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Abstract In this paper we tackle the problem of inverting geophysical magnetic data due

to simple shape anomalies caused by thin sheet, cylinder and fault models using Occam’s

inversion scheme. A significant aspect of using Occam’s inversion is the choice of the

regularization parameter controlling the trade-off between the data fidelity and regular-

ization term in the cost function of optimization problem, and consequently, reliable

estimation of subsurface models. Two criteria L-curve and weighted generalized cross

validation are considered in order to choose an optimum value of the regularization

parameter. The proposed strategy was first evaluated on three theoretical synthetic models

for each of the magnetic simple-shaped structures with different random errors, where a

considerable agreement was obtained between the exactly known and estimated models.

The validity of the technique was also applied to one real data set from Morvarid iron-

apatite deposit, in Northwest Iran. The resulting inverted parameters using the proposed

algorithm correspond reasonably closely with the known geology and nearby borehole

information.

Keywords Magnetic � Regularization � Occam’s inversion � L-curve � Weighted

generalized cross validation � Model appraisal

1 Introduction

Magnetic exploration is used to provide an indirect way to observe magnetic causative bodies

such as magnetite-bearing minerals, titanium and molybdenum, mineralization such as

heavy mineral sands and massive sulfides beneath the Earth’s surface by studying the
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anomalous magnetic field (Blakely 1995; Nabighian et al. 2005; Beiki and Pedersen 2012).

Among the many approaches and techniques for quantitative interpretation of magnetic

anomalies, some of the most popular include inversion processes in which the Earth’s

geomagnetic measurements are transferred into a quantitative subsurface-property

description such as the spatial location, the shape and magnetic susceptibility using an

optimization problem in which an objective function comprising a measure of data misfit and

a measure of model character is minimized. Many of inverse problems in geophysics are ill-

posed means that the inverse problem is non-unique and unstable (i.e. any small perturbation

of the input data can cause large perturbation of the estimated model) (Tikhonov and Arsenin

1977; Hansen 1998; Oldenburg and Li 2005). Therefore, to solve these problems we need

special strategies known as regularization techniques (Abdelazeem 2013; Gheymasi and

Gholami 2013; Ghanati et al. 2016). The inversion of magnetic data problem, which we aim

to solve here, represents typical ill-posed problem. Although a unique solution may be found

when a single causative body has a simple geometrical shape, the sensitivity of the problem

to any additive noise, which leads to instable and invalid solutions, is still challenging (Salem

et al. 2004). However, this drawback can be rectified through an increase of the over-

determination ratio of the inverse problem (Dobróka et al. 2016).

Most literature reformulated such problems into a system of equations having better

condition by adding different kinds of constraints to control the results as much as possible.

For example, Menke (1984) suggested the generalized inverse technique through singular

value decomposition in magnetic data interpretation. Raju (2003) applied Gauss–Newton

solution and to avoid the singularity of the forward operator, a constant known as Mar-

quardt’s parameter is added to the objective function. His strategy for the choice of the

Marquardt’s parameter was based on the RMS error so that initially a large positive value

of it is given as an input to the algorithm; if the RMS error is decreased the Marquardt’s

parameter is reduced by dividing it by a constant factor (which is defined by the user).

Asfahani and Tlas (2004) took advantage of an interpretative method based on the non-

linearly constrained least-squares minimization for interpreting magnetic anomalies due to

faults and thin dike structures. Beiki and Pedersen (2012) developed a constrained

inversion technique for estimating magnetic dike parameters. They used the Levenberg–

Marquardt method together with the trust-region-reflective algorithm allowing for

inequality constraints on the model parameters. A stochastic optimization approach called

adaptive simulated annealing was proposed by Asfahani and Tlas (2007) applied to simple

geometric magnetic anomalies. They concluded that, although the major preference of

adaptive simulated annealing is to avoid becoming trapped at local minima of the objective

function, it is computationally time-consuming as well as the convergence speed of the

algorithm highly depends on the initial guess. However, running time of the simulated

annealing algorithm can be significantly reduced using very fast simulated annealing (Sen

and Stoffa 1995; Dobróka and Szabó 2011). Alimoradi et al. (2011) implemented the

artificial neural network for determining the depth of dikes. Beside inversion techniques, a

large number of semi-automatic methods have been developed for mapping the subsurface

magnetic isolated targets. The most commonly and widely used of these are power

spectrum (Bhattacharyya 1966; Spector and Grant 1970; Dondurur and Pamukçu 2003),

Werner deconvolution (Werner 1955; Kilty 1983; Tsokas and Hansen 1996; Hansen 2002),

source parameter imaging (Thurston and Smith 1997; Thurston et al. 1999, 2002; Phillips

2000), Euler deconvolution (Thompson 1982; Mushayandebvu et al. 2001; Beiki et al.

2011), statistical methods (Spector and Grant 1970; Treitel et al. 1971) and analytic signal

(Nabighian 1972; Bastani and Pedersen 2001; Salem 2005; Yuan and Yu 2014)

approaches.
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The general objective of this study is to use the Occam’s inversion (Constable et al.

1987; Degroot-Hedlin and Constable 1990) to the recovery of magnetic anomalies of

simple shape bodies caused by sheet, cylinder and fault structures. Furthermore, the per-

formance of the L-curve and weighted generalized cross validation (W-GCV) techniques

are compared and contrasted. There have been a few successful applications of the L-curve

(Haber 1997; Johnstone and Gulrajani 2000, Farquharson and Oldenburg 2004; Stefan

2008; Vatankhah et al. 2014) and W-GCV (Chung et al. 2008; Viloche Bazan and Borges

2010; Abedi et al. 2013; Gholami and Sacchi 2012; Ghanati et al. 2015) criteria to choose

an optimum value of the regularization parameter in non-linear problems in geophysics. In

this paper, due to the nonlinearity of inverse modeling of the magnetic simple-shaped

structures, a nonlinear least squares constrained minimization problem based on the

Occam’s inversion is proposed. There is a crucial problem in using Occam’s inversion,

which is the selection of the regularization parameter. We consider and characterize two

methods (i.e., L-curve and W-GCV) in determining the optimal regularization parameter in

solving the inversion problems corresponding to synthetic and real magnetic simple-shaped

structures. The paper is organized as follows. In Sect. 2, the formulation of the total

magnetic anomalies due to thin sheet, cylinder and fault is demonstrated. Next, in Sect. 3,

we describe the estimation of the initial model corresponding to simple causative magnetic

sources. Section 4 presents the theory of Occam’s inversion scheme as well as the L-curve

and W-GCV functions to determine the regularization parameter. The performance of the

described methods in synthetic and real examples is discussed in Sect. 5.

2 Theory

Simple geometrical shapes such as thin sheet, cylinder and fault models are widely used for

the interpretation of magnetic field data (Nabighian 1972; Beiki et al. 2011). Figures 1a, c

illustrate cross-sectional views of thin sheet, horizontal cylinder and fault models,

respectively.

2.1 Magnetic anomaly of a thin sheet

According to Stanley (1977) the magnetic anomalies of the total intensity which is

influenced by a linear regional anomaly of slope A with a base level B over a thin sheet at

any observed point M (Fig. 1a) along the x-axis may be written as follows:

P Xð Þ ¼ F
X � fð Þ sinuþ Z cosu

X � fð Þ2þZ2
þ AX þ B ð1Þ

where

F ¼ 2KTb 1 � cos2 I0 cos2 a
� �

where F denotes amplitude coefficient, X (m) is distance of the observation M from the

reference point R, O is origin of coordinates selected above the center of the anomaly, Z

(m) is depth to top of the anomaly, f (m) is distance of the origin O from the reference

point, K (SI unit) is magnetic susceptibility contrast, T (nT) is the earth’s magnetic field

intensity, b (m) is thickness of thin sheet, the inclination of the earth’s total magnetic field
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is I0 (�), a (�) indicates strike azimuth of the body measured clockwise from magnetic north

and index parameter u is defined as u = 2I0
* - d - 90� -450� B u B 90� where

I�0 ¼ arctan tan I0= sin að Þ

Fig. 1 Cross-section view of a two-dimensional, a thin sheet, b cylinder and c fault along with required
parameters for forward modeling
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In above expression, I�0 is the effective inclination of the magnetic polarization in the

vertical plane normal to the strike of the structure and d is dip of the sheet varying from 0�
to 180�.

2.2 Magnetic anomaly of a cylinder

The mathematical expression for the total magnetic anomaly together with the linear

regional anomaly observed at a point M on the principle profile of an arbitrarily magne-

tized cylinder is presented by Prakas Rao et al. (1986), in the following way:

P Xð Þ ¼ F
Z2 � X � fð Þ2

� �
cosuþ 2 X � fð ÞZ sinu

X � fð Þ2þZ2

� �2

0

B@

1

CAþ AX þ B ð2Þ

where

F ¼ 2pr2kT� sin I0

sin I�0
u ¼ 2I�0 � 180� I�0 ¼ arctan tan I0= sin að Þ T� ¼ T

sin I0

sin I�0

� �

where r is the radius of the cylinder and T� is the value of effective total intensity of

magnetic polarization in the vertical plane normal to the strike of the body. The rest

notations have the same meaning as that demonstrated in the previous expressions and are

shown in Fig. 1b.

2.3 Magnetic anomaly of a fault

Stanley (1977) and Atchuta Rao et al. (1980) showed that the magnetic anomaly over a thin

sheet is equivalent to the first horizontal derivative of the magnetic anomaly due to a fault.

Thus integrating Eq. 1, we get the total magnetic anomaly for the fault structures as

follows:

P Xð Þ ¼ 0:5F sinu ln X2 � 2Xfþ f2 þ Z2
� �

þ F cosu tan�1 X � f
Z

� �
þ 0:5AX2 þ BX

ð3Þ

where

F ¼ 2KTb 1 � cos2 I0 cos2 a
� �

The notations have the same meaning as that presented in the previous expressions and

are illustrated in Fig. 1c. The object of inversion is to recover the unknown model

parameters F; f;u; Z;A; and B from an observed data set.

3 Initial model estimation

In this paper, we follow the idea presented in Atchuta Rao et al. (1985) in order to estimate

the initial solution prior to entering an optimization process. The initial solution with the

thin sheet, cylinder and fault models can be obtained by rearranging the terms of Eqs. 1, 2

and 3, respectively. As a result, the initial model associated to the thin sheet anomaly by
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means of the discrete magnetic anomaly values P Xð Þ and the concerning distances X may

be rewritten as the polynomial below.

P Xð ÞX2 ¼ P Xð ÞXW1 þ P Xð ÞW2 þ X3W3 þ X2W4 þ XW5 þW6 ð4Þ

After simplification

W1 ¼ 2f

W2 ¼ � Z2 þ f2
� �

W3 ¼ A

W4 ¼ B� 2Afð Þ
W5 ¼ A Z2 þ f2

� �
þ F sinu� 2Bf

W6 ¼ B Z2 þ f2
� �

þ FZ cosu� Ff sinu

ð5Þ

For cylinder model, by rearranging Eq. 2, we get

P Xð ÞX4 ¼ P Xð ÞX3W1 þ P Xð ÞX2W2 þ P Xð ÞXW3 þ P Xð ÞW4 þ X2W5 þ XW6 þW7

þ X3W8 þ X4W9 þ X5W10 ð6Þ

After simplification

W1 ¼ 4f

W2 ¼ � 2Z2 þ 6f2
� �

W3 ¼ 4f f2 þ Z2
� �

W4 ¼ � f2 þ Z2
� �2

W5 ¼ �4Af3 þ 2BZ2 þ 6Bf2 � D� 4AfZ2

W6 ¼ AZ4 � 4Bf3 þ Af4 þ 2Dfþ 2EZ � 4BfZ2 þ 2Af2Z2

W7 ¼ 2Bf2Z2 þ Bf4 þ BZ4 � 2EfZ � Df2 þ DZ2

W8 ¼ 6Af2 � 4Bfþ 2AZ2

W9 ¼ �4Afþ B

W10 ¼ A

ð7Þ

where

D ¼ F cosu;E ¼ F sinu

Using matrix notation, Eqs. 4 and 6 can be expressed as follows:

P ¼ CW P 2 Rm; C 2 Rm�n&W 2 Rn ð8Þ

Based on the above equation system, we deal with an over-determined system so that

the coefficients W1;W2; . . .;W6 associated to thin sheet and coefficients W1;W2; . . .;W10

for cylinder are derived by Gaussian least squares method with the following normal

equation.

W ¼ CTC
� 	�1

CTP ð9Þ
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The initial solution corresponding to thin sheet and cylinder then obtained back from the

coefficients W1;W2; . . .;W6 and W1;W2; . . .;W10 through Eq. 5 and 7, respectively. In

Eq. 7, after estimating the values of E and D, amplitude coefficient and index parameter for

a cylinder model are defined as:

u ¼ arctan
E

D

� �
ð10Þ

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ E2

p
ð11Þ

It should be noted that the parameter u obtained based on Eq. 8 varies between -90� and

90�. The value of u depends on the earth’s field inclination, profile azimuth and body dip.

The proper quadrant of u is determined based on the maximum and minimum amplitudes

and the corresponding maximum and minimum distances. The reader are referred to

(Atchuta Rao et al. 1985; Raju 2003) for more details about determination of the correct

value of the parameter u. Our investigation showed that the initial solution obtained for a

thin sheet model can be applied as an initial solution for a fault model.

4 Basic of inversion theory

4.1 Occam’s inversion

Occam’s inversion is a robust algorithm for nonlinear inversion introduced by Consta-

ble et al. (1987). Mathematically, Occam’s inversion is a generalized least squares

inversion method under some specified model property constraint (Constable et al. 1987;

DeGroot-Hedlin and Constable 1990). Thus make the inversion procedure more stable, of a

narrower solution space and less model dependence (Aihua 2010). Occam’s method, in

fact, uses the discrepancy principle and searches for the solution that minimizes a cost

function as follows:

u mð Þ ¼ ;d mð Þ þ k;m mð Þ ð12Þ

where m is the model parameter vector, ;d is data misfit functional, ;m denotes stabilizing

functional and k is the regularization parameter which controls the trade-off between the

data fidelity, ;d , and regularization term, ;m, in a minimization process.The data fidelity

and regularization term are expressed as:

;d mð Þ ¼ Wd G mð Þ � d½ �22 m 2 Rn; G 2 Rm�n & d 2 Rm ð13Þ

;m mð Þ ¼ Lm2
2 ð14Þ

where G is the forward modeling operator which is nonlinear, d is the observed data vector

of length m, Wd is an m� m data weighting matrix containing the reciprocal of variance for

each datum (here we set Wd to the identity matrix) and matrix L indicates the regularization

operator which is usually an approximation to jth-order difference operator. The choice of

matrix L depends on the prior assumptions about the model characteristics (Aster et al.

2013; Gheymasi and Gholami 2013). Operator matrix L is defined as
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L ¼

�1 1 � � � � � � 0

0 �1 1 � � � 0

..

.

0

..

.

0

..

.

. . .

..

.

�1

..

.

1

0

BBB@

1

CCCA
2 Rn�1�n ð15Þ

In this research, the function G mð Þ is nonlinear, thus, in order to use the Occam’s

method, we should linearize this function.

Given a trial model mk (k indicates the iteration number), using Taylor’s series

expansion, we get

G mk þ dm
� �

� G mk
� �

þ J mk
� �

dm ð16Þ

where J mð Þ is the linear differential operator obtained by truncating higher order terms of

the Taylor’s series expansion (Roy 2008). Elements of J mð Þ forms the Jacobian matrix in

linearized inversion. Mathematically, this can be defined as

Jij m
k

� �
¼ oGi

omj

i ¼ 1; 2; 3; . . .;M j ¼ 1; 2; 3; . . .;N ð17Þ

where N is the number of model parameters and M is the number of measured data, and a

more detail of the Jacobian matrix corresponding to each of the simple geometric magnetic

anomalies can be referred in ‘‘Appendix’’.

Using Eq. 16, we get the objective function at the k þ 1ð Þth iteration as

u mkþ1
� �

¼ Wd J mk
� �

mkþ1 � d̂ mk
� �� 	�� ��2

2
þk2 L mkþ1

� ��� ��2

2
ð18Þ

where

d̂ mk
� �

¼ d � G mk
� �

þ J mk
� �

mk ð19Þ

Because J mk
� �

and d̂ mk
� �

are constant, Eq. 18 is in the form of a damped least squares

problem which has the solution as follows

mkþ1 ¼ mk þ dm ¼ J mk
� �T

WT
d WdJ mk

� �
þ k2LTL

� ��1

J mk
� �T

WT
d Wdd̂ mk

� �
ð20Þ

It should be noted that, in Occam’s inversion the parameter of k is dynamically adjusted so

that the solution will not pass the permitted misfit (Aster et al. 2013; Aihua 2010). Thus, by

using an initial model we attain a model at each iteration and use this model as a starting

model for the next until the misfit reaches to its desired value. In the next section, the

choice of the regularization parameter through the L-curve and W-GCV techniques are

presented.

4.2 Choosing the regularization parameter

4.2.1 L-curve

The L-curve criterion is a popular for choosing appropriate regularization parameters,

when the data noise is not priori known (Hansen 2001). The L-curve is log–log parametric

plot of the squared norm of the regularized solution, G mð Þ � dk k2
2, and the squared norm

of the regularized residual, Lmk k2
2, for a range of values of the regularization parameter
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(Agarwal 2003; Vogel 1996). After plotting the L-shaped curve, automatic selection of the

L-corner is a major challenge, hence, several approaches have been developed to tackle

this issue (Shahrak et al. 2013). Hansen (2001) proposed a method for picking the L-corner

based on resorting to maximum curvature concept of the L-curve. The point of maximum

curvature can be calculated by the formulation below.

K kð Þ ¼ 2
/d;m
o;m

� �
k2;do;m þ 2k;d;m þ k4;mo;m

k2 ;mð Þ2þ ;dð Þ2
� �3

2

0

B@

1

CA ð21Þ

where o denotes the first derivative with respect to k.

4.2.2 Weighted generalized cross validation (W-GCV)

Recently Chung et al. (2008) proposed weighted-GCV criterion for choosing the optimum

values of the parameter regularization. The W-GCV function, applied to the regularized

inverse problem, can be defined as

W kð Þ ¼ # G mkð Þ � dk k2
2

trace I � nG GTGþ k2LTL
� ��1

GT

� �2
ð22Þ

In non-linear inverse problems the matrix G is replaced by the Jacobian matrix, J. The

most suitable parameter regularization, k, can therefore be defined as the one that mini-

mizes the W-GCV function (Wahba. 1990). It should be noted that the difference between

the standard GCV and W-GCV is the additional weighting parameter. Choosing n ¼ 1

results in the standard GCV function. Choosing n[ 1 leads to smoother solutions, while

n\1 results in less smooth solutions (Chung et al. 2008). The optimum value of n is

experimentally determined (Chung et al. 2008; Chung and Nagy 2010) so that in our study,

the value of n is set 500. For a non-linear problem solved using an iterative approach, the

W-GCV function can be applied to the linearized problem for a range of values of k.

5 Numerical Results

5.1 Application to Synthetic data

In the following, functionality of the proposed inversion algorithm is demonstrated by

presenting the results of performing synthetic magnetic anomaly inversion. Therefore,

three synthetic examples corresponding to simple geometric models (thin sheet, cylinder

and fault) with different added Gaussian noise are discussed.

5.1.1 Thin sheet Example

A theoretical synthetic magnetic anomaly due to a thin sheet model is studied using the

following assumed parameters f ¼ 32 m; Z ¼ 8; A ¼ 0:25; B ¼ 2 and K ¼ 0:01 SI. The

other parameters in calculating the anomaly are: d = 60�; a = 0�; I0 ¼ 15; b ¼ 2 m and

T ¼ 45000 nT. These parameters are applied to Eq. 1 in order to produce the concerning

synthetic total magnetic anomaly. Then the generated anomaly is corrupted by 5 and 10%
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random errors. Figure 2 illustrates the synthetic magnetic anomaly profile contaminated

with 5% Gaussian noise over the modeled thin sheet with a length of 64 m at a station

interval of 1 m. Both generated random anomalies are thereafter subjected to interpretation

of the proposed inversion algorithm, where the estimated parameters are illustrated in

Table 1. Figure 3 depicts the L-curve based on the plot, in a log–log scale, of the regu-

larized solution norm versus the residual norm for several values of k. The corner point can

be considered as the point of maximum curvature (Hansen 2001). Figure 4 shows the

optimum value of the L-curve in which the curvature obtained using Eq. 21 attains to

maximum. In Fig. 5, we plot the W-GCV function (Eq. 22) with respect to a range of

values of the regularization parameters, k, and the identified vertex (indicated by the

asterisk) which denotes the optimal value of k. The calculated magnetic anomaly has been

computed based on the evaluated parameters associated to the total magnetic anomaly with

Fig. 2 Synthetic total magnetic anomaly corrupted by 5% random error over a thin sheet structure with dip
angle 60�, depth to the top 8 m, width 2 m and susceptibility contrast 0.01 SI (red), calculated anomaly
using the W-GCV and L-curve based methods (blue), residual anomaly (green) and regional anomaly
(black). (Color figure online)
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5% additive noise and optimum value of k as shown in Fig. 2. It should be pointed out that

the calculated magnetic anomalies using the W-GCV and L-curve based methods are

greatly close to each other.

To evaluate the quality of data fit at each iteration of the inversion process, root mean

square error (RMSE) is defined as

Fig. 3 Regularization parameter estimation using L-curve for several values of k

Fig. 4 Maximum curvature of L-curve implying the optimum value of the regularization parameter (red
asterisk). (Color figure online)
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RMSE ¼

ffiffiffiffiffi
;d

v

s

ð23Þ

where v denotes the number of observed data. We must take care to note that high RMSE

is usually discussed as poor data fit and thus the inversion is not reliable. But Anscombe

(1973) and Chatterjee and Firat (2007) proved that this supposition can be misleading in

some cases. The RMS of data misfit for the synthetic thin sheet model shows that the

inversion has converged at the sixth iteration (Fig. 6).

5.1.2 Cylinder Example

Now the efficiency of the proposed inversion method is tested on a synthetic magnetic

anomaly caused by a cylinder structure with radius equal to 10 m (with the same profile

length and station interval defined in the first example). To generate the synthetic data, the

assumed parameters in Table 2 are used in Eq. 2. Then the forward modeling responses are

contaminated with 5 and 10% Gaussian noise. Table 2 shows the results of the second

synthetic data set inversion based on the L-curve and W-GCV techniques so that the

estimated parameters are in excellent concordance with the models from which the data

were produced.

5.1.3 Fault Example

As a final example, we generate synthetic data due to a fault model by forward modeling

through Eq. 3 and the assumed parameters defined in Table 3 (with the same profile length

and station interval defined in the first example). The other parameters in calculating the

anomaly are: d = 150�; a = 0�; I0 ¼ 45;K ¼ 0:01SI and T ¼ 45000 nT. Then 5 and 10%

percent random noise is added to the forward modeling responses, respectively. Inversion

Fig. 5 Regularization parameter estimation using W-GCV for several values of k. The optimum value of
the regularization parameter k is indicated by a red asterisk. (Color figure online)
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results obtained using the proposed method along with automatic means of the regular-

ization parameters selection are shown in Table 3.

The results presented in Tables 1, 2 and 3 show a good and close agreement between

exactly known and estimated model parameters, which consequently implies the reason-

able competence of the proposed inversion algorithm and automatic techniques of the

regularization parameter estimation. Furthermore, to appraise the quality of the inversion

results the standard deviation of the estimated parameters of the magnetic anomalies

derived from 10 independent runs of data creation is listed in Tables 1, 2 and 3.

5.2 Application to field data

After successful application of the present inversion algorithm in order to recover the

magnetic anomaly parameters, in this section, the results of inverting one real data set

using the proposed method are presented. The real data comes from Morvarid iron-apatite

deposit, located in the Alborz volcano-plutonic belt, southeast Zanjan, in Northwest Iran.

Figure 7 displays the Geographic location and schematic geological map along with

mineralization of the prospecting area. In general, the exposed rocks, in the study area, are

Eocene andesite, trachyandesite and basalt (both lava and pyroclastic). Oligo-Miocene

quartz-syenite, quartz-monzonite, monzonite and monzogranite intrude the volcanic rocks.

trace and rare earth element (REE) chemical composition of the intrusive rocks exhibit that

they were emplaced in a volcanic arc setting. Mineralization is found mainly as vein,

stockwork and hydrothermal breccias. The geometry of the faults controls the shape of the

mineralization. Most of the veins are parallel. Paragenesis comprises magnetite, apatite,

pyrite, chalcopyrite and secondary ones are hematite, malachite, azurite and goethite. The

size of apatite crystals is variable of some millimeters to more than 20 cm. According to

geology and microscopic study, main alteration types consist of argillic (illite, kaolinite

Fig. 6 RMS data misfit error versus iteration count for the first synthetic example (thin sheet). The
inversion process converges in 6 iterations
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and montmorillonite), sericitic, silicification, potassic, tourmalinization, epidotization,

actinolitization and carbonate (Azizi et al. 2009; Mazhari et al. 2010). The magnetic survey

was conducted over the study area, in which the intervals between profiles and stations are

about 50 and 20 m, respectively. According to International Geomagnetic Reference Field

(IGRF) model (IAGA 1985), the geomagnetic field is 47,400 nT, inclination = 54� and

declination = 4.5�. The residual magnetic field anomaly is obtained by subtracting the

IGRF from the measured total field (Fig. 8). Whereas the field data are corrupted by noise;

hence, an upward-continuation filter is usually applied to remove anomalies due to arti-

ficial materials and to lower topographic effects on the magnetic anomaly (Telford et al.

1990; Williams 2008; Zeng et al 2007). Hence, the distance to continue up relative to the

plane of observation was chosen equal to 10 m. In order to detect the features of the

subsurface anomaly, we select a magnetic profile, oriented in the south-north direction, of

400 m along C–C0 so that the sampling interval is 10 m, and the location of the profile is

marked by black line (Fig. 8). The magnetic anomaly was interpreted earlier by Fatehi

et al. (2013) as due to a thin sheet body. A simplified geological section of the study area

and location of the drilled borehole which gives an overview of the average lithology is

presented in Fig. 9. From the borehole information, the lithology is characterized by about

a 29.5 m surface layer (Gangue), followed by a high-grade iron layer of about 8 m

thickness and a low-grade iron layer below. The field data inversion is implemented based

on the strategy used in the synthetic data examples. Figure 10 illustrates the field data

corresponding to the profile C–C0 (red circles) which is used for the inversion. To apply the

proposed inversion technique, the optimum values of the regularization parameter were

chosen equal to 5.1794 and 11.51E-02 based on the L-curve and W-GCV criteria,

respectively. Figure 11 shows the L-curve plot along with the optimum value of the

regularization parameter denoted by the red asterisk so that this amount corresponds to a

point which the L-curve plot attains to the maximum curvature (Fig. 12), i.e. balancing the

regularization term and fidelity data in the objective function of inverse problem. The

optimum value of the regularization parameter derived from the W-GCV function is

illustrated in Fig. 13. Finally, the model parameters obtained by the inversion of the field

Fig. 8 Residual magnetic anomaly at Morvarid iron-apatite deposit and location of the borehole (open
circle). Inversion is made along profile C–C0 crossing the borehole
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data using the L-curve and W-GCV based methods are presented in Table 4. The RMS of

the data misfit, as a goodness-of-fit criterion during the inversion process, for the field

example using the W-GCV and L-curve based methods is shown in Fig. 14. After 6

iterations the RMS stays nearly constant. The L-curve based inversion method has much

slightly higher data RMS misfit error (90.2 nT) than the W-GCV based inversion method

Fig. 9 Simplified geological section of the study area and location of the drilled borehole which gives an
overview of the average lithology (distances are in meter). It is characterized by about a 29.5 m surface layer
(Gangue), followed by a high-grade iron layer of about 8 m thickness and a low-grade iron layer below. An
excavated trench showing an outcrop of the anomaly

Fig. 10 Resampled data along the profile C–C0 shown in Fig. 8 (solid red circles) calculated anomaly using
the W-GCV and L-curve based methods (blue), regional anomaly (black) and residual anomaly (green).
(Color figure online)
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(89.02 nT). According to an excavated trench in nearby borehole, the depth of the mag-

netic thin sheet causing this anomaly is about 2 m, while this depth is estimated to be

2.6 m through the proposed inversion method. In general, the resulting magnetic

Fig. 11 Regularization parameter estimation using L-curve for several values of k concerning the real data
inversion

Fig. 12 Maximum curvature of L-curve implying the optimum value of the regularization parameter
indicated by a red asterisk. (Color figure online)
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parameters derived from the W-GCV and L-curve methods show that these ways to search

the optimal regularization parameter lead to similar inversion results. It is well-know that

any inverse problem is viewed as a combination of an estimation problem plus an appraisal

problem (Snieder and Trampert 1999). One possible approach for the appraisal part is the

covariance of the model parameters estimated by a linearized inversion (Menke 1984;

Tarantola 1987). This is commonly used for models that comprise a small number of

parameters. The main diagonal of the covariance matrix provides an estimate of how data

Fig. 13 Regularization parameter estimation using the W-GCV for several values of k corresponding to the
real data. The optimum value of the regularization parameter k is indicated by a red asterisk. (Color
figure online)

Table 4 Results of inverse modeling and the diagonal elements of model resolution and the estimation
error concerning Morvarid iron-apatite deposit using the W-GCV and L-curve based methods

Magnetic
parameters

L-curve based method

koptL�curve ¼ 8:2864

W-GCV based method

koptW�GCV ¼ 0:00212

Estimated
parameters

Resolutiona Estimation
errorb

Estimated
parameters

Resolution Variance

F 104,498.5 0.87 0.096 104,498.5 0.97 0.14

f 225.65 0.99 0.0015 225.65 0.998 0.0018

Z 2.6 0.99 0.0014 2.6 0.998 0.005

u� 25.0119 0.98 0.0099 25.0118 0.99 0.012

A 3.38 0.84 0.061 3.18 0.978 0.046

B 1306.91 0.79 0.072 1306.91 0.88 0.31

a Diagonal elements of model resolution matrix
b Square root of diagonal elements of model covariance matrix
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uncertainties and errors in the assumptions about the model within the inversion process

are mapped into parameter error. Based on the nonlinear inverse formulation implemented

here, the model covariance matrix can be defined as:

cov mð Þ ¼ Jy mð Þ covd½ �ðJy mð ÞÞT ð24Þ

where the superscript T denotes matrix transpose and Jy is the generalized inverse of the

Jacobian matrix so that Jy ¼ J mð ÞTWT
d WdJ mð Þ þ k2LTL

� ��1
J mð ÞT . In addition, the esti-

mation error of the ith model parameter is calculated using square root of covariance

matrix (Eq. 24):

e mið Þ ¼ sqrt cov mð Þii
� �

ð25Þ

The second tool we can use for assessment of a geophysical inverse model derived from

a linear system is based on calculating the model resolution. Using the model resolution

one can inquire how closely a particular estimate of the model parameters is to the true

solution (Yao et al. 1999; Aster et al. 2013). The model resolution matrix is defined as:

R mð Þ ¼ JyJT ð26Þ

If the model resolution matrix is an identity matrix meaning that each model parameter

is uniquely determined. If the model resolution matrix is not an identity matrix, then the

estimates of the model parameters are really weighted averages of the true model

parameters. Table 4 reports the diagonal elements of the model resolution matrix and the

estimation error corresponding to each retrieved parameter.

Fig. 14 RMS data misfit error versus iteration count for the field data example, using the L-curve based
inversion algorithm. Note that the L-curve based method has a slightly higher data RMS misfit error than the
W-GCV based inversion method
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6 Conclusions

We demonstrated the use of the Occam’s inversion technique in order to retrieve the magnetic

parameters of simple geometric structures (thin sheet, cylinder and fault) including amplitude

coefficient, location of the magnetic anomaly from the reference point, index parameter, depth

to top of the anomaly as well as slope and base level of the linear regional anomaly, using two

automatic ways of estimating the regularization parameter, the L-curve and W-GCV criteria.

Despite both criteria act well, giving suitable values of the regularization parameter in the

enormous majority of situations, both methods may experience some drawbacks; for example,

in implementing the L-curve criterion, care must be taken in the numerical calculations of the L-

curve’s curvature and in the W-GCV function, in order to obtain appropriate regularization

parameters, the optimum choice of the value n is a rather challenging task. In our experience,

the implementation of the W-GCV function took more time in computation as compared to

the L-curve criterion. The proposed method was very well validated through some simulated

magnetic models with different Gaussian noise of 5 and 10%, where a very close correlation

has been found between the exactly known and estimated parameters. The application of the

present method on one real data set from Morvarid iron-apatite mine resulted in a reasonable

agreement between the magnetic parameters of the observed anomaly and those obtained

from drilling information. Furthermore, an estimate reliability of the model parameters was

achieved by using the model resolution matrix and the model covariance matrix. This

inversion approach can be evaluated using real magnetic inverse problem solution where

much noise content in the data is expected.
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Appendix: Calculation of the Jacobian matrix of sensitivities

1. Thin sheet and fault models

oP Xð Þ
oF

¼ X � fð Þ sinuþ Z cosu

X � fð Þ2þZ2
;

oP Xð Þ
of

¼ F
X � fð Þ2�Z2

� �
sinuþ 2Z X � fð Þ cosu

X � fð Þ2þZ2
� �2

8
><

>:

9
>=

>;

oP Xð Þ
oZ

¼ F
X � fð Þ2�Z2

� �
cosu� 2Z X � Dð Þ sinu

X � fð Þ2þZ2

� �2

8
><

>:

9
>=

>;

oP Xð Þ
ou

¼ F
X � fð Þ cosu� Z sinu

X � fð Þ2þZ2

( )

oP Xð Þ
oA

¼ X

oP Xð Þ
oB

¼ 1

ð24Þ
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2. Cylinder model

oP Xð Þ
of

¼ �D 2X � 2fð Þ þ 2EZ

X � fð Þ2þZ2

� �2
�

2D Z2 � X � fð Þ2
� �

þ 4EZ X � fð Þ
� �

2f� 2Xð Þ

X � fð Þ2þZ2

� �3

0

B@

1

CA

oP Xð Þ
oZ

¼ 2DZ þ 2E X � nð Þ

X � fð Þ2þZ2

� �2
�

4Z D Z2 � X � fð Þ2
� �

þ 2EZ X � fð Þ
� �

X � fð Þ2þZ2

� �3

0
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CA

oP Xð Þ
oD

¼ Z2 � X � nð Þ2

X � fð Þ2þZ2
� �2

oP Xð Þ
oE

¼ 2Z X � fð Þ

X � fð Þ2þZ2

� �2

oP Xð Þ
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¼ X
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