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Abstract Besides the methodology of triangulation and geodetic networks nowadays, the

permanent stations of satellite receivers exist, giving extra asset to geodetic daily practice.

Permanent stations perform observations incessantly for the visible satellites. However, the

coordinates of these stations are often changing over time due to geophysical and tectonic

processes. Consequently, these changes are perceived to modern observations. So, along

with the coordinates of geodetic points in a given epoch, their changes over time (e.g. the

velocities of their movements) are also considered. Furthermore, any change to the ref-

erence system definition or/and to the network’s geometry can significantly impact the

estimated coordinates and velocities. This paper investigates the reference datum definition

problem (or datum problem, or zero order design problem) in a such network over time,

which is later generalized for the study of the deformation control-networks. Emphasis is

given to techniques of time-dependent 2D transformation models, with numerical tests on a

simulation network.
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1 Introduction

The 2D similarity transformation has a wide range of applications to classical and engi-

neering geodesy. Its main scope is the connection between two different reference systems

in terms of translations, scale and orientation. An advantage of the 2D transformation is the

absence of the height information and thus there is no assumption for the associated height

system (orthometric or/and geometric one) required. This can be useful e.g. when we

combine classical with GNSS networks, respectively. In advance, the GNSS-derived

heights are less accurate compared to the horizontal coordinates, respectively. On the other

hand, the 2D similarity transformation cannot be applied rigorously for relatively large

areas (e.g. more than few kilometers). While the spatial (coordinate) transformation is a

straightforward procedure, the associated model for 2D velocity transformation is usually

omitted. However, in various geodetic monitoring applications the 2D velocity transfor-

mation can be needed (e.g. Doukas et al. 2004).

The main issue is to connect in an optimal way the coordinates and the estimated

velocities through a unified algorithm. For example, this may be required in cases that:

• we have two or more different network realizations at the same area, such an old

geodetic monitoring network (realized from classical observations) and a GNSS

network which share only a number of common points. Especially for the GNSS

network, one should pay great attention, since the observations have completely

different nature from the classical one.

• some of the control benchmarks of a network are missing and there is the need of

handling and restoring the monitoring information.

• we want to connect two different realizations of the same network: For example, if we

aim to quantify the spatial and dynamic inconsistencies from different constraints

handling (e.g. Rossikopoulos 1986; Dermanis 1987; Rossikopoulos 1999).

• we test if one or both of the networks carries some systematic errors or blunders.

Thus, we should build a methodology on the optimal combination of the coordinates and

velocities of different network realizations. The present study is dedicated to obtain a new

methodology dealing with the simultaneous estimation of the spatial and dynamic parame-

ters. All the necessary formulas are given and in addition a numerical example is performed.

We must note that till now, there is no published mathematical model for the trans-

formation of the 2D (horizontal) velocities. In the majority of the cases, the dynamic part

of the network (the velocities) is ignored, and only the classical spatial 2D similarity

transformation is applied. This fact can lead to misinterpretations, since the estimated

parameters absorb not only the spatial change but in addition, the deformation part which is

related to the velocity estimation. The present paper aims to treat this problem, by pro-

viding all the mathematical tools and pointing out some crucial theoretical aspects.

The novelty of the proposed approach/strategy lies in the fact that it allows the

simultaneous 2D similarity transformation both for coordinates and velocities. Till now,

the similarity transformation refers only to the full 3D case (the so-called time-dependent

3D transformation, see e.g. Altamimi et al. 2002). In addition, the described approach gives

for the first time the necessary mathematical formulas for the 2D similarity transformation

of the (plane) velocities. Finally, we should mention that the use of the 3D time-dependent

transformation can be problematic in relative small areas, due to the high correlations

among the translations, rotations and scale (and their rates). On the other hand, the 2D

similarity transformation fits better to limited areas. Thus, the 2D time-dependent trans-

formation can stand as an optimal choice for deformation networks in relative small areas.
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2 Methodology

The classical 2D similarity transformation has the well known form (e.g. Torge 2001):

Xi ¼ l cos hxi þ l sin hyi þ tx
Yi ¼ �l sin hxi þ l cos hyi þ ty

..

.

Xn ¼ l cos hxn þ l sin hyn þ tx
Yn ¼ �l sin hxn þ l cos hyn þ ty

ð1Þ

where xi; yið Þ; Xi; Yið Þ are the planar coordinates in the initial and the final reference sys-

tem, respectively at a point i, tx; ty are the translations of the initial reference system with

respect to the final one, l and h are the scale and the rotation parameters, respectively. For

simplicity reasons, we can combine the scale and rotation terms as follows (Dermanis and

Fotiou 1992):

c ¼ l cos h ð2aÞ

d ¼ l sin h ð2bÞ

However, the coordinates of both reference systems are inevitably affected from errors.

Thus, the observed planar coordinates are expressed through the following relations

(pointwise):

Xb
i ¼ Xi þ eXi

ð3aÞ

Yb
i ¼ Yi þ eYi ð3bÞ

xbi ¼ xi þ exi ð3cÞ

ybi ¼ yi þ eyi ð3dÞ

where the term e stands for the error of each coordinates component and the superscript b

denotes the observed quantities, respectively. Combining Eqs. (2) and (3), Eq. (1) now

yields:

Xb
i
� eXi

¼ c xb
i
� exi

� �
þ d ybi � eyi

� �
þ tx

Yb
i
� eYi ¼ �d xb

i
� exi

� �
þ c ybi � eyi

� �
þ ty

..

.

Xb
n � eXn

¼ c xbn � exn
� �

þ d ybn � eyn
� �

þ tx
Yb
n � eYn ¼ �d xbn � exn

� �
þ c ybn � eyn

� �
þ ty

ð4Þ

The velocities are the derivatives of the coordinates with respect to the time (pointwise):

_xi ¼
dxi

dt
ð5aÞ

_yi ¼
dyi

dt
ð5bÞ
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_Xi ¼
dXi

dt
ð5cÞ

_Yi ¼
dYi

dt
ð5dÞ

According to the same conceptual manner for the effect of the errors to the coordinates

(Eq. 3), we can write the same relations for the velocities:

_Xb
i ¼ _Xi þ e _Xi

ð6aÞ

_Yb
i ¼ _Yi þ e _Yi

ð6bÞ

_xbi ¼ _xi þ e _xi ð6cÞ

_ybi ¼ _yi þ e _yi ð6dÞ

Following the classical differentiating rules for the Eq. 4 and taking into account the

Eq. (6), we can express the velocity transformation as follows:

_Xb
i � e _Xi

¼ _c xbi � exi
� �

þ _d yib � eyi
� �

þ c _xbi � e _xi

� �
þ d _ybi � e _yi

� �
þ _tx

_Yb
i � e _Yi

¼ � _d xbi � exi
� �

þ _c yib � eyi
� �

� d _xbi � e _xi

� �
þ c _ybi � e _yi

� �
þ _ty

..

.

_Xb
n � e _Xn

¼ _c xbn � exn
� �

þ _d ybn � eyn
� �

þ c _xbn � e _xn

� �
þ d _ybn � e _yn

� �
þ _tx

_Yb
n � e _Yn

¼ � _d xbn � exn
� �

þ _c ybn � eyn
� �

� d _xbn � e _xn

� �
þ c _ybn � e _yn

� �
þ _ty

ð7Þ

The dot signs denote the dynamic parameters (four extra parameters). In order to proceed

with the least squares adjustment, it is needed to choose which of the existing method-

ologies (observation equations, condition equations or mixed model) will apply. A fruitful

description of the different adjustment methodologies is given by Dermanis (1976). In our

case, since the observations and the parameters are correlated, we should employ the mixed

model, which is generally described as follows:

l w; uð Þ ¼ 0 ð8Þ

where l refers to a function of the observation vector w ¼ XT _X
T

xT _xT
h iT

and the

vector of the unknowns u ¼ c d tx ty _c _d _tx _ty
� �T

. In addition, we

have:X ¼

Xb
i

Yb
i

..

.

..

.

Xb
n

Yb
n

2
666666664

3
777777775

, _X ¼

_Xb
i
_Yb
i

..

.

..

.

_Xb
n
_Yb
n

2
666666664

3
777777775

, x ¼

xbi
ybi

..

.

..

.

xbn
ybn

2
666666664

3
777777775

, _x ¼

_xbi
_ybi
..
.

..

.

_xbn
_ybn

2
666666664

3
777777775

The final linearized combined model

(for the coordinates and the velocities) has the following form:

w ¼ Kduþ Be ð9Þ

where w ¼ l w; uoð Þ is the loop closure vector (the superscript o stands for the approximate

values of the unknowns) du the corrections term, B the Jacobian matrix ol
ow, e ¼
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eT
X

eT
_X

eT
x

eT
_x

h iT
the vector of the observations errors, K ¼ ol

ou ¼ ~E
T

GT

h iT
, and

~E ¼ ET ZT
� �T

, Z ¼

0 0 0 0

0 0 0 0

..

. ..
. ..

. ..
.

0 0 0 0

0 0 0 0

2
66664

3
77775

. In addition, E ¼

xb
i

yb
i

1 0

�xb
i

yb
i

0 �1

� � � � � � � � � � � �
� � � � � � � � � � � �
xb
n

yb
n

1 0

�xb
n

yb
n

0 �1

2
6666664

3
7777775

and

G ¼

_xb
i

_yb
i

0 0 xb
i

yb
i

1 0

� _xb
i

_yb
i

0 0 �xb
i

yb
i

0 1

� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �
_xb
n

_yb
n

0 0 xb
n

yb
n

1 0

� _xb
n

_yb
n

0 0 �xb
n

yb
n

0 1

2
6666664

3
7777775

. In our case, for each point i we have

the following four equations:

l1i : X
b
i
� coxb

i
� doyb

i
� tox ¼ w1i ð10aÞ

l2i : Y
b
i
þ doxb

i
� coyb

i
� to

y
¼ w2i ð10bÞ

l3i : _Xb
i
� co _xb

i
� _coxb

i
� _doyb

i
� do _yb

i
� _to

x
¼ w3i ð10cÞ

l4i : _Yb
i
þ do _xb

i
þ _doxb

i
� co _yb

i
� _coyb

i
� _to

y
¼ w4i ð10dÞ

Our final model comprises eight transformation parameters: The classical spatially

related parameters of the similarity transformation, in addition to their associated trans-

formation rates. Note, the velocities are mutually dependent to the eight transformation

parameters, though the coordinates are blind to the rate parameters. For the approximate

values of the parameters one can initially set all of them as zero, except for the c, which can

be one. Of course, after a number of iterations the optimal parameters are estimated

(setting each time the previous estimated values as the approximate one).

2.1 The mathematical model for the least squares adjustment

Applying the least squares principle (e.g. Koch 1987), the estimated unknown parameters,

adjusted observations and adjusted residuals (four for the coordinates and four for the

velocities) are derived as follows (e.g. Dermanis and Fotiou 1992 for the mixed model):

dû ¼ � KTM�1K
� ��1

KTM�1w ð11Þ

the associated covariance matrix is:

Cû ¼ r̂2 KTM�1K
� ��1 ð12Þ

The estimated errors,

ê ¼ CeB
TM�1 wþKdûð Þ ð13Þ
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and r̂2 ¼ êTC�1
e ê

4n�8
the a posteriori variance (n the number of the points). Finally, M ¼

BC�1
e BT with Ce ¼

CeX

Ce _X

Cex

Ce _x

2
664

3
775 the 4n 9 4n covariance matrix of the

observation errors (coordinates and velocities). We assume implicitly, that the coordinates

and velocities are not correlated. This is a realistic assumption, since the velocities are

estimated mainly, by individual time series of the coordinates.

If we want to express the covariance error matrix to a more correct form, we have:

Ce ¼

r2
1QeX

r2
2Qe _X

r2
3Qex

r2
4Qe _x

2
664

3
775 ð14Þ

where r2
1; r

2
2; r

2
3; r

2
4 are the (unknown) variances of each group of the observations. They

can be estimated using the so-called Variance Component Analysis (VCA- see e.g. Bähr

et al. 2007).

2.2 The case of different realization epochs

It is possible that the two reference systems are not realized in the same epoch. For

example, this can occur when the initial network was measured many years before the final

one. In this case one should take into account the coordinate change throughout the time. In

this case, all the coordinate related quantities, presented in the matrices E and G (Eq. 9),

respectively should be changed, according to the following expressions:

xi ¼ xt0i þ _xi To � t0ð Þ ð15aÞ

yi ¼ yt0i þ _yi To � t0ð Þ ð15bÞ

where xt0i ; y
t0
i the 2D coordinates of the initial frame at the epoch to of its realization and To

the reference epoch of the final reference frame. By this manipulation, we express the

coordinates of the initial system to the realization epoch of the final one. If we ignore this

critical modification, the estimated parameters would absorb a kind of pseudo information,

which in fact is a bias due to the different realization epochs. This bias can be significant, if

the time difference between them is relatively large (e.g. decades) or/and the velocities are

also large.

2.3 Some remarks regarding the practical application of the 2D time
dependent similarity transformation

(1) The above equations are used for the simultaneous estimation of the parameters

connecting the coordinates and the velocities of two different reference systems. We

underline again that the 2D similarity transformation is well defined only for limited

areas. If one wants to apply the 3D similarity transformations both for coordinates

and velocities, Altamimi et al. (2002) give all the necessary mathematical formulas

for it. The present study should be considered as the special case of the 3D time-

dependent transformation given by Altamimi et al. (2002).
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(2) The same concept can be easily implemented to the vertical networks. In this case,

we have only two estimated parameters: the offset and its rate.

(3) The time dependent 2D similarity transformation could be expanded for the affine or

polynomial transformations, respectively. However, the model will include relative

many unknown parameters.

(4) We should be aware of the realization epochs. As we discussed previously, this can

distort our results. If the reference epoch is not explicitly defined, we should re-

compute the associated networks per epoch. Then, it is needed to define a reference

epoch (e.g. in the mean epoch of the observation). Finally, the velocity estimation

using e.g. time series analysis should be estimated.

3 Numerical example

Our new approach for the optimal estimation of the spatial and dynamic parameters of the

2D similarity transformation is tested through a simulation paradigm.

1. Initially, we create a random network of 9 points (Fig. 1). We set an initial network of

well distributed stations, covering an area of approximately 1 km2. From this network,

we extract 40 horizontal distances and 26 angles as they derived using the Pythagorean

theorem and the the differences of the computed azimuths, respectively. In the case of

the horizontal distances, we add zero mean noise with 1.0 mm/yr standard deviation,

while for the angles we assume 0.2 mgons standard deviation (again zero mean). For

both cases, we used the Matlab random noise generator. The noise level reflects

adequately the observational uncertainty of the modern and precise terrestrial

measurements used for the deformation monitoring.

2. For these 9 points, we also consider 2D velocities. We artificially generate 18

velocities (x and y components of the 9 points) with the following statistical

characteristics: mean average 10 mm/yr and standard deviation 3.0 mm/yr.

Fig. 1 The simulated network
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3. The simulated network (initial network) is solved imposing partial inner constraints to

the points 1, 3 and 9. The mean standard deviations (mean average of the squared

diagonal elements of the covariance matrix of the estimated unknowns, Eq. 12, ibid.)

are 0.96 mm and 0.13 mm/yr for the coordinates and velocities, respectively.

4. In order to compute the final network, we apply the eight similarity transformation

parameters (spatial and dynamic). These parameters are designed in a way that realize

a reference system which is relatively ‘‘close’’ to the initial one, in terms of

translations, scale and orientation (and for their associated rates). Then, we add

random noise to the coordinates and velocities for the final reference system. The

statistical characteristics of the added noise are zero mean (for both coordinates and

velocities) and standard deviations of 1.5 mm and 1.0 mm/yr, respectively. Further-

more, for 2 x-components and 2 y-components of the initial network, we add a bias of

5 mm to their noised values. This bias is induced in order to take account of some

systematic effects. We assumed both noise and bias for the final network, in order to

have a realistic simulation scenario. Tables 1 and 2 refer to the coordinates and

velocities of the initial and final reference system, respectively. Figure 2 depicts the

velocities with respect to the two systems.

We also apply statistical tests to our results (Koch 1987). We implement the two-sides

F-test (testing the variances) and the Student test (t test) for outlier detection for the initial

and the final network, respectively.

Table 1 The coordinates and
the velocities of the initial refer-
ence system

The coordinates are in meters and
the velocities are in meters/yr

Point X (m) Y (m) Vx (m/y) Vy (m/y)

1 5815.301 4782.201 0.0086 -0.0102

2 6224.399 5006.500 0.0105 -0.0103

3 5942.299 5110.501 0.0092 -0.0104

4 6266.600 5220.100 0.0097 -0.0100

5 5579.299 5017.201 0.0110 -0.0090

6 5573.299 4701.701 0.0089 -0.0082

7 6146.501 4851.500 0.0113 -0.0094

8 5946.800 4787.699 0.0107 -0.0103

9 5941.200 5470.099 0.0099 -0.0093

Table 2 The coordinates and
the velocities of the final refer-
ence system

Point X (m) Y (m) VX (m/y) VY (m/y)

1 5815.303 4782.205 0.0082 -0.0102

2 6224.402 5006.505 0.0120 -0.0085

3 5942.302 5110.502 0.0081 -0.0080

4 6266.607 5220.101 0.0092 -0.0092

5 5579.303 5017.205 0.0099 -0.0083

6 5573.307 4701.706 0.0087 -0.0072

7 6146.503 4851.502 0.0110 -0.0080

8 5946.806 4787.704 0.0120 -0.0094

9 5941.203 5470.103 0.0097 -0.0076
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Regarding the covariance matrix of the observation errors, we use the covariance matrix

of estimated coordinates, and a unity matrix for the velocities. For the velocities, the unity

matrix was multiplied by a factor of 1 9 10-6, assuming implicitly that the velocities were

estimated with a formal error of 1 mm/yr. We should note here that since the network is

solved using inner constraints, the associated covariance matrix of the coordinates is

singular (e.g. Koch 1987). We overcame this problem, by slightly modifying the covari-

ance matrix by adding a diagonal matrix, as follows (Bjerhammar 1973; Sillard and

Boucher 2001; Rossikopoulos 2001):

Cx̂ ¼ Cx̂ þ d � I ð16Þ

where Cx̂ is the covariance matrix of the estimated coordinates and 0\d � 1. In our case,

we have d = 0.00001.

The results of the implementation of the combined 2D similarity transformation are

presented in the following tables. Table 3 shows the estimated parameters and their

associated formal errors, while Table 4 refers to the residual statistics for the coordinates

and velocities.

Fig. 2 The simulated velocities of the two systems

Table 3 The estimated parame-
ters and their associated formal
errors

Parameter Values

c 0.99999720486 ± 2e-07

d -1.7277e-07 ± 5e-07

tx 0.0219 ± 0.015 m

ty 0.0164 ± 0.012 m

_c 2.2681 e-06 ± 3.2e-07

_d -3.419e-08 ± 1.2e-08

_tx 0.0067 ± 0.0028 m/yr

_ty -0.0103 ± 0.009 m/yr
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The standard deviation of the residuals (0.0017 m and 0.0010 m/yr, respectively) is at

the level of our initial formal error assumptions (the assumptions regarding the added

random noise to the observations). Furthermore, the mean residual average is practical

zero.

Finally, Fig. 3 shows the correlations between the estimated parameters. Correlations

are estimated directly from the covariance matrix of the estimated unknown parameters.

Observing Fig. 3, we imply that there are strong correlations ([0.8) between some

parameters. The largest correlations are found between:

• the parameter c and the translations tx; ty
• the _c and the dynamic translations _tx; _ty

• the _d and the dynamic translation _ty

These correlations might be caused due to the relatively small network area and in top

of that, the origin of the reference system is almost 6 km away from the network. It is

worth to mention that there is no significant cross-correlation between the spatial (referring

to the coordinates) and the dynamical (referring to the velocities) parameters. We should

always take into consideration the correlation between the estimated parameters. Large

correlation could reveal some problems which probably distort the transformation.

Table 4 The residuals of the coordinates and the velocities, after the application of the 2D time dependent
similarity transformation

Quantity Coordinates Velocities

Min -0.0027 -0.0021

Max 0.0027 0.0027

Std 0.0017 0.0010

Mean 0.0001 0.0000

The coordinates are in meters and the velocities are in meters/yr

Fig. 3 The correlations between the estimated parameters
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However, we must keep in mind that the 2D similarity transformation is applied to limited

areas, a fact that increases the correlations.

4 Conclusions and further investigations

At the present study, we discussed a new approach on the optimal 2D similarity trans-

formation, using coordinates and velocities. We provide all the necessary formulas and we

test them through a simulation network. The new methodology could be useful in various

geodetic and surveying applications, like:

1. Connecting two different dynamic networks established for geodetic monitoring (e.g.

fault or dam monitoring or even for an industrial application). This could be useful,

because for the aforementioned cases, the velocities play a crucial role for the safety of

the people and the constructions.

2. Assimilating the information from a tectonic plate model, with results derived from

geodetic measurements. This could lead to the improvement of local deformation

models through the use of global solutions. In addition, it can be considered as a tool

on the assessment of the tectonic plate models by the use of local precise geodetic

networks.

3. In cases where the height information is rather problematic and it is possible to distort

the results. Our methodology does not imply any height handling and thus it can be

applied independently. Furthermore, the precise height estimation needs for the most

of the cases geometric levelling measurements which increase the time and the cost of

our work.

4. For the comparison of the results between the 3D and 2D time dependent

transformation models regarding the horizontal velocities. E.g. how the height related

information affects on the horizontal plane deformation estimation. This can be done

by applying independently the 3D and 2D time-dependent transformation, respec-

tively. Then one can compare the horizontal coordinate residuals after the implemen-

tation of the two different transformations mentioned before.

5. In cases where it is necessary to investigate if there is consistency between different

types of observations from which the horizontal deformations are determined. E.g. if

GNSS scale (and its rate) is consistent to the total station derived one, respectively.

This can be important, since the older classical networks define their scale using

terrestrial distance measurements.

The new methodology was tested through a simulation network. The simulated network

was designed as a precise network for deformation monitoring. We followed rigorous

statistical tests in order to reject possible blunders. Applying the 2D similarity time-

dependent transformation, we conclude that it provides the necessary information for the

reliable spatial and dynamic connection between two reference systems. The standard

deviation of the coordinate residuals and velocities lay at 1.7 mm and 1.0 mm/yr,

respectively.

Of course, the new methodology should be implemented with real observations and

reference systems in order to clarify and further investigate the results, especially the

correlations of the estimated parameters. We should again note that the 2D similarity

transformation offers reliable results only in limited areas. The results of the proposed
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approach should be definitely compared with those of the other strategies that are already

applied for the deformation studies.
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