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Abstract. In this paper, we study exact null controllability of Hilfer fractional semilinear stochastic
differential equations in Hilbert spaces. By using fractional calculus and fixed point approach,
sufficient conditions of exact null controllability for such fractional systems are established. An
example is given to show the application of our results.
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1. INTRODUCTION

The stochastic differential equations arise in many mathematical models [5, 14,18,
20]. The problem of controllability of nonlinear stochastic or deterministic system
has been discussed in [3,4,6,8,9, 16, 19].

Recently, basic theory of differential equations involving Caputo and Riemann-
Liouville fractional derivatives can be found in [1,2, 13, 21-24,26-30] and the ref-
erences cited therein. Beside Caputo and Riemann-Liouville fractional derivatives,
there exists a new definition of fractional derivative introduced by Hilfer, which gen-
eralized the concept of Riemann-Liouville derivative and has many application in
physics, for more details, see [10—12,25].

In this paper, we investigate the exact null controllability of Hilfer fractional semi-
linear stochastic differential equation of the form

D(I;’fx(t) = Ax(t)+ Bu(t)
FE(x () +G(,x ()20 1 e g =10,b], (1.1)
18707 2 0) + h(x) = xo,

where D(‘)}f is the Hilfer fractional derivative, 0 <v <1, 1 < u <1, A is the in-
finitesimal generator of strongly continuous semigroup of bounded linear operators
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S(t), t = 0, on a separable Hilbert space H with inner product (.,.) and norm || . ||.
There exists a M > 1 such that sup;~. ||S(#)|| < M. The control function u(-) is given
in L, (J,U), the Hilbert space of admissible control functions with U as a separable
Hilbert space. The symbol B stands for a bounded linear operator from U into H.
Here w is an H -valued Wiener process associated with a positive, nuclear covariance
operator Q, F is an H-valued map and G is a L(K, H)-valued map both defined
on J x H (where K is a real separable Hilbert space with norn |- ||g and L(K, H)
is the space of all bounded, linear operators from K to H, we write simply L(H) if
H=K)andh:C(J,H)— H.

2. PRELIMINARIES

In this section, some definitions and results are given which will be used through-
out this paper.

Definition 1 (see [15, 17]). The fractional integral operator of order u > 0 for a
function f can be defined as

S
I Jo t—s)t=r

where I"() is the Gamma function.

I*f(t) = ds, t>0

Definition 2 (see [11]). The Hilfer fractional derivative of order 0 < v < 1 and
0 < u < 1 for a function f is defined by

v () = 120 d a0 ).

dt

Let (£2,7, P) be a complete probability space furnished with complete family of
right continuous increasing sub o-algebras {1y : ¢ € J} satisfying 7y C 7. An H-
valued random variable is an 7"- measurable function x(¢) : £2 — H and a collection
of random variables ¥ = {x(f,w) : 2 — H|t € J} is called a stochastic process.
Usually we suppress the dependence on w € §2 and write x(¢) instead of x (¢, w) and
x(t) : J — H in the place of ¥. Let B,(¢) (n = 1,2,...) be a sequence of real valued
one-dimensional standard Brownian motions mutually independent over (£2,7,, P).
Set

o)=Y VAnBu(t)en. t >0,
n=1

where A,, (n = 1,2,...) are nonnegative real numbers and {e,} (n = 1,2,...) is a
complete orthonormal basis in K. Let Q € L(K, K) be an operator defined by Qe =
Anen with finite Tr(Q) = Y 72 ; An < 0o, (Tr denotes the trace of the operator).
Then the above K-valued stochastic process w() is called Q-Wiener process.

We assume that 75 = o{w(s) : 0 < s <t} is the o-algebra generated by w.
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For ¢ € L(K, H) we define
1p 15=Tr@0¢*) => || vVangen |
n=1

If || ¢ ||2Q< oo, then ¢ is called a Q-Hilbert-Schmidt operator. Let Lo (K, H) de-
note the space of all Q-Hilbert-Schmidt operators ¢ : K — H. The completion
Lo(K,H) of L(K,H) with respect to the topology induced by the norm || . ||o
where || ¢ ||2Q: ¢, @] is a Hilbert space with the above norm topology. The col-
lection of all strongly-measurable, square-integrable, H -valued random variables,
denoted by L>(£2, H), is a Banach space equipped with norm | x(-) ||z, (@,H)=
(E || x(.,w) ||2)%, where the expectation, E is defined by E(x) = [, x(w)dP. An
important subspace of L5 (§2, H) is given by Lg(.Q, H)={x€eLy(2,H), xis 1p-
measurable }.

Let C(J,L2(82, H)) be the Banach space of all continuous maps from J into
L>($2, H) satisfying the condition sup,; E|x(t)]? < cc.

Define Y = {x : tA=A=Wx (1) € C(J, L2(82, H))}, with norm || - |y defined by
|- lly = (sup;ey E||t(1_”)(1_“)x(t)||2)%. Obviously, Y is a Banach space.

For x € H, we define two families of operators { S, ;,(¢) :# > 0} and { P, (¢) : 1 > 0}
by

Sup() = I PL1), Put) = "' Tu(0), Ty(t) = /OOOMOWM(H)S(N‘@)dG,

where

- =)"!
v, (0)=>" PRI TR. 0<pu<l,6e(0,00)

n=1

is a function of Wright-type which satisfies
o0 ra+wvw
/ 0%, (0)d6 = ra+vy)
0 I'(1+p¥)
for 6 > 0.

Lemma 1 (see [10]). The operator S, and Py, have the following properties.
(i) { P (t) 1t > O} is continuous in the uniform operator topology.
(ii) For any fixedt > 0, S, ;,(t) and P, (t) are linear and bounded operators, and

el BSwu(nl £
x|l (1Sv,u@x| <

r(w) e r—p) + pm)
(iii) { P, (t) : t > 0} and {S, ;. (t) : t > O} are strongly continuous.

1P (@)x]l < [lx]l.
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To study the exact null controllability of (1.1) we consider the fractional linear
system

Dyly(t) = Ay(t) + Bu(t) + F(1) + G(1) %20 | 1 € J = [0,b],

0+ 2.1)
1My 0) = yo,

associated with the system (1.1).
Define the operator

b
Lguzf Pu(b—s)Bu(s)ds : Ly(J.U) — H,
0

where Lgu has a bounded inverse operator (Lo)~! with valuesin L,(J,U)/ker (Lg),
and

b
NE (. F.G) = Sy (b)y + /0 Pou(b—5)F(s)ds

b
+/ Pu(b—s5)G(s)dw(s): Hx L>(J,U) — H.
0

Definition 3. The system (2.1) is said to be exactly null controllable on J if
Im L5 > 1m N&.
By [7], the system (2.1) is exactly null controllable if there exists y > 0 such that
1L ¥IP = v I(NG) I
forall y e H.

Lemma 2 (see [16]). Suppose that the linear system (2.1) is exactly null control-
lable on J. Then the linear operator

W = (Lo) "Nl :HxLy(J.H)— Ly(J.U)

is bounded and the control

b

b
u(t) =—(Lo)~ ! |:S,,,M(b)y0 —i—/(; Pu(b—s)F(s)ds —|—/0

=—W(yo,F.G)

Pu(b—s)G(s)da)(s):|

transfers the system (2.1) from yg to 0, where Ly is the restriction of Lg to [ker Lg]J',
Fely(J,H)and G € Lr(J,L(K, H)).
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3. EXACT NULL CONTROLLABILITY

In this section, we formulate sufficient conditions for exact null controllability
for the system (1.1). First, we give the definitions of mild solution and exact null
controllability for it.

Definition 4. We say x € C(J, L,(£2, H)) is a mild solution to (1.1) if it satisfies
that
t

x(1) = Sv,u(t)[xo_h(o)]+/0 Pu(t —s)[F(s,x(s)) + Bu(s)lds

+[t Pu(t—s)G(s,x(s))dw(s), t € J.
0

Definition 5. The system (1.1) is said to be exact null controllable on the interval
J if there exists a stochastic control u € L,(J,U) such that the solution x of the
system (1.1) satisfies x(b) = 0.

To prove the main result, we need the following hypotheses:

(H1) The fractional linear system (2.1) is exactly null controllable on J.

(H?2) The function F : J x H — H is locally Lipschitz continuous, for all ¢ €
J, x, x1, xo € H, there exist constant ¢y > 0, such that

IF(t,x2) = F(t,x)|?> < crllxa—x1l?, [1F @)1 < er(1+[x]?).
(H3) The function G : J x H — L(K, H) is locally Lipschitz continuous, for all
ted, x, x1, xo € H, there exist constant ¢, > 0, such that
1G(1,x2) = G(t,x1) [ < callxa—x1l?, G, 0)[5 < e2(1+[[x]*).
(H4) The function h : C(J, H) — H is continuous, for any x, x1, xp € C(J, H),
there exist constant c¢3 > 0, such that

1h(x2) =h(x) |1 < esllxa—x1l?, 1R < e3(1+ [lx]?).

4M?c-
o010 (c1 + c2Tr(Q)) and

4MZb>* W2 B>
Qu—1)I2 ()
Theorem 1. If the hypotheses (H1)-(H4) are satisfied, then the system (1.1) is
exactly null controllable on J provided that

M2pl+2vu—1)
@u—1)I"2(n)

Set 01 = +

02:=1+

0:=0102<1. (3.1)
Proof. For an arbitrary x define the operator @ on Y as follows

(Px)(1) = Sv,u()[x0 —h(x)] (3.2)

+ /l Pu(t—s)[F(s,x(s))—BW(xo—h(x), F,G)lds
0
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+/tPM(t—s)G(s,x(s))dw(s), tel.
0

where
u)=Wixo—hx),F,G)(t)

= —(Lo) " {Sy.u(b)[x0 —h(x)]
b

b
+/ PM(b—s)F(s,x(s))ds—i-/ Pu(b—s5)G(s,x(s))dw(s)}.
0 0

It will be shown that the operator @ from Y into itself has a fixed point.
Step 1. The control u(-) = —W(xo —h(x), F,G) is bounded on Y.
Indeed,

lu]|2 = sup >0 g2
teJ
< sup 2= B W (xo — h(x), F,G)(s)]?
teJ
2

2l —p)+p

M2pl+2v(u—1) 5
T aa g T EIR P e + e Tr(@))y

Step 2. We show that @ maps Y into itself.
From (3.2) and (3.3) for ¢t € J, we have

< |wI? [E I xoll* + c3(1+ Ellx|?)]

1(@x)()]3 = sugzm—“)“—“)En<¢x><z>||2
te

< 4supz2“—“>“—“>{ E NS ()0 — h()] 2

teJ
|
t
/ Pu(t—s)[BW(xo—h(x),F,G)(s)]ds
0
|

[Ellxol* +c3(1+ E|lx[1)]

t
+E / Pu(t—s)F(s,x(s))ds
0

+ 4supt2(1_v)(1_”)
teJ

2
X{E

+ E H/t Pyt —s5)G(s,x(s))dw(s)
0

- [ 4M?

TL20(0 = p) 4 p)

(3.3)
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4M2plit2vn—1) 5
+ iy LT EN )(C1+62Tr(Q))}

8 [1 N M2||B||2||W||2||b2’““1} -
Qu—=1I2(w)

Therefore @ maps Y into itself.
Step 3. We prove (P x)(¢) is continuous on J for any x € Y.
Let 0 <t < b and € > 0 be sufficiently small, then,

1(@x)(t +€) — (Px)(0)]|3 (3.4)
= sup 20U E|(@x) (1 +€) — (Dx)(1) ]2
teJ
<4 Sllptz(l_v)(l_'u)
o teJ

X E||(Sy,u (7 +€) = S, (1)) xo — h(0)]||>

+ 4sup 20—V 0-w)
teJ

+e
x E /t Pyt +e—s)[BW(xo—h(x),F,G)(s)]lds
0

2
_/t Pu(t —s)[BW(xo—h(x),F,G)(s)]ds
0

+ 4sup 21— 1-1)
teJ

t 2

t+e
/ Pu(t—i—e—s)F(s,x(s))ds—/ Pu(t—s)F(s,x(s))ds
0 0

+ 4sup 21— 0-1)
teJ

x E

2
x E

ft+€ Pu(t +e—5)G(s,x(s))dw(s) — /t Pu(t—5)G(s,x(s))dw(s)
0 0

Clearly, from Lemma 1, (H2) and (H 3), the right hand side of (3.4) tends to zero
as € — 0. Hence, (@x)(t) is continuous on J.

Step 4. We show that (@x)(¢) is a contraction on Y.

Let x1, x5 € Y, for any ¢ € (0, b] be fixed, then

1(@x2)(1) — (Px1)(0)]|3

= sup 2= B /(D xp) (1) — (@x1) (1) ||?
teJ

< 4sup 2= g (S, , (1) [h(x2) —h(x1)]|?
teJ
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t

+ 4Supt2(1_”)(1_“)EH [ Pu(t —5)[BW(xo—h(x2), F,G)(s)
teJ 0

2

— BW(xo—h(x1), F,G)(s)]ds

2
+4supr 2= H /O t Pu(t —$)[F(s,x2(5)) — F(s,x1(s))]ds

teJ

2
+ 4supt2(1_”)(1_“)EH /Ot Pu(t —s5)[G(s,x2(5)) — G(s.x1(5))]dw(s)

teJ

< 0E | x2—x1]%.

Hence, @ is a contraction in Y via (3.1). From the Banach fixed point theorem, @ has
a unique fixed point. Therefore the system (1.1) is exact null controllable on J. [J

4. AN EXAMPLE

Consider the following Hilfer fractional stochastic partial differential system

v,% 92
Dy P x(t,2) = 55x(t,2) +u(t,z)

z
Ffx(,2) gt x(t,2) %0 reg 0<z <1, @1

x(t,0)=x(t,1)=0,teJ,
11—
1307700, 2) + TP, kix(t,2) = x0(2), 0=z <1,

where p is a positive integer, 0 < fp <t < ... <f, < b and w(¢) is Wiener process,
u € Ly(0,b),and H = L»([0,1]). Let f : RXxR— Rand g : Rx R — R are con-
tinuous and global Lipschitz continuous in the second variable. Also,let A: H — H

be defined by Ay = ;Z—ZZ y with domain D(A) ={y € H : y, g—JZ' are absolutely con-

tinuous, and gz—{ € H,y(0) = y(1) =0}.

It is known that A is self-adjoin and has the eigenvalues A, = —n?72, n € N, with
the corresponding normalized eigenvectors e, (z) = +/2 sin(nz). Furthermore, A
generates an analytic compact semigroup of bounded linear operator S(¢), ¢ > 0, on
a separable Hilbert space H which is given by

2

00 o0 1
SO =Y Omenen = 3267 sintunz) [ sinun)y §)dg. y < H.
n=1 n=1 0

IfueLy(J,H), then B=1, B*=1.
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Now we consider

2 2
Dy y(1,2) = L= y(6,2) +u(t,2)
+f(t,2)+gt,z)dw@®), tel 0<z <1,
y(t,0)=y(,1)=0,1eJ,

La-v)
Iy, " (¥(0,2)) =yo(z), 0=z =1,

The system (4.2) is exact null controllability if there is a y > 0, such that

(4.2)

b b
/0 1B* P (b—s)y|Pds > y [nszz,v(b)yn2 4 /0 1P —s)ynzds} |

or equivalently

b b
[ 12ae=9y1Pds =y {nsu,u(b)yn2 +[ ||Pu(b—s)y||2ds} .

If f =0 and g =0 in (4.2), then the fractional linear system is exactly null con-
trollable if

b
/O 1Pa(b—5)yPds = bl|SunB)y|2.

Therefore,

b b
b
/ | Pu(b—s)y|*ds > 125 |:||Su,v(b))’||2+/ IIPM(b—s)yllzdsi|.
0 +b 0

Hence, the linear fractional system (4.2) is exactly null controllable on [0, b]. So the
hypothesis (H1) is satisfied.

We define F: JxH - H, G:JxH — L(K,H)and h : C(J,H) — H as
follows: F(t,x) = f(t,x(t,2)), G(t,x)=g(t,x(t,z)) and h(x) =YF_ kix(ti,z)
Then A (-) satisfies (H4).

By choosing the constants k;, i = 1,2,...,p,M,c1, ¢2 and c3 such that o <
1. Hence, all the hypotheses of Theorem 1 are satisfied, so the Hilfer fractional
stochastic partial differential system (4.1) is exact null controllable on [0, b].
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