to the
following:

Theorem 5. An n-dimensional Kenmotsu manifolsM .n> 2/ is conharmonically
flat with respect to the generalized Tanaka-Webster connection er if and only if it is
locally isometric to the hyperbolic sphere Hn.�1/.

5. LOCALLY �-CONHARMONICALLY SYMMETRIC KENMOTSU MANIFOLDS
WITH RESPECT TO THE CONNECTION er

The notion of locally �-symmetry was first studied by Takahashi [13] on a Sa-
sakian manifold. In this section we consider a locally �-conharmonically symmetric
Kenmotsu manifolds with respect to the connection er.

Definition 1. An Kenmotsu manifold M is said to be locally �-conharmonically
symmetric with respect to the generalized Tanaka-Webster connection er if the con-
harmonic curvature tensor eK with respect to the connection er satisfies

�2..erW
eK/.X;Y /Z/D 0; (5.1)

where X;Y;Z and W are horizontal vector fields on M .
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From (3.2), we have that

.erW
eK/.X;Y /Z D .rW

eK/.X;Y /ZCg.W;eK.X;Y /Z/�
��.eK.X;Y /Z/W C�.W /�eK.X;Y /Z: (5.2)

Now, Differentiating (3.15) in the direction of W , we get

.rW
eK/.X;Y /Z D .rWK/.X;Y /Z: (5.3)

Then, using (4.3) and (5.3) in (5.2), we have

.erW
eK/.X;Y /Z

D.rWK/.X;Y /ZCg.W;eK.X;Y /Z/�
C�.W /�eK.X;Y /Z� .n�3/

.n�2/
Œg.X;Z/�.Y /W �g.Y;Z/�.X/W �

�
1

.n�2/
ŒS.X;Z/�.Y /W �S.Y;Z/�.X/W �: (5.4)

Applying �2 on both sides of (5.4) and using (2.1) and (2.2), we obtain

�2..erW
eK/.X;Y /Z/

D�2..rWK/.X;Y /Z/��.W /�eK.X;Y /Z
C
.n�3/

.n�2/
Œg.X;Z/�.Y /W �g.Y;Z/�.X/W �

C
1

.n�2/
ŒS.X;Z/�.Y /W �S.Y;Z/�.X/W �

�
.n�3/

.n�2/
Œg.X;Z/�.Y /�.W /��g.Y;Z/�.X/�.W /��

�
1

.n�2/
ŒS.X;Z/�.Y /�.W /��S.Y;Z/�.X/�.W /��: (5.5)

Now, if X ,Y ,W are horizantal vector fields, then the above equation reduces to

�2..erW
eK/.X;Y /Z/D �2.rWK/.X;Y /Z/: (5.6)

This shows that, M is locally conharmonically �-symmetric with respect to the con-
nection er if and only if it is so with respect to the connection r.
Hence we state the following:

Theorem 6. A Kenmotsu manifold M.n > 3/ is locally �-conharmonically sym-
metric with respect to generalized Tanaka-Webster connection er if and only if it is so
with respect to the Levi-Civita connection r.
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6. KENMOTSU MANIFOLD WITH RESPECT TO THE CONNECTION er SATISFYINGeK.�;X/ � eRD 0
In this section consider a Kenmotsu manifold M satisfying the conditioneK.�;X/ �eRD 0: (6.1)

We define eK.�;X/ �eR by

.eK.�;X/ �eR/.Y;Z/W
DeK.�;X/:eR.Y;Z/W �eR.eK.�;X/Y;Z/W
�eR.Y;eK.�;X/Z/W �eR.Y;Z/eK.�;X/W: (6.2)

From (6.1) and (6.2), we have

.eK.�;X/ �eR/.�;Z/W �eR.eK.�;X/�;Z/W
�eR.�;eK.�;X/Z/W �eR.�;Z/eK.�;X/W D 0: (6.3)

Using the property(g) of Theorem 3.1 in (6.3), we obtaineR.eK.�;X/�;Z/W D 0; (6.4)

which on using (3.17), gives

.n�3/

.n�2/
eR.X;Z/W C 1

.n�2/
eR.QX;Z/W D 0: (6.5)

Taking inner-product of (6.5) with U and using (3.4) we get

.n�3/

.n�2/
ŒR.X;Z;W;U /Cg.Z;W /g.X;U /�g.X;W /g.Z;U /�

C
1

.n�2/
ŒR.QX;Z/W;U /Cg.Z;W /S.X;U /�S.X;W /g.Z;U /�

D0: (6.6)

Let feig.1 � i � n/ an orthonormal basis of the tangent space at any point of the
manifold. Putting Z DW D ei in (6.6) and taking summation over i , 1 � i � n, we
get

S2.X;U /D�2S.X;U /� .n�1/.n�3/g.X;U /: (6.7)

This leads to the following:

Proposition 1. In an n-dimensional .n > 3/ Kenmotsu manifoldM with respect to
the generalized Tanaka-Webster connection er if the condition eK.�;X/ �RD 0 holds
on M , then the equation (6.7) is satisfied on M .

Now we need the following:
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Lemma 2 ([6]). Let A be symmetric .0;2/-tensor at a pointX of a Semi-Riemannian
manifold .M n;g/, .n > 1/, and let T D g N̂A be the Kulkarni-Nomizu product of g
and A, Then, the relation.

T �T D ˛Q.g;T /; ˛ 2 R (6.8)

is satisfied at x if and only if the condition

A2
D ˛AC�g; � 2 R (6.9)

holds at x.
From Proposition 1 and Lemma 2, we have the following:

Corollary 2. LetM be an n-dimensional .n > 3/ Kenmotsu manifold with respect
to the generalized Tanaka-Webster connection er satisfying the condition eK.�;X/ �eRD 0. Then T �T D ˛Q.g;T /, where T D g N̂A and ˛ D�2.

7. KENMOTSU MANIFOLDS WITH RESPECT TO THE CONNECTION er SATISFYINGeP .�;X/ � eK D 0
We consider a Kenmotsu manifold M satisfying the conditioneP .�;X/ �eK D 0; (7.1)

where eP is the projective curvature tensor with respect to the connection er given by

eP .X;Y /Z D eR.X;Y /Z� 1

.n�1/
ŒeS.Y;Z/X �eS.X;Z/Y �: (7.2)

Now we define eP �eK by

.eP .�;X/ �eK/.Y;Z/W
DeP .�;X/eK.Y;Z/W �eK.eP .�;X/Y;Z/W
�eK.Y;eP .�;X/Z/W �eK.Y;Z/eP .�;X/W: (7.3)

From (7.1) and (7.3) we have

.eP .�;X/ �eK/.Y;Z/W D 0: (7.4)

For a Kenmotsu manifold M , we obtain from (7.2) that

eP .�;Y /Z D� 1

.n�1/
S.Y;Z/��g.Y;Z/�: (7.5)

Taking the inner product with U in (7.4) and using (7.5) we obtain

g.X;eK.Y;Z/W /�.U /�g.X;Y /g.eK.�;Z/W;U /
�g..X;Z/g.eK.Y;�/W;U /�g.X;W /g.eK.Y;Z/�;Y /
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C
1

.n�1/
ŒS.X;eK.Y;Z/W /�.Y /�S.X;Y /g.eK.�;V /W;U /

�S.X;Z/g.eK.Y;�/W;U /�S.X;W /g.eK.Y;Z/�;U /�D 0: (7.6)

Taking Z D � in (7.6), we have

g.X;eK.Y;�/W /�.U /�g.X;W /g.eK.Y;�/�;U /
C

1

.n�1/
ŒS.X;eK.Y;�/W /�.U /�S.X;W /g.eK.Y;�/�;U /�D 0: (7.7)

Using (3.17) in (7.7), we get

.n�3/

.n�2/
Œg.X;Y /�.U /�.W /C

1

.n�1/
S.X;Y /�.U /�.W /

Cg.X;W /�.U /�.Y /�g.X;W /g.U;Y /

C
1

.n�1/
S.X;W /�.U /�.Y /�

1

.n�1/
S.X;W /g.U;Y /�

C
1

.n�2/
ŒS.X;Y /�.U /�.W /C

1

.n�1/
S.QX;Y /�.U /�.W /

�S.U;Y /g.X;W /� .n�1/g.X;W /�.U /�.Y /

�
1

n�1
S.X;W /S.U;Y /�S.X;W /�.U /�.Y /�D 0; (7.8)

where S.QX;Y /D S2.X;Y /.
Let feig .1� i � n/ be orthonormal basis of the tangent space at any point. Then

the sum for .1� i � n/ of the relation (7.8) for X DW D ei gives

.rCn.n�1//

�
�1

.n�2/
S.U;Y /�

�
n�3

n�2

�
g.U;Y /C

�2

n�2
�.U /�.Y /

�
D0: (7.9)

This implies, either rCn.n�1/D 0 or

S.Y;U /D�.n�3/g.Y;U /�2�.Y /�.U /: (7.10)

If rCn.n�1/D 0, then from (3.6) we haveer D 0.
Next, if the equation(7.10) holds, then in the view of Lemma 1, M is an Einstein
manifold. Hence, we state that the following:

Theorem 7. Let M be an n-dimensional .n > 3/ Kenmotsu manifold with respect
to the generalized Tanaka-Webster connection er satisfying the condition eP .�;X/ �eK D 0. Then eitherer D 0, that is, the scalar curvature with respect to the connectioner vanishes or M is an Einstein manifold.
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