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Abstract The case of a singular dispersion matrix within the Gauss–Helmert Model has

been considered before, most recently even allowing the rank of BQ to be smaller than the

rank of B. In this contribution the emphasis is shifted towards an illuminating example, the

2D Helmert transformation.

Keywords Gauss–Helmert Model � Singular dispersion matrix � Singular variance–

covariance matrix � 2D Helmert transformation

1 Introduction

In a recent contribution, the Gauss–Helmert Model with singular dispersion matrix has been

analyzed once more, but with the emphasis on necessary and sufficient conditions for the

existence of a unique solution for both the residual vector as well as the estimated parameter

vector. Unlike earlier work by Bjerhammar (1973), Wolf (1979) or Perelmuter (1981), and

others, the contribution by Neitzel and Schaffrin (2016) no longer assumed that the rank

deficiency was small enough to guarantee a unique solution, which is certainly the case if rk

BQ = rk B. If rk BQ\ rk B, however, the rank condition rk½AjBQ� ¼ rk B ¼ r þ q must be

fulfilled in order for a unique solution of type BLUMBE (Best Linear Uniformly Minimum

Bias Estimate) to exist according to Neitzel and Schaffrin (2016, Theorem 2.2).

In the following, after a short summary of the key results when rk BQ\ rk B, the 2D

Helmert transformation is being chosen as an application with some relevance, thereby

illuminating the hidden relationships that ought to be fulfilled if meaningful results are
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expected. For earlier discussions of this application, see, e.g., Teunissen (1988), Bleich and

Illner (1989), Koch et al. (2000), Fang (2014), or Chang (2015) among many others. For an

alternative approach, see Schaffrin (2003), as well as Schaffrin et al. (2014).

2 The Gauss–Helmert Model with singular dispersion matrix: A short
summary when rk BQ < rk B

In the following, key results from Neitzel and Schaffrin (2016) are summarized. Let us

assume the (linearized) Gauss–Helmert Model

w ¼ Anþ Be; e� 0; r2
0Q

� �
; ð1:1aÞ

with

w as (r ? q) 9 1 vector of so-called ‘‘mis-closures’’,

n as m 9 1 vector of (unknown) parameters,

e as n 9 1 vector of random observation errors,

A as (r ? q) 9 m coefficient matrix with q := rk A,

B as (r ? q) 9 n condition matrix with r ? q := rk B

(not restricting the generality);

r := rk B – rk A is called ‘‘redundancy’’.

Furthermore, the expectation of e is zero, E{e} = 0, and its dispersion matrix is given

by D{e} = r2
0Q; here, r2

0 is the (unknown) variance component, and Q denotes the n 9 n

symmetric and positive-semidefinite cofactor matrix with rk Q := t\ n. Since Q is sin-

gular, the theorem of Aitken (1935) is no longer applicable, according to which a weighted

least-squares approach with the inverse cofactor matrix as weight matrix would provide the

Best Linear Uniformly Unbiased Estimate (BLUUE) of the vector An; for more details, see

Grafarend and Schaffrin (1993, Chap. 3(a)).

To ensure the consistency of model (1.1a), it is further assumed that

w 2 Rð½AjBQ�Þ with probability 1; ð1:1bÞ

here, R denotes the ‘‘range space’’ (or ‘‘column space’’) of a matrix.

For a linear estimate of type

n̂ ¼ Lwþ j ð1:2Þ

with unknown m 9 (r ? q ? 1) matrix [L, j], the bias vector is defined as

b :¼ E n̂� n
n o

¼ LA� Imð Þnþ j; ð1:3Þ

which involves the unknown, but arbitrary, vector n. If n is known to belong to the range

space of a certain (symmetric nonnegative-definite) matrix S,

n 2 RðSÞ with rkðASÞ ¼ rk A ¼ q; ð1:4Þ

it makes sense to minimize the expected bias vector (1.3) by setting

j :¼ 0 ð1:5aÞ

and replacing, in the MSE-matrix

480 Acta Geod Geophys (2017) 52:479–496

123



MSEfn̂g ¼ r2
0 LBQBTLT
� �

þ Im � LAð Þnr�2
0 nT Im � LAð ÞT

h i
; ð1:5bÞ

the unknown rank-1 matrix (nr�2
0 nT) by the known matrix S itself, thereby minimizing

r2
0 � tr Im � LAð ÞS Im � LAð ÞT¼ min

LT
ð1:5cÞ

uniformly over RðSÞ; obviously, S := Spd could be positive-definite in which case it holds:

R Spd
� �

¼ Rm: ð1:5dÞ

(Obviously, the case where j = 0 deserves investigation, too.)

It is noted that the condition (1.4) does not permit the rank-deficiency of S to exceed

(m - q) since, otherwise, the rank of AS would fall below q automatically. Thus, if n can

be restricted to an even lower-dimensional subspace, other techniques ought to be applied.

Now, the variational principle (1.5c) readily leads to the (necessary) equation system

ASAT
� �

� LT ¼ AS; ð1:6Þ

which turns out to be sufficient as well, thanks to the nonnegative-definite matrix S. All the

estimates of type n̂ ¼ Lw where LT fulfills (1.6) constitute the class of Linear S-Uniformly

Minimum Biased Estimators of n (i.e., S-LUMBE). In this class, the ‘‘Best’’ estimate (or S-

BLUMBE) is formed by minimizing the S-modified Mean Squared Error of n̂ on average,

namely by solving the variational problem

tr MSES n̂BLUMBE

n o
:¼ r2

0 � tr LBQBTLT
� �

þ r2
0 � tr Im � LAð ÞS Im � LAð ÞT¼ min

LT
ð1:7Þ

or, equivalently, by making the Lagrange target function

U LT; K
� �

:¼ tr LBQBTLT
� �

þ 2tr KT ASATLT � AS
� �

ð1:8Þ

stationary. Thus, the resulting necessary conditions read:

BQBT � LT þ ASAT � K ¼: 0 ð1:9aÞ

ASAT � LT � AS ¼: 0 ð1:9bÞ

while the sufficient condition holds true since the matrix BQBT � Im is positive-definite;

here, � denotes the ‘‘Kronecker-Zehfuss product’’ of matrices (Grafarend and Schaffrin

1993, p. 409). For more details, see, e.g., Schaffrin (1989).

In the following, Q might be an arbitrary symmetric and positive-semidefinite (thus

singular) matrix. The key problem is then concerned with the unique invertibility of the

system (1.9a–b) in which case unique estimates for n result. This does, however, not

necessarily imply a unique residual vector unless an interpretation as weighted LEast-

Squares Solution (LESS) is possible. The key results of Neitzel and Schaffrin (2016) are

now summarized in:

Corollary 1.1:

(i) In the Gauss–Helmert Model (1.1) under condition (1.4) the system (1.9a–b) has a

unique solution for L if and only if

rk½AjBQ� ¼ r þ q ¼ rk B: ð1:10Þ
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In this case, the S-BLUMBE of n exists uniquely and is represented by

n̂BLUMBE ¼ SAT ASAT ASAT þ BQBT
� ��1

ASAT
h i�

ASAT ASAT þ BQBT
� ��1

w

ð1:11Þ

for any g-inverse ASAT ASAT þ BQBTð Þ�1
ASAT

h i�
with the dispersion matrix

D n̂BLUMBE

n o
¼ r2

0 � SAT ASAT ASAT þ BQBT
� ��1

ASAT
h i�

� ASAT
� �þn o

AS;

ð1:12Þ

and the minimized bias vector

b ¼ � Im � SAT ASAT
� �þ

A
h i

� n ð1:13Þ

such that the S-modified Mean Squared Error matrix of n̂BLUMBE results in

MSES n̂BLUMBE

n o
¼ D n̂BLUMBE

n o
þ r2

0 S� SAT ASAT
� �þ

AS
h i

: ð1:14Þ

For the rank of the above matrices, it holds:

rk D n̂BLUMBE

n o
¼ rk Aþ rkðBQÞ � rk½AjBQ� ¼ rkðBQÞ � r; ð1:15Þ

rk MSEs n̂BLUMBE

n o
¼ rk D n̂BLUMBE

n o
þ rk Im � SAT ASAT

� �þ
A

h i
S

¼ rkðBQÞ þ rk S� ðr þ qÞ:
ð1:16Þ

(ii) In the special case that q = rk A = m, the system (1.9a–b) turns into the system

BQBT A

AT 0

� �
LT

K

� �
¼ 0

Im

� �
; ð1:17Þ

which has a unique solution if and only if the rank condition (1.10) is fulfilled. In

this case, the BLUUE of n exists uniquely and is represented by

n̂BLUUE ¼ AT ASAT þ BQBT
� ��1

A
h i�1

AT ASAT þ BQBT
� ��1

w ð1:18Þ

for any arbitrary symmetric and nonnegative-definite matrix S with rk(AS) = rk A

as in (1.4). Its dispersion matrix is given by

D n̂BLUUE
n o

¼ r2
0 � AT ASAT þ BQBT

� ��1
A

h i�1

�S

� �
¼ MSE n̂BLUUE

n o
; ð1:19Þ

which coincides with the Mean Squared Error matrix of n̂BLUUE and has the rank

rk D n̂BLUMBE

n o
¼ rkðBQÞ � r ¼ rk MSE n̂BLUMBE

n o
: ð1:20Þ

It is obvious that Corollary 1.1, in particular, establishes the rank inequality
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qþ r� rkðBQÞ� rk½AjBQ� � rk A ¼ r ð1:21Þ

as necessary condition for the unique existence of the matrix L for n̂BLUMBE ¼ Lw; as well

as for n̂BLUUE ¼ Lw; in the general case of a singular dispersion matrix Q. Note that the

uniqueness in Corollary 1.1 has only been established ‘‘with probability 1’’, thanks to the

consistency condition (1.1b).

Now, in order to recover the residual vector ~e or, at least, the transformed residual

vector B~e ¼ w� An̂; along with the quadratic form X, an equivalent interpretation of the

above BLUMBE/BLUUE approach by means of weighted least-squares adjustment is

suggested. This proved possible along the lines of Theorem 3.20 in Grafarend and

Schaffrin (1993) in the case of a positive-definite choice for the matrix

S :¼ Spd ð1:22Þ

such that S�1
pd exists. Again, the results of Neitzel and Schaffrin (2016) are summarized in:

Corollary 1.2:

(i) In the Gauss–Helmert Model (1.1) under condition (1.10), any BT(BQBT)-B-

weighted LESS of n fulfills the normal equation system

BQBT A

AT 0

� �
m̂

n̂LESS

� �
¼ w

0

� �
ð1:23Þ

independent of the g-inverse (BQBT)-. If the residual vector ~e is assumed to belong
to the range space of Q, just like e itself belongs to RðQÞ with probability 1, then

the auxiliary (r ? q) 9 1 vector m̂ is obtained uniquely, and fulfills the formula

m̂ ¼ ASpdA
T þ BQBT

� ��1
B~e ð1:24Þ

with

0 ¼ ATm̂ ¼ AT ASpdA
T þ BQBT

� ��1
w� An̂LESS

� 	
: ð1:25Þ

The corresponding residual vector ~e can now also be recovered uniquely for any

n̂LESS under the further restriction ~e 2 RðQBTÞ as

~e ¼ QBT � m̂ ¼ QBT ASpdA
T þ BQBT

� ��1
w� An̂LESS

� 	
; ð1:26Þ

and its weighted quadratic form as

X ¼ ~eTBT BQBT
� ��

B~e ¼ ~eTBTm̂ ¼

¼ w� An̂
� 	T

m̂ ¼ wTm̂� n̂T ATm̂
� �

¼ wTm̂ ¼ r̂2
0ðrk B� rk AÞ;

ð1:27Þ

thereby leading to a suitable estimate of r2
0:

(ii) In the special case that q = rk A = m, the BLUUE of n can be interpreted

equivalently as BT(BQBT)-B-weighted LESS as long as ~e 2 RðQÞ is assumed. If,

moreover, ~e 2 RðQBTÞ can be assumed, then the residual vector is represented by

(1.26) with

n̂LESS ¼ AT ASpdA
T þ BQBT

� ��1
A

h i�1

AT ASpdA
T þ BQBT

� ��1
w; ð1:28Þ
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while its weighted quadratic form X is obtained from (1.27) along with a suit-

able variance component estimate r̂2
0:

In addition, the respective dispersion matrices can be taken uniquely from

Dfm̂g �
� �Dfn̂LESSg

� �
¼ r2

0

BQBT A

AT 0

� ��1

ð1:29Þ

with covariance Cfm̂; n̂LESSg ¼ 0 and

Df~eg ¼ QBT � Dfm̂g � BQ; ð1:30Þ

where r20 may be replaced by its estimate r̂20 in accordance with (1.27).

Neitzel and Schaffrin (2016) already pointed out that it is not so easy to characterize all the

other solutions for ~e that solve the identity B~e ¼ w� An̂; but may not belong to the range

space RðQBTÞ 	 RðQÞ: The answer to this question had to be left to a future publication.

After having summarized the extended analysis for the Gauss–Helmert Model with

positive-semidefinite dispersion matrix Q, the various situations will be illustrated by

applying the above results to the case of a 2D Helmert transformation.

3 Application to the 2D Helmert transformation

In the following, the over-determined 2D similarity transformation will be considered,

commonly known as symmetric Helmert transformation. The functional model can be

based on four parameters, namely:

n0, n1 for the translation of the origin of the frame,

a for the rotation angle, and

x for the scale factor.

The transformation is then described approximately by

Xi

Yi

� �

 cos a � sin a

sin a cos a

� �
x 0

0 x

� �
xi
yi

� �
þ n0

n1

� �
; ð2:1Þ

where

(xi, yi) are the observed coordinates in the (‘‘old’’) source system, and

(Xi, Yi) are the observed coordinates in the (‘‘new’’) target system;

i denotes the point number (i = 1,…,n/2).

After executing the multiplications, (2.1) turns into

Xi 
 ðx cos aÞxi � ðx sin aÞyi þ n0; ð2:2aÞ

Yi 
 ðx sin aÞxi þ ðx cos aÞyi þ n1; ð2:2bÞ

and, with the substitutions

n2 :¼ x cos a; n3 :¼ x sin a; ð2:3Þ

into the two approximate equations

Xi 
 xin2 � yin3 þ n0; ð2:4aÞ
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Yi 
 xin3 þ yin2 þ n1: ð2:4bÞ

Taking the random errors of the observed quantities into account, the Eqs. (2.4a–b)

more explicitly read:

Xi � eXi
¼ xi � exið Þn2 � yi � eyi

� �
n3 þ n0; ð2:5aÞ

Yi � eYi ¼ xi � exið Þn3 þ yi � eyi
� �

n2 þ n1; ð2:5bÞ

thereby forming a Structured Errors-In-Variables (EIV) Model which could be either

handled along the lines of Felus and Schaffrin (2005), resp. Schaffrin et al. (2012), directly,

or by giving it the form of (nonlinear) condition equations with unknowns (i.e., Gauss–

Helmert Model):

b l
2n�1

; n
4�1

� �
:¼

� � �
Xi

Yi
� � �

2

664

3

775�

� � �
eXi

eYi
� � �

2

664

3

775� 1 0 xi � exi �ðyi � eyiÞ
0 1 yi � eyi xi � exi

2

664

3

775

n0

n1

n2

n3

2

664

3

775 ¼ 0; ð2:6Þ

where b : R2ðnþ2Þ ! Rn represents a nonlinear function with

y :¼ � � � ; Xi; Yi; � � � ; xi; yi; � � �½ �T as 2n 9 1 vector of observed coordinates,

e :¼ � � � ; eXi
; eYi ; � � � ; exi ; eyi ; � � �½ �T as 2n 9 1 random error vector,

l: = y - e as 2n 9 1 vector of actual (‘‘true’’) coordinates, and

n :¼ n0 n1 n2 n3½ �T as the 4 9 1 (unknown) parameter vector.

Schaffrin (2015) has shown how the system (2.5) can be equivalently described by

‘‘direct observations with nonlinear constraints’’. On the other hand, it could as well be

handled by an extension of the approach by Schaffrin and Wieser (2011) for structured

condition equations, possibly after some sort of differencing to eliminate n0 and n1, or by

the more traditional approach of iterative linearization in accordance with the provisions

by Pope (1972); for more details, see also Neitzel (2010) and Schaffrin and Snow (2010),

and particularly Lenzmann and Lenzmann (2004) who very clearly specify under which

approximations rather inaccurate results may be produced.

Such insufficient approximations can, unfortunately, be found in a host of textbooks,

including those by Mikhail and Gracie (1981), Wolf and Ghilani (1997), Benning (2007),

and Niemeier (2008), which led to a situation where the provisions for their iterative

algorithms may ensure convergence, but not necessarily to the nonlinear least-squares

solution.

Here, an approach is chosen that resembles the procedure first proposed by Deming

(1931, 1934) for a different example. Thus, for the linearization of (2.6), approximate

values n0 :¼ n0
0 n0

1 n0
2 n0

3


 �T
as well as l0 :¼ y� 0

�
are needed where 0

�
indicates the

‘‘random zero vector’’ that strips y of its random nature without changing its values. This

so-called ‘‘Helmert’s knack’’ (or ‘‘Helmertscher Kunstgriff’’ in German) makes sure that

the error propagation will turn out correctly. Consequently, the linearized form reads:

bðl; nÞ ¼ b l0; n0
� �

� A0 n� n0
� �

þ B0 � l� l0ð Þ � � � � ¼
¼ w0 � A0 n� n0

� �
� B0e� � � � ¼ 0;

ð2:7aÞ

with the n 9 1 vector of (initial) ‘‘misclosures’’
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w0 :¼ bðl0; n0Þ � B0 � 0
�

 bðy; n0Þ ð2:7bÞ

and the combined coefficient matrices of size n 9 2(n ? 2)

�A0jB0½ � :¼ obðl; nÞ
o½nT jlT �

����
n¼n0;l¼l0

ð2:7cÞ

in the first iteration step and, after introducing the new approximate values n1 :¼

n0 þ ð dn� n0Þ � 0
�

as well as l1 :¼ y� ~e1 � 0
�
;

bðl; nÞ ¼ b l1; n1
� �

� A1 n� n1
� �

þ B1 l� l1
� �

� � � � ¼
¼ w1 � A1 n� n1

� �
� B1e� � � � ¼ 0;

ð2:8aÞ

with the updated vector of ‘‘misclosures’’

w1 :¼ b l1; n1
� �

þ B1 0
�
þ ~e1

� �

 b y; n1

� �
; ð2:8bÞ

and the new combined coefficient matrices

�A1jB1½ � :¼ obðl; nÞ
o½nT jlT �

����
n¼n1;l¼l1

ð2:8cÞ

It was Pope (1972) who had drawn attention to the fact that the update (2.8b) is

oftentimes computed incorrectly, thereby potentially changing the convergence point

during the iteration. However, the slight modification by Lenzmann and Lenzmann (2004)

who replaced (2.8a) with

bðl; nÞ ¼ b l1; n1
� �

� A1 n� n1
� �

þ B1 l� l1
� �

� � � � ¼
¼ w1 � B1~e

1

 �

� A1 n� n1
� �

� B1 e� ~e1
� �

� � � � ¼ 0
ð2:9Þ

is obviously equivalent and, therefore, represents another valid approach (although the

error propagation becomes more complex). For the present case of the planar similarity

transformation, the matrices involved are readily obtained in the first iteration as:

B0 ¼ B10
jB20

½ � ð2:10aÞ

with

B10
¼ In ðn� n identity matrixÞ; ð2:10bÞ

B20
¼

�n0
2 n0

3 0 0 � � � 0 0

�n0
3 �n0

2 0 0 � � � 0 0

0 0 �n0
2 n0

3 � � � 0 0

0 0 �n0
3 �n0

2 � � � 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

.

0 0 0 0 � � � �n0
2 n0

3

0 0 0 0 0 �n0
3 �n0

2

2

6666666664

3

7777777775

; ð2:10cÞ

and
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�A0 ¼

� � � � � � � � � � � �
�1 0 �xi yi

0 �1 �yi �xi
� � � � � � � � � � � �

2

664

3

775; ð2:11Þ

while the initial ‘‘vector of misclosures’’ is taken from (2.7b) as:

w0 :¼ b y; n0
� �

¼

� � �
Xi � xin

0
2 þ yin

0
3 � n0

0

Yi � yin
0
2 � xin

0
3 � n0

1

� � �

2

664

3

775: ð2:12Þ

Hence, with a suitably defined cofactor matrix Q of size 2n 9 2n for both the old and

the new coordinates, that fulfills condition (1.10), the normal equations

B0QB
T
0 A0

AT
0 0

� �
� v̂1

dn� n0

� �
¼ w0

0

� �
ð2:13Þ

ought to be solved from which the new approximation vector

n1 :¼ n0 þ dn� n0
� 	

� 0
�

ð2:14aÞ

results as well as the (first) residual vector

~e1 :¼ QBT
0 � v̂1: ð2:14bÞ

In the next iteration the matrices are updated as:

B1 ¼ InjB21
½ � ð2:15aÞ

with

B21
¼ In=2 �

�n1
2 n1

3

�n1
3 �n1

2

� �
ð2:15bÞ

and

�A1 ¼

� � � � � � � � � � � �
�1 0 �ðxi � ~ex1

i
Þ ðyi � ~e1

yi
Þ

0 �1 �ðyi � ~e1
yi
Þ �ðxi � ~e1

xi
Þ

� � � � � � � � � � � �

2

664

3

775; ð2:16Þ

and the ‘‘vector of misclosures’’ as:

w1 ¼ b l1; n1
� �

þ B1 0
�
þ~e1

� �
¼

� � �
Xi � xin

1
2 þ yin

1
3 � n1

0

Yi � yin
1
2 � xin

1
3 � n1

1

� � �

2

664

3

775 ¼ b y; n1
� �

; ð2:17Þ

which may be modified further in accordance with (2.9), eventually resulting in the normal

equations
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B1QB
T
1 A1

AT
1 0

� �
� v̂2

dn� n1

� �
¼ w1 � B1~e

1

0

� �
; ð2:18Þ

and the new approximation vector

n2 :¼ n1 þ dn� n1
� 	

� 0
�
; ð2:19aÞ

respectively the (second) residual vector

~e2 :¼ ~e1 þ QBT
1 � v̂2 
 QBT

1 � v̂2 þ B1QB
T
1

� ��
B1~e

1

 �

: ð2:19bÞ

After convergence, indicated by

dn� nk


\d ð2:20Þ

for a chosen value of d[ 0, the final estimate

n̂ ¼ nk þ dn� nk
� 	

ð2:21aÞ

and the final residual vector

~e ¼ ~ek þ QBT
k � v̂kþ1 ¼ QBT

k v̂kþ1 þ BkQB
T
k

� ��
Bk~e

k

 �

ð2:21bÞ

will be uncorrelated, with their dispersion matrices stemming from the relationships

D v̂kþ1 þ ðBkQB
T
k Þ

�
Bk~e

k
� �

�
� �Dfn̂g

� �
¼ r2

0

BkQB
T
k Ak

AT
k 0

� ��1

ð2:22aÞ

and

Df~eg ¼ QBT
k � D v̂kþ1 þ BkQB

T
k

� ��
Bk~e

k
� �

� BkQ; ð2:22bÞ

while the sum of weighted squared residuals is obtained from

X ¼ wT
k v̂kþ1 þ BkQB

T
k

� ��
Bk~e

k

 �

; ð2:23aÞ

resulting in the unique variance component estimate

r̂2
0 ¼ X=r ¼ X=ðrk B� rk AÞ: ð2:23bÞ

4 Numerical example

In the following, a real-life example is presented that, thanks to its small size, allows to see

the mechanics of the new approach rather clearly. For the trilateration network depicted in

Fig. 1 the approximate values for the coordinates (X0, Y0) in the (‘‘new’’) target system and

(x0, y0) in the (‘‘old’’) source system are listed in Table 1.

The horizontal distances sij are listed in Table 2. These distances are introduced as

uncorrelated observations into a free net adjustment with a standard deviation of ±0.5 cm

for the distances in the target system and ±1 cm for the distances in the source system.
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From a 2D free network adjustment of the trilateration network, the following coor-

dinate estimates in the (‘‘new’’) target system and in the (‘‘old’’) source system have been

obtained; they are listed in Table 3 respectively in Table 4.

5

X

1

4

Y

2

3

 

Fig. 1 Trilateration network

Table 1 Approximate coordi-
nates in the target and the source
system

Point No. Y0
i [m] X0

i [m] y0
i [m] x0

i [m]

1 100.000 400.000 137.612 453.800

2 300.000 500.000 350.795 521.282

3 400.000 400.000 433.921 406.869

4 400.000 100.000 386.991 110.559

5 100.000 100.000 90.681 157.490

Table 2 Horizontal distances in
the target and the source system

Target system Source system

s1,2 (m) 223.598 223.607

s1,3 (m) 299.990 300.008

s1,4 (m) 424.255 424.281

s1,5 (m) 300.011 299.998

s2,3 (m) 141.422 141.421

s2,4 (m) 412.309 412.321

s2,5 (m) 447.220 447.235

s3,4 (m) 299.988 300.009

s3,5 (m) 424.255 424.279

s4,5 (m) 300.007 299.996
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The corresponding cofactor matrix QXY has a rank deficiency of d1 = 3 and reads

QXY ¼

6:79448757180059 �1:24637379742034 �2:06749265251556 �0:87905006133625 �1:75237198700040

�1:24637379742034 6:09498927220848 1:09012834165340 �2:49924282264974 0:93808137930146

�2:06749265251556 1:09012834165340 6:42931803954814 0:55451061543664 �1:97051230040660

�0:87905006133625 �2:49924282264975 0:55451061543664 5:91276039572392 0:36212974333293

�1:75237198700040 0:93808137930146 �1:97051230040660 0:36212974333293 6:22939970049753

�1:16357954126860 �1:20479964504946 �0:91755859035999 �3:44014208938923 1:44337480762820

�0:45154752590708 �0:10681237404477 �1:40374219486592 1:21258998841998 �2:05129094829069

0:97970173045535 �0:69930007052657 �0:95534188201873 �0:11791264515374 �2:01871586069103

�2:52307540637755 �0:67502354948976 �0:98757089176006 �1:25018028585330 �0:45522446479986

2:30930166956983 �1:69164673398272 0:22826151528869 0:14453716146878 �0:72487006957155

2

6666666666666666664

�1:16357954126859 �0:45154752590708 0:97970173045535 �2:52307540637754 2:30930166956982

�1:20479964504946 �0:10681237404477 �0:69930007052657 �0:67502354948975 �1:69164673398272

�0:91755859035999 �1:40374219486592 �0:95534188201874 �0:98757089176006 0:22826151528869

�3:44014208938923 1:21258998841997 �0:11791264515374 �1:25018028585329 0:14453716146879

1:44337480762821 �2:05129094829068 �2:01871586069104 �0:45522446479986 �0:72487006957155

7:20646286085327 0:58294810376109 �1:84740759328547 0:05481522023931 �0:71411353312912

0:58294810376109 5:07997251772178 �0:04815330743166 �1:17339184865810 �1:64057241070464

�1:84740759328547 �0:04815330743165 6:36060256564705 2:04250931968606 �3:69598225668127

0:05481522023930 �1:17339184865810 2:04250931968607 5:13926261159557 �0:17212070458233

�0:71411353312913 �1:64057241070463 �3:69598225668126 �0:17212070458233 5:95720536232432

3

7777777777777777775

� 10�6 m2
� �

:

The corresponding cofactor matrix Qxy shows a rank deficiency of d2 = 3 and is given

by

Table 4 Coordinate estimates in
the source system

Point No. yi [m] xi [m]

1 137.6099 453.8001

2 350.7972 521.2865

3 433.9247 406.8728

4 386.9880 110.5545

5 90.6802 157.4861

Table 3 Coordinate estimates in
the target system

Point No. Yi [m] Xi [m]

1 100.0072 400.0040

2 299.9994 500.0019

3 399.9933 399.9925

4 400.0022 100.0059

5 99.9978 99.9956
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Qxy ¼

36:37028145702680 �5:47084753104938 �10:71785609522750 �4:15196839574972 �8:65298041790832

�5:47084753104937 29:08218656854860 5:84822137965519 �12:47141347170350 4:36257321048772

�10:71785609522750 5:84822137965518 31:71485018459150 3:08331019238332 �9:75441280523014

�4:15196839574972 �12:47141347170350 3:08331019238333 30:95803801957830 3:06122736829926

�8:65298041790830 4:36257321048773 �9:75441280523014 3:06122736829926 29:49000356229180

�6:30957538097353 �6:36323276123894 �3:43751427095770 �17:72069907008300 6:20362896765228

�3:00872247368822 �0:45688827110577 �7:17013351915318 5:11629815381483 �9:26471495157075

5:06154166169345 �2:83561006289195 �5:89199924913936 �0:55682802371483 �10:23264832811930

�13:99072247020280 �4:28305878798777 �4:07244776498071 �7:10886731874769 �1:81789538758257

10:87084964607920 �7:41193027271422 0:39798194805854 �0:20909745407698 �3:39478121831995

2

6666666666666666664

�6:30957538097352 �3:00872247368821 5:06154166169344 �13:99072247020280 10:87084964607920

�6:36323276123892 �0:45688827110575 �2:83561006289193 �4:28305878798774 �7:41193027271419

�3:43751427095771 �7:17013351915317 �5:89199924913935 �4:07244776498073 0:39798194805855

�17:72069907008300 5:11629815381484 �0:55682802371480 �7:10886731874765 �0:20909745407695

6:20362896765225 �9:26471495157075 �10:23264832811930 �1:81789538758258 �3:39478121831996

38:73483275416460 2:97933036065107 �10:53144746790980 0:56413032362793 �4:11945345493275

2:97933036065104 26:03149620685810 �1:23726448444412 �6:58792526244601 �6:40147575891599

�10:53144746790980 �1:23726448444413 32:06314207358760 12:30037040000930 �18:13925651907110

0:56413032362793 �6:58792526244599 12:30037040000930 26:46899088521210 �1:47257461690178

�4:11945345493281 �6:40147575891599 �18:13925651907110 �1:47257461690180 29:87973770079510

3

7777777777777777775

� 10�6 m2
� �

:

It is emphasized that all five points participated in the datum definition for both free

adjustments. But, since a different scale factor may have been assumed for the two network

adjustments, here a 2D similarity transformation will be investigated, not just a rigid one.

In the following, it is shown how the full singular cofactor matrices can be utilized to

estimate the parameters of this 2D similarity transformation via weighted least-squares

(Corollary 1.2), without resorting to the common practice to only use their diagonal ele-

ments and thereby circumventing the singularity issue, but at the cost of neglecting the

existing covariances.

To start the process of iteratively linearizing a nonlinear Gauss–Helmert Model, suit-

able approximate values for the parameters of the 2D similarity transformation must be

computed. This can be done by following the classical procedure of determining the

parameters of a traditional ‘‘Helmert transformation’’ where Qxy is replaced by 0 and QXY

by In. The resulting initial approximate values are n0
0 = -69.73, n0

1 = 35.08, n0
2 = 0.988,

n0
3 = -0.156.

Obviously, the initial choice for the random error vector e is the zero vector, consistent

with (2.11) when compared with (2.16). This allows to compute the matrices B0 and A0

from (2.10a–c) and (2.11), as well as the ‘‘vector of misclosures’’ w0 from (2.12). By

defining the 20 9 20 cofactor matrix

Q :¼ QXY 0

0 Qxy

� �
; d ¼ d1 þ d2 ¼ 6; ð3:1Þ

with zero covariances between estimated target and source coordinates, the normal

equations (2.13) can be set up and solved uniquely whenever the criterion (1.10) is fulfilled

which is necessary and sufficient. To establish non-uniqueness, the criterion (1.21) has to

be violated which may be somewhat easier to show.

Disregarding some rather exceptional cases, which can easily be avoided in practice, the

rank of the matrix A0 should be equal to the number of parameters:

q :¼ rk A0 ¼ 4 ¼ m: ð3:2Þ

Moreover, the rank of the matrix B0 turns out to be:
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rk B0 ¼ 2 � ðn=2Þ ¼ n ¼ 10: ð3:3Þ

A numerical check of the matrices (B0Q) and [A0|B0Q] reveals their ranks to be:

r :¼ rk A0jB0Q½ � � rk A0 ¼ 10 � 4 ¼ 6� 8 ¼ rk B0Qð Þ� 10: ð3:4Þ

Clearly, the criterion (1.21) is not violated, which however, does not yet establish

uniqueness of n̂LESS: For this, the criterion (1.10) ought to be applied which indeed results

in a positive decision, due to:

r :¼ rk A0jB0Q½ � ¼ 10 ¼ rk B0: ð3:5Þ

After few iterations, the unique solution n̂LESS of the (originally nonlinear) Gauss–

Helmert Model is obtained as listed in Table 5.

Finally, the residuals after convergence are listed in Table 6.

The respective dispersion matrices for both the estimated parameters and the residuals

are given in the Appendix. They represent the ‘‘gain of efficiency’’ of the newly estimated

coordinates over the original coordinate estimates.

5 Conclusions and outlook

In an earlier contribution by Neitzel and Schaffrin (2016) the treatment of the Gauss–

Helmert Model with a singular covariance matrix had been generalized beyond the case

where rk(BQ) = rk B. In particular, the criterion (1.10) was found to be necessary and

Table 5 Weighted least-squares solution on the basis of an iteratively linearized Gauss–Helmert Model
with a singular cofactor matrix

Parameters Its estimate rmse

x-shift n0 n̂0 = -69.726354 m ±4.090 mm

y-shift n1 n̂1 = 35.078215 m ±2.488 mm

n2 = x � cosa n̂2 = 0.98765502 ±1.093 � 10-5

n3 = x � sina n̂3 = -0.15642921 ±1.730 � 10-6

Scale factor x x̂ = 0.99996626 ±1.106 � 10-5

Rotation angle a â = -10.00000154 gon ±1.446 � 10-5 mgon

Variance component r2
0 r̂2

0 = 1.027339

Table 6 Residuals on the basis
of an iteratively linearized
Gauss–Helmert Model with a
singular cofactor matrix

Point No. Target system Source system

~eYi [mm] ~eXi
[mm] ~eyi [mm] ~exi [mm]

1 0.900 1.020 -5.323 -4.403

2 -0.163 0.345 0.545 -1.862

3 -0.992 -1.581 6.232 7.139

4 1.201 1.040 -6.849 -4.262

5 -0.945 -0.825 5.395 3.387
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sufficient for a unique solution of type n̂LESS ¼ n̂BLUMBE to exist. To check the non-

uniqueness, the inequality (1.21) could be used alternatively, which, however, would not

guarantee uniqueness if satisfied since it is only a necessary but not sufficient condition.

Here, through an illuminating example, the theory as summarized in Chap. 1 was tested

in the context of a 2D similarity transformation with singular cofactor matrices for both the

(‘‘new’’) target and the (‘‘old’’) source coordinate estimates. This is certainly a rather

relevant extension as, more often than not, the estimated coordinates may indeed be taken

from a free network adjustment. Consequently, the resulting covariance matrices will be

singular, a fact that has frequently be circumvented in practice by only considering the

variances on the diagonal while setting all the covariances to zero. This unwarranted

procedure is no longer required; even the case where one set of the estimated coordinate

data are replaced by fixed coordinates can simply be handled by setting either QXY = 0 or

Qxy = 0.

While this paper treats the 2D similarity transformation in the framework of a nonlinear

Gauss–Helmert Model by iterative linearization, it will be of major interest as well how it

can be handled within an EIV-Model (‘‘Errors-In-Variables’’) by setting up nonlinear

normal equations and solving them iteratively, all with singular covariance matrices for

both vector and matrix observations. Two other papers on this subject have recently been

published; see Schaffrin et al. (2014) and Jazaeri et al. (2014).
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Appendix

Estimated dispersion matrix of the estimated parameters n̂0; n̂1; n̂2; n̂3; respectively for x̂
and â; from inverting (2.3), including their covariances, for the numerical example:

D̂

n̂0

n̂1

n̂2

n̂3

2

6664

3

7775

8
>>><

>>>:

9
>>>=

>>>;

¼

1:673E�05 1:018E�05 �4:469E�08 7:078E�09

1:018E�05 6:191E�06 �2:718E�08 4:306E�09

�4:469E�08 �2:718E�08 1:194E�10 �1:891E�11

7:078E�09 4:306E�09 �1:891E�11 2:994E�12

2

6664

3

7775
;

D̂

n̂0

n̂1

x̂

â

2

6664

3

7775

8
>>><

>>>:

9
>>>=

>>>;

¼

1:673E�05 1:018E�05 �4:524E�08 3:653E�15

1:018E�05 6:191E�06 �2:752E�08 2:196E�15

�4:524E�08 �2:752E�08 1:224E�10 �9:849E�18

3:653E�15 2:196E�15 �9:849E�18 5:159E�20

2

6664

3

7775
:

ðA:1Þ

Estimated dispersion matrices for the residuals and their cross-covariance matrix:
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D̂ ~exy
� �

¼

1:115E�06 �1:577E�07 �4:157E�07 �1:618E�07 �3:294E�07

�1:577E�07 9:454E�07 2:903E�07 �4:013E�07 2:116E�07

�4:157E�07 2:903E � 07 9:542E�07 6:724E�08 �3:993E�07

�1:618E�07 �4:013E�07 6:724E�08 9:942E�07 4:795E�08

�3:294E�07 2:116E�07 �3:993E�07 4:795E�08 1:020E�06

�2:431E�07 �1:294E�07 �2:479E�07 �6:001E�07 1:976E�07

�1:007E�08 �1:241E�07 �1:048E�07 2:315E�07 �2:805E�07

1:192E�07 �4:400E�08 �2:542E�07 �3:847E�08 �3:876E�07

�3:602E�07 �2:201E�07 �3:442E�08 �1:848E�07 �1:069E�08

4:434E�07 �3:707E�07 1:446E�07 4:564E�08 �6:951E�08

2

6666666666666666664

�2:431E�07 �1:007E�08 1:192E�07 �3:602E�07 4:434E�07

�1:294E�07 �1:241E � 07 �4:400E�08 �2:201E � 07 �3:707E�07

�2:479E � 07 �1:048E�07 �2:542E�07 �3:442E�08 1:446E�07

�6:001E�07 2:315E�07 �3:847E�08 �1:848E�07 4:564E�08

1:976E�07 �2:805E�07 �3:876E�07 �1:069E�08 �6:951E�08

1:153E�06 1:913E�07 �3:772E�07 1:020E�07 �4:651E�08

1:913E�07 7:262E�07 8:462E�08 �3:309E�07 �3:833E�07

�3:772E�07 8:462E�08 1:010E�06 4:380E�07 �5:506E�07

1:020E � 07 �3:309E�07 4:380E�07 7:362E�07 �1:351E�07

�4:651E�08 �3:833E�07 �5:506E�07 �1:351E�07 9:222E�07

3

7777777777777777775

;

ðA:2Þ

D̂ ~exy
� �

¼

2:991E�05 �3:190E � 06 �1:122E�05 �4:312E�06 �8:240E�06

�3:190E�06 2:323E�05 7:346E�06 �9:843E�06 4:679E�06

�1:122E�05 7:346E�06 2:410E�05 1:490E�06 �9:628E�06

�4:312E�06 �9:843E�06 1:490E�06 2:614E�05 2:163E�06

�8:240E�06 4:679E�06 �9:628E�06 2:163E�06 2:481E�05

�7:043E�06 �3:590E�06 �5:465E�06 �1:614E�05 4:314E�06

�2:618E�07 �3:061E�06 �2:569E�06 5:718E�06 �6:511E�06

3:213E�06 �1:133E�06 �6:805E�06 �1:125E�06 �9:485E�06

�1:018E�05 �5:774E�06 �6:766E�07 �5:058E�06 �4:276E�07

1:133E�05 �8:664E�06 3:435E�06 9:654E�07 �1:671E�06

2

6666666666666666664

�7:043E�06 �2:618E�07 3:213E�06 �1:018E�05 1:133E�05

�3:590E�06 �3:061E�06 �1:133E�06 �5:774E�06 �8:664E�06

�5:465E�06 �2:569E�06 �6:805E�06 �6:766E�07 3:435E�06

�1:614E�05 5:718E�06 �1:125E�06 �5:058E�06 9:654E�07

�:314E�06 �6:511E�06 �9:485E�06 �4:276E�07 �1:671E�06

3:122E�05 5:442E�06 �1:045E�05 2:752E�06 �1:047E�06

5:442E�06 1:823E�05 9:436E�07 �8:888E�06 �9:043E�06

�1:045E�05 9:436E�07 2:654E�05 1:213E�05 �1:384E�05

2:752E�06 �8:888E�06 1:213E�05 2:018E�05 �4:054E�06

�1:047E�06 �9:043E�06 �1:384E�05 �4:054E�06 2:258E�05

3

7777777777777777775

;

ðA:3Þ
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Cov ~eXY ; ~exy
� �

¼

�5:719E�06 �9:516E�08 1:956E�06 1:142E�06 1:459E�06

1:542E�06 �4:617E�06 �1:775E�06 1:782E�06 �1:164E�06

2:316E�06 �1:126E�06 �4:733E�06 �1:095E�06 1:806E�06

4:929E�07 2:141E�06 4:525E�07 �5:039E�06 �7:172E�07

1:820E�06 �7:995E�07 2:041E�06 7:664E�08 �4:958E�06

1:116E�06 8:423E�07 7:664E�07 3:206E�06 �7:501E�08

�4:803E�08 6:302E�07 7:093E�07 �1:078E�06 1:559E�06

�6:329E�07 1:260E�07 1:245E�06 3:949E�07 1:644E�06

1:632E�06 1:390E�06 2:581E�08 9:542E�07 1:347E�07

�2:518E�06 1:507E�06 �6:890E�07 �3:437E�07 3:117E�07

2

6666666666666666664

1:481E�06 1:452E � 07 �5:900E � 07 2:159E�06 �1:937E�06

4:812E�07 5:873E�07 3:193E � 07 8:094E � 07 2:034E�06

1:560E�06 3:235E�07 1:358E�06 2:875E�07 �6:979E�07

2:971E�06 �1:191E�06 9:159E�09 9:632E�07 �8:203E�08

�1:801E�06 1:099E�06 2:167E�06 �1:657E�09 3:572E�07

�5:941E�06 �1:259E�06 1:740E�06 �5:486E�07 1:521E�07

�7:366E�07 �3:575E�06 �1:001E�06 1:355E�06 2:185E�06

2:200E�06 3:781E�07 �5:134E�06 �2:634E�06 2:413E�06

�5:032E�07 2:007E�06 �1:934E�06 �3:800E�06 9:283E�08

2:885E�07 1:485E�06 3:066E�06 1:410E�06 �4:518E�06

3

7777777777777777775

:
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