Batrachochytrium dendrobatidis in Hungary: an overview of recent and historical occurrence

JUDIT VÖRÖS, DÁVID HERCZEG, ATTILA FÜLÖP, TÜNDE JÚLIA GÁL, ÁDÁM DÁN,

KRISZTIÁN HARMOS, JAIME BOSCH

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record.

Please cite this article as:

Vörös, J., Herczeg, D., Fülöp, A., Gál, T.J., Dán, Á., Harmos, K., Bosch, J. (2018): *Batrachochytrium dendrobatidis* in Hungary: an overview of recent and historical occurrence. Acta Herpetol. **13**. doi: 10.13128/Acta Herpetol-22611.

1	Batrachochytrium dendrobatidis in Hungary: an overview of recent and historical
2	occurrence

- 3
- 4 JUDIT VÖRÖS^{1,2}, DÁVID HERCZEG^{3,4*}, ATTILA FÜLÖP³, TÜNDE JÚLIA GÁL¹, ÁDÁM DÁN⁵,
- 5 KRISZTIÁN HARMOS⁶, JAIME BOSCH^{7,8}
- 6 ¹ Department of Zoology, Hungarian Natural History Museum, 1088 Budapest, Hungary
- ² Laboratory for Molecular Taxonomy, Hungarian Natural History Museum, 1083 Budapest,
- 8 *Hungary*
- 9 ³ MTA–DE Behavioural Ecology Research Group, Department of Evolutionary Zoology and
- 10 *Human Biology, University of Debrecen, 4032 Debrecen, Hungary*
- ⁴ Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian
- 12 Academy of Sciences Fish Parasitology, 1143 Budapest, Hungary
- ⁵ Molecular Biology Department, Veterinary Diagnostic Directorate, National Food Chain
- 14 Safety Office, 1143 Budapest, Hungary
- ⁶ Bükk National Park Directorate, 3304 Eger, Hungary
- ⁷ Museo Nacional de Ciencias Naturales, CSIC, 28006 Madrid, Spain
- ⁸ Centro de Investigación, Seguimiento y Evaluación, Parque Nacional de la Sierra de
- 18 Guadarrama, 28740 Rascafría, Spain
- 19 *Corresponding author. E-mail <u>herczegdavid88@gmail.com</u>
- 20 1, 2, 3, 4 These authors contributed equally to this work
- 21
- 22 Submitted on: 2018, 5th February; Revised on: 2018, 5th May; Accepted on: 2018, 28th August
- 23 Editor: Marcello Mezzasalma

24	Abstract. Batrachochytrium dendrobatidis (Bd) is a fungal pathogen which causes the
25	emerging infectious disease chytridiomycosis. Bd presents low host specificity and threatens
26	amphibians worldwide, thus systematic inventory is the key in order to detect and mitigate
27	the effects of the disease. Extensive data collection was conducted in Hungary in 2009-2015
28	from 14 different areas. Combined data – recent field sampling on 16 taxa and the
29	examination of archived Bombina spp. specimens - from 1360 individuals were analysed
30	with qPCR. Two sentinel taxa, Bombina variegata and the members of the Pelophylax
31	esculentus complex were marked to monitor the occurrence of Bd in two core areas (Bakony
32	Mts and Hortobágy National Park, respectively) of sampling. Climatic variables were also
33	examined in core areas to test their effect on prevalence and infection intensity. Among the
34	sixteen sampled amphibian taxa seven tested positive for Bd and the overall prevalence in
35	Hungary was 7.46%. Among the ethanol-fixed Bombina spp. individuals Bd was not
36	detected. In the first core area (Bakony Mts) the overall prevalence in <i>B. variegata</i> was
37	10.32% and juvenile individuals showed significantly higher prevalence than adults. On the
38	other hand there was a significant negative relationship between infection prevalence and
39	monthly mean air temperature. Finally, in the other core area (Hortobágy National Park) the
40	overall prevalence in <i>P. esculentus</i> complex was 13.00%, and no differences were found in
41	prevalence or infection intensity between sexes, sampling years or age classes.
42	

- 43 Key words. chytridiomycosis, emerging infectious diseases, *Pelophylax esculentus* complex,
- 44 *Bombina variegata*, inventory, Central-Europe
- 45
- 46 Running title: Occurrence of *Bd* in Hungary

INTRODUCTION

Over the past decades several epidemics - caused by emerging infectious diseases -48 resulted in the large-scale decline of numerous animal species globally (Dobson and 49 Fourfopoulos, 2001). One such emerging disease is chytridiomycosis in amphibians caused by 50 the fungal pathogen Batrachochytrium dendrobatidis [hereafter, Bd (Longcore et al., 1999)]. 51 Bd is a highly generalist, waterborne pathogen which is primarily transmitted through direct 52 contact with aquatic zoospores or infected individuals (Fisher et al., 2009). Bd is responsible 53 for population declines, mass mortalities and even extinction of species, and presents one of 54 the greatest threats to amphibians worldwide (Berger et al., 1998; Skerratt et al., 2007; Fisher 55 et al., 2009). 56 Bd is widespread on all continents where amphibians occur (Olson et al., 2013), but 57 the heaviest disease outbreaks were observed in the American Neotropics, Australia, North-58 America and Western Europe (Fisher et al., 2009). In Europe, the first detection of Bd related 59 mass mortalities dates back to 1997 when the first recorded population decline as a result of 60 mass die-off after the emergence of chytridiomycosis was observed in Central Spain, in the 61

Guadarrama Mountain National Park, and targeted the Common midwife toad, *Alytes obstetricans* (Bosch et al., 2001). Though, as a result of the increased attention in the subsequent years, studies performed in the same region revealed that other species are highly susceptible to the disease as well (e.g. *Salamandra salamandra, Bufo spinosus*; Bosch and Martínez-Solano, 2006; Bosch et al., 2007). Moreover, the evidenced strong population declines of *A. obstetricans, A. muletensis* and *A. dickhilleni* in the Iberian Peninsula (Bosch et al., 2001; Walker et al., 2010; Bosch et al., 2013; Doddington et al., 2013; Rosa et al., 2013),

and the high susceptibility of these species made the midwife toads the "flagship" species of European chytridiomycosis threat.

70

Central Europe harbours several amphibian species that might be susceptible to 71 chytridiomycosis, such as S. salamandra, B. bufo, Bombina bombina or Bombina variegata 72 (Baláž et al., 2014a,b). In the recent years Bd infection was detected in various areas of the 73 Czech Republic, as a result of a systematic inventory (Civiš et al., 2012). Furthermore, the 74 presence of the fungus was recently reported in low prevalence from Luxembourg (Wood et 75 al., 2009), Poland (Sura et al., 2010; Kolenda et al., 2017), Germany (Ohst et al., 2013), 76 Austria (Sztatecsny and Glaser, 2011), Slovakia (Baláž et al., 2014b) and Italy (Federici et 77 al., 2008; Tessa et al., 2013). New data indicates that the fungus is present also in the 78 Balkans, e.g. in Serbia (Mali et al., 2017), Albania, Montenegro and Macedonia (Vojar et al., 79 80 2017). Though, interestingly, no negative effects or Bd-linked population declines have been detected from Central-Eastern-Europe so far (Vörös et al., 2014). 81

Some aspects of chytridiomycosis epizootics show environmental correlates (Olson et 82 al., 2013). Bd presents a reasonably wide environmental tolerance under a variety of 83 temperature and precipitation regimes (Ron, 2005), but previous studies postulated that 84 climate (Berger et al., 2004; Bosch et al., 2007; Murray et al., 2009; Blaustein et al., 2010; 85 Rohr et al., 2010; Rödder et al., 2010) and elevation (Lips et al., 2008; Walker et al., 2010; 86 Becker and Zamudio, 2011) can significantly influence Bd outbreaks. Furthermore, large 87 intra- and interspecific variations exist, especially in the prevalence (Gründler et al., 2012; 88 Böll et al., 2014; Spitzen-Van Der Sluijs et al., 2014), but also in the intensity of infection 89 (Van Sluys and Hero, 2009; Baláž et al., 2014a; Spitzen-Van Der Sluijs et al., 2014). In 90 addition, behavioural differences influence the susceptibility to Bd which is further affected 91

by the intraspecific variability related to sex and life stage (Blaustein et al., 2005, Garcia et al., 2006, Williams and Groves, 2014).

- -

Hungary is situated in the Carpathian Basin, a region with high amphibian diversity due to different climatic and zoogeographical influences (Vörös et al., 2014). Previous findings about the occurrence of *Bd* in Hungary are restricted to a few areas and species where the presence was initially detected (Gál et al., 2012; Baláž et al., 2014b, Vörös et al., 2014, Drexler et al., 2017). Therefore, no large-scale distribution data on *Bd* presence is available to date from the country.

Our study displays multiple goals. First, we present a general overview on the 100 occurrence of Bd in Hungary summarising data collected between the years 2009-2015. The 101 data set includes the general occurrence of Bd on sixteen amphibian taxa with a special focus 102 on the yellow-bellied toad Bombina variegata and water frogs belonging to the Pelophylax 103 esculentus complex. We selected these two target taxa because these species may present 104 high levels of infection intensity in Europe and so they may also act as sentinel taxa (Baláž et 105 al., 2014b); in addition, they can play a role in the spread and the persistence of the disease 106 (Baláž et al., 2014a). 107

Second, by studying *B. variegata* populations in Hungary we assessed whether distinct phylogenetic lineages – Alpine (West of the Danube) and Carpathian, occurring in the North Hungarian Range East of the Danube (Vörös et al., 2006) – express differences in prevalence and infection intensity. Moreover, to explore the historical distribution of *Bd* in Hungary field surveys were complemented with available archived samples of *Bombina* spp. from museum collections which comprise a dataset covering a 70 years' time frame (1936-2005) prior to our field sampling.

115	Third, in order to further monitor Bd infection levels of amphibians in Hungary, we
116	selected one population of two of the most susceptible taxa in Central-Eastern Europe, B.
117	variegata and the P. esculentus complex (Baláž et al., 2014b), and extensively sampled these
118	populations for three consecutive years in two core areas. Finally, we aimed to use climatic
119	data (monthly mean precipitation and monthly mean air temperature) in these core areas to
120	test if there is any correlation between the previously mentioned climatic variables and the
121	occurrence of <i>Bd</i> .
122	
123	MATERIALS AND METHODS
124	Data collection
125	Altogether 1233 specimens belonging to sixteen amphibian taxa were studied in the
126	field between 2009-2015. Sampling was conducted in fourteen different regions in 45 distinct
127	sampling points throughout Hungary, covering a great variety of wetland habitats (i.e.
128	irrigation canals, streams, marshlands, ponds, fishponds, water reservoirs and temporary
129	wetland habitats) and elevations ranging between 84 and 734 m a.s.l. (Fig. 1, Table 1).
130	Bombina variegata was surveyed in five regions from Transdanubia (Region 1, 2, 3, 5 and 8
131	in Table 1 and Fig. 1) representing the Alpine (Western) genetic lineage, and in three regions
132	from the North Hungarian Mountains (Region 10, 12 and 13 in Table 1 and Fig. 1)
133	representing the Carpathian (Eastern) genetic lineage, covering the distribution of the species
134	in Hungary (Vörös et al., 2006). Identification of the two Bombina species and their hybrids
135	was performed considering morphological characters plus genetic information provided by
136	previous researches in Hungary (Vörös et al., 2006, 2007). Members of the Pelophylax
137	esculentus complex were sampled in eight regions (Region 1, 3, 4, 7, 8, 9, 10 and 14 in Table

138 1 and Fig. 1). Age classes were characterized as tadpoles, juveniles and adults based on the 139 external features of each species examined in the field. In those cases when we couldn't 140 distinguish between age and sex of an individual we discarded the sample for further 141 analysis. Additionally, 127 ethanol-fixed specimens of *Bombina* spp., deposited in the 142 Hungarian Natural History Museum (Budapest, Hungary) and Savaria Museum 143 (Szombathely, Hungary), collected between 1936 and 2005 from regions matching the 144 current distribution of the species were swabbed (Appendix 1).

145

146 Systematic sampling of sentinel taxa in two core areas

Core areas were selected based on the prevalence found previously or in the first year 147 of sampling (Gál et al., 2012; Baláž et al., 2014b). In Bakony Mts, B. variegata was 148 systematically sampled in 2010-2012. Data of 2010 were published previously (Gál et al., 149 2012), thus our analyses includes a comparison of data from 2010 and new data from 2011 150 and 2012. Surveys were completed between March and September in 2010, April and 151 September in 2011, May and July in 2012. The assigned locality, Iharkút (see asterisk on Fig. 152 1), is an old open bauxite mine, where human activities are common due to being a famous 153 paleontological research site (Ősi et al., 2012). In Iharkút we were able to locate only two 154 water bodies: a small lake and a nearby stream. Because of the close proximity (ca. 50 155 meters) and the presumed connection of the two habitats, all the toads belonged to the same 156 population. 157

Members of the *P. esculentus* complex were screened for *Bd* in the Hortobágy National Park (HNP; see asterisk on Fig. 1). HNP is the largest continuous alkaline steppe in Europe covering 80.000 hectares. This natural reserve is abundant in wetland habitats like alkaline marshes, fishponds, wet grasslands and wet meadows (Ecsedi, 2004). *Pelophylax*species were sampled in three sites at HNP – Nádudvar-Kösély canal near the city Nádudvar,
a fish pond system located eastwards to Hortobágy and a marshland system at EgyekPusztakócs – between April and October during three consecutive years (2012-2014).

- 165
- 166

Taxonomic identification of Pelophylax esculentus complex

Water frog taxon identification was determined using the technique described by Hauswaldt et al. (2012), and is based on allele-size polymorphism in intron-1 of the serum albumin gene (SAI–1; Plötner et al., 2009), with a slight modification in PCR protocol (Herczeg et al., 2017). To verify SAI–1 fragments we sequenced representative alleles on a Hitachi 3130 Genetic Analyzer (Applied Biosystems, UK). Consensus sequences were compiled using BioEdit version 7.0.9.0 (Hall, 1999) and aligned manually. If genetic samples were not available we referred to the individuals as *Pelophylax* sp.

174

175 *Sampling protocol*

We collected Bd samples following Hyatt et al. (2007) by either swabbing the skin of 176 the individuals or clipping one of the toes. According to Hyatt et al. (2007) skin swabbing 177 and toe clipping show similar performances in detectability of Bd. Skin swabbing was 178 performed using two types of sterile swabs (SWA90006; Biolab, Budapest, Hungary, 5 mm 179 diameter; and MW100-100; Medical Wire and Equipment, Wiltshire, England, 3 mm 180 diameter). We collected each sample in a standardized way with three strokes on each side of 181 the abdominal midline, the inner thighs, hands and feet. Toe clipping was performed using 182 sterilized scissors and toe clips were stored in 70% EtOH in a freezer at -80 °C. Skin swabs 183

184 were stored dry in individually labelled vials and transferred to a freezer for longer storage 185 throughout the field season. For both sampling procedures we used a new pair of disposable 186 gloves per individual, and after each sampling event we sterilized all the used sampling 187 equipment in order to avoid cross-contamination. Mouthpart (oral disc) of larvae were 188 swabbed following Hyatt et al. (2007). Ethanol-fixed specimens of *Bombina* spp. were 189 screened by skin swabbing following methodology presented above.

190

191 *Genetic analysis of Bd samples*

DNA was extracted using PrepMan Ultra Sample Preparation Reagent (Thermo 192 Fisher Scientific, Waltham, Massachussetts, USA) following the recommendations of Boyle 193 et al. (2004). Because of size differences between swabs (i.e. 3 mm vs. 5 mm; see above), 194 only the top 3 mm of the larger swabs was used in all cases. Extracted DNA was analysed 195 using real-time quantitative polymerase chain reaction (qPCR) following the amplification 196 methodology of Boyle et al. (2004) and Hyatt et al. (2007) targeting the partial ITS-1 -5.8S 197 rRNA regions. Samples were run in triplicate and an internal positive control was included 198 (TaqMan exogenous internal positive control reagents; 4308323; Thermo Fisher Scientific, 199 Waltham, Massachussetts, USA) to detect potential inhibitors present in the DNA 200 extractions. We considered evidence of infection if genomic equivalents (GE) were ≥ 0.1 and 201 we considered a sample positive if all three wells returned a positive reaction. When a sample 202 203 returned an equivocal result, it was re-run. If it again returned an equivocal result, it was considered negative (N = 17, 1.3% of total samples). The templates were run on a Rotor-204 Gene 6000 real-time rotary analyser (Corbett Life Science, Sydney, Australia). GE were 205 estimated from standard curves based on positive controls of 100, 10, 1, 0.1 developed from 206

the *Bd* isolate IA 2011, from Acherito Lake, Spain. Finally, GE values of the three positive
replicates were averaged.

In order to identify lineages of Bd found on amphibians in Hungary, 2 µl of DNA 209 extract from three individuals (one juvenile P. ridibundus plus one juvenile B. variegata from 210 Bakony Mts, and one adult B. variegata from Őrség) were selected as template for 211 amplification of a partial fragment of ITS1 rRNA. Nested PCR approach described by 212 Gaertner et al. (2009) was performed. The amplified fragments were sequenced on an 213 Applied Biosystems/Hitachi 3130 Genetic Analyser (Thermo Fisher Scientific, Waltham, 214 Massachussets, USA). Sequences were aligned manually using BioEdit version 7.0.9.0. 215 (Hall, 1999) and were blasted against available sequences from GenBank for identification. 216

217

218 *Climatic data*

Climatic data were provided by the Hungarian Meteorological Service (OMSZ). For 219 the core areas of B. variegata and P. esculentus complex climatic data were obtained from 220 the closest meteorological station of each sampling site: Pápa city (47.29, 17.37), 135.5 m 221 a.s.l, 21.5 km distance from Iharkút (Bakony Mts), and Kunmadaras village (47.46, 20.89), 222 88.8 m a.s.l. 12.5 km distance from Egyek-Pusztakócs (HNP), which is the closest sampling 223 point to the station. We used monthly mean precipitation and monthly mean air temperature 224 data for the period 2010-2014 to test if any relationship between climate and prevalence or 225 infection intensity exists. 226

227

228 Statistical analyses

229 Statistical analyses were performed in R (version 3.4.4; R Core Team, 2018). Prevalence was expressed as a discrete binomial variable (uninfected vs. infected). Infection 230 intensity was expressed through GE value. First, we calculated infection prevalence (%) of 231 different amphibian species together with their 95% Clopper-Pearson confidence intervals 232 (95% CI) as follows. Prevalence values were obtained by dividing the cumulative number of 233 positive samples with the total number of samples per species and multiplied with 100 to 234 obtain percentile values, while 95% CI values were calculated using the R package 'PropCIs' 235 (function 'exactci'; Scherer, 2018). In Bd infected species we calculated the mean, median, 236 SD and range of GE values as well. The same statistics were run to compare the two 237 phylogenetic lineages of B. variegata, and in the two sentinel taxa (i.e. B. variegata and P. 238 esculentus complex) we also tested for differences between study years, sexes and age 239 classes. Prevalence values were compared with Chi-square tests, while infection intensities 240 were compared using Mood's median test, as implemented in the R package 241 'RVAideMemoire' (function 'mood medtest'; Hervé, 2018). 242

Finally, in the two sentinel taxa we tested the relationship between climatic variables 243 and prevalence and infection intensity. We note here that the data set of the P. esculentus 244 complex was restrained only on *P. ridibundus*, as the *Bd* infection of *P. esculentus* was very 245 low (i.e. two infected individuals in total) and the sample size of P. lessonae was also not 246 representative (N = 1). The relationship between the climatic factors and infection prevalence 247 was tested using generalized linear mixed models (GLMMs) with binomial error distribution 248 term and the relationship between the climatic factors and infection intensity was analysed 249 using linear mixed models with Gaussian distribution (LMMs). Prevalence and infection 250 intensity, respectively, were entered as dependent variables in the models, while the focal 251

252 climatic variable (i.e. air temperature or precipitation) was set as continuous predictor. In all models sampling year was entered as a random effect to control for the interannual variations 253 in infection prevalence or intensity. Additionally, in the case of *P. ridibundus*, collection site 254 ID within the HNP was entered also as a random factor to account for the variations in 255 prevalence and intensity between collection sites. To assure the adequate distribution of 256 model residuals, for the LMMs GE values were log(x+1)-transformed. Prior entering into the 257 models, log(x+1)-transformed GE values and the continuous predictor were scaled to mean = 258 0 and SD = 1 to improve model convergence (see also Schielzeth 2010). Model fits were 259 260 checked visually by plot diagnosis. In all cases for the statistical comparison of infection intensities only infected species/individuals were used. Mixed models were constructed using 261 the 'lme4' package for R (Bates et al., 2015), and P-values for the linear mixed models were 262 obtained using the function 'Anova' (type III) from the R package 'car' (Fox and Weisberg, 263 2011). We used a significance level of $P \le 0.05$ throughout. 264

- 265
- 266

RESULTS

267 Bd occurrence in Hungary

In Hungary, nine regions were infected with *Bd* and the overall prevalence was 7.46% (95% CI: 6.05–9.07), indicating a low presence of the fungus in the country (Table 1). Among the sixteen sampled amphibian taxa seven were found infected with *Bd*, including one unidentified *Pelophylax* individual (Table 2). Details on prevalence and summary statistics of GE values are presented in Table 2; while the geographic distribution of the sampling sites with the site-specific prevalence is shown in Fig. 1.

In *B. variegata* the overall prevalence was 12.69% (95% CI: 9.91–15.92). Details on prevalence and summary statistics of GE values for the different regions are presented in Table 3. We found no significant difference between the two lineages of *B. variegata* in infection prevalence ($N_{Alpine} = 422$, $N_{Carpathian} = 82$; $\chi^2 = 0.155$, df = 1, P = 0.693) and intensity ($N_{Alpine} = 52$, $N_{Carpathian} = 12$, P = 0.750). *Bd* was not detected among the ethanol-fixed *B. variegata* specimens.

In Bakony Mts between 2010 and 2012 we sampled 310 individuals of B. variegata, 282 among which 32 individuals were found to be infected with Bd. Here the overall prevalence 283 was 10.32 % (95% CI: 7.16–14.25), and the mean, median, SD and range of GE values were 284 15.92, 5.09, 38.60 and 0.159-210.3, respectively. There was no significant difference in 285 infection prevalence (N₂₀₁₀ = 80, N₂₀₁₁ = 144, N₂₀₁₂ = 86; χ^2 = 4.980, df = 2, P = 0.082) nor in 286 intensity between the three study years ($N_{2010} = 13$, $N_{2011} = 14$, $N_{2012} = 5$, P = 0.201), and we 287 found no significant difference in prevalence ($N_{males} = 113$, $N_{females} = 90$; $\chi^2 = 0.241$, df = 1, P 288 = 0.623) and infection intensity between sexes ($N_{males} = 8$, $N_{females} = 2$, P = 0.545). However, 289 there was a significant difference in prevalence between the two age classes ($N_{juveniles} = 105$, 290 $N_{adults} = 204$; $\chi^2 = 11.563$, df = 1, P < 0.001), with juveniles being more infected than adults 291 (proportion of individuals infected: 19.04% versus 5.88%). Differences in infection intensity 292 between the two age classes were not significant ($N_{juveniles} = 20$, $N_{adults} = 12$, P = 0.273). There 293 was significant negative relationship between infection prevalence and monthly mean air 294 temperature ($\chi^2 = 4.482$ df = 1, P = 0.034), and a marginally significant positive relationship 295 between prevalence and monthly mean precipitation ($\chi^2 = 3.611$, df = 1, P = 0.057). There 296 was no significant relationship between infection intensity and monthly mean air temperature 297

($\chi^2 = 0.180$, df = 1, P = 0.671). However, there was a significant positive relationship between infection intensity and monthly mean precipitation ($\chi^2 = 4.227$, df = 1, P = 0.039); though, this significant relationship disappeared after removing one outlier GE value from the data set ($\chi^2 = 1.510$, df = 1, P = 0.219).

All the three sequences (i.e. sequences obtained from juvenile P. ridibundus and B. 302 variegata from Bakony Mts, and one adult B. variegata from Örség) were identified as ITS1 303 rRNA of Bd, belonging to the globally dispersed Bd-GPL lineage (GenBank accession 304 numbers: MH745069-71). One sequence showed 100% identity with Bd from Cape Cod 305 (GenBank accession number: FQ176489.1, FQ176492.1), South Africa (JQ582903-4, 15, 306 37), and Italy (FJ010547). The second sequence was 100% identical with a sequence of Bd 307 from Equador (FJ232009.1), and the third sequence represented a unique haplotype. Genetic 308 distance (p-distance) among sequences ranged between 0.005–0.035. 309

310

311 Bd occurrence in Pelophylax ridibundus

In Hortobágy between 2012 and 2014 we sampled 100 individuals of P. ridibundus, 312 among which thirteen were found to be infected with Bd. Here the overall prevalence was 313 13.00% (7.10–21.20), and the mean, median, SD and range of GE values were 11.52, 1.59, 314 19.63 and 0.635-57.905, respectively. We found a significant difference in infection 315 prevalence between years (N₂₀₁₂ = 35, N₂₀₁₃ = 48, N₂₀₁₄ = 17; χ^2 = 27.750, df = 2, P < 0.001); 316 all the infected individuals being captured in 2012 (prevalence: 37.14%), while no infected 317 individuals being found in 2013-2014. We found no significant difference in prevalence 318 $(N_{males} = 42, N_{females} = 30; \chi^2 = 0.002, df = 1, P = 0.958)$ and infection intensity between sexes 319 $(N_{males} = 7, N_{females} = 6, P = 1.000)$. Age classes did not differ in infection prevalence $(N_{juveniles} = 1.000)$. 320

321 = 9, $N_{adults} = 72$; $\chi^2 = 0.827$, df = 1, P = 0.363). Infection intensities of the different age 322 classes cannot be compared because no infected juveniles were captured. We found no 323 significant relationship between infection prevalence and monthly mean air temperature ($\chi^2 =$ 324 2.375, df = 1, P = 0.123), and between prevalence and monthly mean precipitation ($\chi^2 =$ 325 0.010, df = 1, P = 0.920). Since infection prevalence was relatively low in the *P. esculentus* 326 complex and infected individuals were captured in the same month and year, the relationship 327 between climatic variables and infection intensity could not be tested in this taxa.

- 328
- 329

DISCUSSION

Low Batrachochytrium dendrobatidis prevalence was experienced throughout the 330 country (Table 1, Table 2), with similar or slightly lower values than in neighbouring 331 countries e.g. Czech Republic (Baláž et al., 2014a; 19% average at country level), Austria 332 (Sztatecsny and Glaser, 2011; 5.9-45% at country level) or Poland (Kolenda et al., 2017; 18% 333 average at country level). Overall, seven taxa carried the infection: Bombina bombina, 334 Bombina variegata, Bufo viridis, Pelophylax ridibundus, Pelophylax esculentus, Pelophylax 335 sp. and Ichthyosaura alpestris. In accordance with previous studies in Central Europe (Ohst 336 et al., 2013; Baláž et al., 2014a,b; Kolenda et al., 2017), B. variegata and the members of the 337 *P. esculentus* complex showed the highest prevalence and *Bd* infection intensity in Hungary. 338 On the other hand, there was no difference in prevalence and infection intensity was detected 339 340 between the two ancient phylogenetic lineages of B. variegata. Bd was present in eight of the fourteen studied regions. The highest prevalence was experienced in the Alpine foothills at 341 Örség (Region 1), Soproni Mts (Region 2), and in the Zemplén Mts (Region 13). These three 342 regions represent the margins of the Alps and Carpathians (respectively) hosting populations 343

with continuous distribution towards the higher regions. On the other hand, the remnant mountain regions, where prevalence was much lower (Regions 3, 10 and 11), are geographically isolated from other higher elevations. In contrast, amphibians from five regions (Regions 5, 6, 8, 9 and 12) seemed to not carry *Bd*. This either indicates that *Bd* has not reached these parts of the country yet, or more comprehensive sampling would be needed to locate its presence.

The Carpathian Basin combines the characteristics of the neighbouring regions. 350 Despite the relatively small extent of Hungary, the climatic elements have distinct temporal 351 and spatial characters (Mezősi, 2017). Although the majority of the country has an elevation 352 of less than 300 m a.s.l., Hungary has several moderately high ranges of mountains and the 353 highest peak located in the Mátra Mts at 1014 m a.s.l. (Table 1, Region 10). Overall, our 354 results rather supporting the relationship between the measured climatic variables and 355 prevalence or infection intensity. We found significant relationship regarding B. variegata 356 individuals in the Bakony Mts core area, where prevalence was negatively affected by 357 monthly mean temperature. Furthermore, the monthly mean precipitation positively affected 358 the Bd infection intensity. Nonetheless, the robustness of the latter result is questionable, 359 360 since the relationship disappeared when we excluded an outlier value from the analysis. This substantial effect of one outlier value could have on the outcomes of this analysis suggests 361 the need for an extensive sampling in order to test whether this result is a statistical artefact 362 or a real biological phenomenon. 363

To determine the time and location of the emergence or introduction of *Bd* in different regions worldwide, it is important to study archived specimens deposited to museum collections. To examine the historical presence of the fungus in Hungary we screened 367 archived specimens of Bombina spp. collected in the regions 1, 2, 3, 8, 10, 12, 13 and the Kőszeg Mts (archived data only) between 1936 and 2005. In total 127 specimens were 368 analysed and all of the samples were Bd negative. Both for field and for museum samples we 369 used the same detection methodology, following Hyatt et al. (2007). The detection 370 probability with qPCR is more sensitive and accurate compared to conventional PCR or 371 histology (Annis et al., 2004; Boyle et al., 2004; Kriger et al., 2006). There is no difference in 372 regard of *Bd* detectability between sample collection techniques (i.e. skin swabbing, brushing 373 or scraping). Nonetheless, preservation methodology and storage history may have influence 374 on the results (Soto-Azat et al., 2009). The Amphibian Collection of the Hungarian Natural 375 History Museum is stored in ethanol, but no record is available about the mode of initial 376 preparation. As formaldehyde is known to inhibit PCR reaction, there is therefore a slight 377 chance that qPCR reactions failed to detect Bd in our archived samples; however, this may be 378 an unlikely possibility. 379

Although with testing archived specimens we did not find evidence on when *Bd* might have been introduced into the country, our genetic analyses showed that the fungus found on amphibians in Hungary is a member of the *Bd*-GPL lineage. This was confirmed by a recent study tracking the origin of *Bd* using a full genome approach, which detected *Bd*-GPL lineage in Hungary (from Iharkút, Bakony Mts; O'Hanlon et al., 2018) and is in line with previous findings reporting that this lineage has a widespread distribution in Europe (Farrer et al., 2007).

387 During the surveys in the core area of Bakony Mts (Region 3, Table 1) juvenile *B.* 388 *variegata* individuals showed a significantly higher prevalence compared to adults. The same 389 pattern was observed for two *B. variegata* populations in a seven-year period study in the 390 Netherlands, which the authors explained by the less developed immune responses, or immunsupression, following the stress of metamorphosis (Spitzen-van der Sluijs et al., 2017). 391 Quite surprisingly, during our study, two juveniles changed infection state once (recovered 392 from *Bd positive*). It is a relatively common phenomenon in the field, when infected adult 393 frogs lose and regain the infection which may be caused by overwintering tadpoles or larvae 394 acting as reservoirs (Briggs et al., 2010, Spitzen-van der Sluijs et al., 2017). In contrast, it is 395 less frequent with juvenile individuals as it was experienced in our study. Similar pattern was 396 observed for Epidalea calamita in Spain, where juveniles changed infection state towards the 397 end of metamorphosis, possibly mediated by the increasing water temperature in permanent 398 ponds (Bosch et al., pers. comm.). 399

In Iharkút (Bakony Mts), during our study period the environmental conditions 400 changed unexpectedly. The lake which hosted most of the amphibian species - including B. 401 variegata - dried out after the first season of sample collection. In the second year only four 402 individuals of B. variegata were captured around this locality, however the rest of the 403 specimens (N = 181) found shelter in a nearby stream unsuitable for breeding. During the 404 third year the lake kept dry and only seven out of 87 individuals were found in or around the 405 lake. Even though there was no difference in prevalence between the three years, they 406 showed a downward trend towards significance. Already low prevalence (23%) dropped 407 down to 11% in the second and to 5% in the third year. This trend could be associated with 408 the differences in habitat type, as it was observed for Salamandra salamandra in the 409 Guadarrama National Park, Spain (Medina et al, 2015). Here, Bd infection was greater in 410 salamander larvae from permanent ponds, while it was absent or weak in temporary water 411 bodies and permanent streams. Also, infection intensity in larval cohorts was reduced when 412

water was flowing rather than standing. Same authors suggested that increased water flowrate reduce the likelihood of successful pathogen transmission.

Chytridiomycosis is limited to the keratinized tissues of the host individual, therefore tadpoles and post-metamorphic amphibians are mostly affected by the disease (Rachowicz and Vredenburg, 2004). Our dataset covered all life stages of amphibians and the presence of the infection was not detected in tadpoles of *B. bufo* and *R. dalmatina* (N = 39). On the other hand, post-metamorphic and juvenile individuals were found infected in the regions 1, 3, 10 and 13 of *B. variegata* and the members of the *P. esculentus* complex, even though all sampled individuals apparently didn't display any clinical sign of chytridiomycosis.

In Central Europe the P. esculentus complex is formed by two sexual species, the P. 422 ridibundus and the P. lessonae and their interspecific mating produces the hybridogenetic P. 423 esculentus. Overall, our results in the core area of Hortobágy National Park showed higher 424 Bd prevalence in P. ridibundus compared to the hybrid P. esculentus (Table 2) which is 425 related to the fact that the hybrids have more effective peptide defence system against Bd and 426 have a richer peptide repertoire than both parental species (Daum et al., 2012). Further, 427 contrary to what was observed in *B. variegata* in the Bakony Mts core area, we did not find 428 differences in Bd infection between life stages and sexes in P. ridibundus individuals. 429

Our results fit into the general pattern showing significant variability in the effects of chytridiomycosis across Europe. The marked difference in species susceptibility between amphibian species/communities of Western and Central-Eastern Europe might be determined by multiple linked factors, e.g. virulence of different *Bd* strains (Farrer et al., 2007), genotype (Savage and Zamudio, 2011), behaviour (Williams and Groves, 2014), microbial skin community compound of host species (Bletz et al., 2013), or structure of amphibian 436 communities (Becker et al., 2014). In the Iberian Peninsula – that received the most attention due to mass amphibian mortalities caused by chytridiomycosis - infection was clustered 437 within high-altitude areas, where environmental conditions are the most optimal for growth 438 of Bd (Piotrowski et al., 2004). In contrast, Hungary harbours only low-elevation Mountains, 439 where environmental conditions might be less favourable for Bd-linked epidemics. 440 Differences in elevation might explain the relatively lower impact and infection values of 441 amphibians in Hungary, than it was reported for surrounding countries in Central and Eastern 442 Europe (e.g. Austria, Sztatecsny and Glaser, 2011; Czech Republic, Baláž et al., 2014a or 443 444 Poland, Kolenda et al., 2017).

Since *Bd*-related disease outbreak have been proven to be climate-driven (Bosch et al., 2007), amphibians of Central-Eastern Europe might be heavily impacted in the future due to global climate change. Changes in the climate might alter *Bd* diffusion and make it's spreading less predictable, thus areas not yet affected by epidemics require particular attention and constant monitoring.

- 450
- 451

ACKNOWLEDGEMENTS

We thank B. Halpern, K. Szabó, I. Kiss, E. Jáger, K. Suri, R. Dankovics, B. Velekei, A. Ősi,
G. Deák, Cs. Tóth, A. Bérczes, G. Magos, L. Urbán, B. Bándli, M. García-París, P.
Mikulíček, C. Gabor, C. Serrano-Laguna, Zs. Végvári, D. R. Brooks, E. Vörös, L. Vörös, E.
Kovács and F. Hock for providing samples or helping in the field. We are grateful to T.
Garner (Zoological Society of London) for important initial and then continuous help with *Bd*research in Hungary. T. Papp and M. Benkő (Institute for Veterinary Medical Research,
Budapest) kindly provided facility and reagents for qPCR. We gratefully acknowledge the

excellent technical assistance of Á. Juhász and E. Ottinger (National Food Chain Safety
Office), as well as M. Tuschek and V. Krízsik (HNHM). Savaria Museum Szombathely
provided toad specimens for sampling. During the project JV was supported by the
Hungarian Scientific Research Fund (OTKA K77841) and by the Bolyai János Research
Scholarship of the Hungarian Academy of Sciences (BO/00579/14/8). DH was supported by
the European Union and co-financed by the European Social Fund through the Social
Renewal Operational Programme under the projects TÁMOP-4.2.2/B-10/1-2010-0024 and
SROP-4.2.2.B-15/1/KONV-2015-0001. AF was supported by the Hungarian National
Research, Development and Innovation Office (OTKA grant no. K112527). Research permit
was issued by the National Inspectorate of Environment, Nature Conservation and Water
Management (14/3535/2/2010) and the Tisza Region Inspectorate of Environment, Nature
Conservation and Water Management (4633/OH/2012).

- 471
- 472

SUPPLEMENTARY MATERIAL

473 Supplementary material associated with this article can be found at <
474 http://www.unipv.it/webshi/appendix > Manuscript number 22611: Appendix 1.

REFERENCES

477	Annis, S.L., Dastoor, F.P., Ziel, H., Daszak, P., Longcore, J.E. (2004): A DNA-based assay
478	identifies Batrachochytrium dendrobatidis in amphibians. J. Wildl. Dis. 40: 420-428.
479	Baláž, V., Vojar, J., Civiš, P., Andera, M., Rozínek, R. (2014a): Chytridiomycosis risk
480	among Central European amphibians based on surveillance data. Dis. Aquat. Organ.
481	112: 1-8.
482	Baláž, V., Vörös, J., Civiš, P., Vojar, J., Hettyey, A., Sós, A., Dankovics, R., Jehle, R.,
483	Christiansen, D.G., Clare, F., Fisher, M.C., Garner, T.W.J., Bielby, J. (2014b):
484	Assessing risk and guidance on monitoring of Batrachochytrium dendrobatidis in
485	Europe through identification of taxonomic selectivity of infection. Conserv. Biol. 28:
486	213-223.
487	Bates, D., Maechler, M., Bolker, B., Walker, S. (2015): Fitting Linear Mixed-Effects Models
488	Using lme4. J. Stat. Softw. 67: 1-48.
489	Becker, C.G, Rodriguez, D., Toledo, L.F., Longo, A.V., Lambertini, C., Correa, D.T., Leite,
490	D.S., Haddad, C.F.B., Zamudio, K.R. (2014): Partitioning the net effect of host
491	diversity on an emerging amphibian pathogen. Proc. R. Soc. B 281: 20141796.
492	Becker, C.G., Zamudio, K.R. (2011): Tropical amphibian populations experience higher
493	disease risk in natural habitats. Proc. Natl. Acad. Sci. USA 108: 9893-9898.
494	Berger, L., Speare, R., Daszak, P., Green, D.E., Cunningham, A.A., Goggin, C.L., Slocombe,
495	R., Ragan, M.A., Hyatt, A.H., McDonald, K.R., Hines, H.B., Lips, K.R., Marantelli,
496	G., Parkes, H. (1998): Chytridiomycosis causes amphibian mortality associated with
497	population declines in the rain forest in Australia and Central America. Proc. Natl.
498	Acad. Sci. USA 95: 9031-9036.

499	Berger, L., Speare, R., Hines, H.B., Marantelli, G., Hyatt, A.D., McDonald, K.R., Skerratt,
500	L.F., Olsen, V., Clarke, J.M., Gillespie, G., Mahony, M., Sheppard, N., Williams, C.,
501	Tyler, M.J. (2004): Effect of season and temperature on mortality in amphibians due
502	to chytridiomycosis. Aust. Vet. J. 82: 31-36.
503	Blaustein, A.R., Walls, S.C., Bancroft, B.A., Lawler, J.J., Searle, C.L., Gervasi, S.S. (2010):
504	Direct and indirect effects of climate change on amphibian populations. Diversity 2:
505	281-313.
506	Blaustein, A.R., Romansic, J.M., Scheessele, E.A., Han, B.A., Pessier, A.P., Longcore, J.E.
507	(2005): Interspecific variation in susceptibility of frog tadpoles to the pathogenic
508	fungus Batrachochytrium dendrobatidis. Conserv. Biol. 19: 1460-1468.
509	Bletz, M.C., Loudon, A.H., Becker, M.H., Bell, S.C., Woodhams, D.C., Minbiole, K.P.C.,
510	Harris, R.N. (2013): Mitigating amphibian chytridiomycosis with bioaugmentation:
511	characteristics of effective probiotics and strategies for their selection and use. Ecol.
512	Lett. 16: 807-820.
513	Böll, S., Tobler, U., Geiger, C.C., Günter, H., Schmidt, B.R. (2014): Unterschiedliche Bd-
514	Prävalenzen und –Befallsstärken verschiedener Amphibienarten und
515	Entwicklungsstadien an einem Chytridpilz belasteten Standort in der bayerischen
516	Rhön. Z. Feldherpetol. 21: 183-194.
517	Bosch, J., Martínez-Solano, I. (2006): Chytrid fungus infection related to unusual mortalities
518	of Salamandra salamandra and Bufo bufo in the Peñalara Natural Park (Central
519	Spain). Oryx 40: 84-89.

520	Bosch, J., Martínez-Solano, I., García-París, M. (2001): Evidence of a chytrid fungus
521	infection involved in the decline of the common midwife toad (Alytes obstetricans) in
522	protected areas of central Spain. Biol. Conserv. 97: 331-337.
523	Bosch, J., Carrascal, L.M., Durán, L., Walker, S., Fisher, M.C. (2007): Climate change and
524	outbreaks of amphibian chytridiomycosis in a montane area of Central Spain; is there
525	a link? Proc. R. Soc. B. 274: 253-260.
526	Bosch, J., García-Alonso, D., Fernández-Beaskoetxea, S., Fisher, M.C., Garner, T.W. (2013):
527	Evidence for the introduction of lethal chytridiomycosis affecting wild Betic midwife
528	toads (Alytes dickhilleni). EcoHealth 10: 82-89.
529	Boyle, D.G., Boyle, D.B., Olsen, V., Morgan, J.A.T., Hyatt, A.D. (2004): Rapid quantitative
530	detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian
531	samples using real-time Taqman PCR assay. Dis. Aquat. Org. 60: 141-148.
532	Briggs, C.J., Knapp, R.A., Vredenburg, V.T. (2010): Enzootic and epizootic dynamics of the
533	chytrid fungal pathogen of amphibians. Proc. Natl. Acad. Sci. USA 107: 9695-9700.
534	Civiš, P., Vojar, J., Literák, I., Balaž, V. (2012): Current state of Bd's occurrence in the
535	Czech Republic. Herpetol. Rev. 43: 75-78.
536	Daum, J.M., Davis, L.R., Bigler, L., Woodhams, D.C. (2012): Hybrid advantage in skin
537	peptide immune defenses of water frogs (Pelophylax esculentus) at risk from
538	emerging pathogens. Infect. Genet. Evol. 12: 1854-1864.
539	Dobson, A.P., Foufopoulos, J. (2001): Emerging infectious pathogens of wildlife. Philos.
540	Trans. R. Soc. Lond. B. Biol. Sci. 356: 1001-1012.

- Doddington, B.J., Bosch, J., Oliver, J.A., Grassly, N.C., García, G., Benedikt, R.S., Garner,
 T.W.J., Fisher, M.C. (2013): Context-dependent amphibian host population response
 to an invading pathogen. Ecology 98: 1795-1804.
- 544 Drexler, T., Ujszegi, J., Németh, Z.M., Vörös, J., Hettyey, A. (2017) A susceptibility and 545 sensitivity to chytridiomycosis of two anuran species native to Hungary.
- 546 Természetvédelmi Közlemények 23: 14-23 (in Hungarian with English abstract).
- 547 Ecsedi, Z. (2004): A Hortobágy Madárvilága. Hortobágy Természetvédelmi Egyesület,
 548 Winter Fair, Balmazújváros-Szeged (in Hungarian)
- 549 Farrer, R.A., Weinert, L.A., Bielby, J., Garner, T.W.J., Balloux, F., Clare, F., Bosch, J.,
- 550 Cunningham, A.A., Weldon, C., Preez, L.H., Anderson, L., Pond, S.L.K., Shahar-
- Golan, R., Henk, D.A., Fisher, M.C. (2007): Multiple emergences of genetically
 diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant
- 553 lineage. Proc. Natl. Acad. Sci. USA **108**: 18732-18736.
- Federici, S., Clemenzi, S., Favelli, M., Tessa G., Andreone, F., Casiraghi, M., Crottini, A.
 (2008): Identification of the pathogen *Batrachochytrium dendrobatidis* in amphibian
 populations of a plain area in the Northwest of Italy. Herpetology Notes 1: 33-37.
- 557 Fisher, M.C., Garner, T., Walker, J. (2009): Global emergence of *Batrachochytrium*
- *dendrobatidis* and amphibian chytridiomycosis in space, time and host. Ann. Rev.
 Microbiol. 63: 291-310.
- Fox, J., Weisberg, S. (2011): An R companion to applied regression, second edition. Sage,
 Thousand Oaks, CA. http://socserv.socsci.mcmaster.ca/jfox/Books/Companion>.

562	Gaertner, J.P., Forstner, M.R.J., O'Donnell, L., Hahn, D. (2009): Detection of
563	Batrachochytriumdendrobatidis in endemic salamander species from Central Texas.
564	EcoHealth 6: 20-26.
565	Gál, J.T., Szabó, K., Vörös, J. (2012): Kitridiomikózis vizsgálata egy magas-bakonyi vizes
566	élőhely kétéltű közösségén. Állattani Közlemények 97: 47-59. (in Hungarian)
567	Garcia, T.S.J., Romansic, M., Blaustein, A.R. (2006): Survival of three species of anuran
568	metamorphs exposed to UV-B radiation and the pathogenic fungus Batrachochytrium
569	dendrobatidis. Dis. Aquat. Organ.72: 163-169.
570	Gründler, C.M., Toledo, L.F., Parra-Olea, G., Haddad, C.F.B., Giasson, L.O.M., Sawaya,
571	R.J., Prado, C.P.A., Araujo, O.G.S., Zara, F.J., Centeno, F.C., Zamudio, K.R. (2012):
572	Interaction between breeding habitat and elevation affects prevalence but not
573	infection intensity of Batrachochytrium dendrobatidis in Brazilian anuran
574	assemblages. Dis. Aquat. Organ. 97: 173-184.
575	Hall, T.A. (1999): BioEdit: a user-friendly biological sequence alignment editor and analysis
576	program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41: 95-98.
577	Hauswaldt, J.S., Höer, M., Ogielska, M., Christiansen, D.G., Dziewulska-Szwajkowska, D.,
578	Czernicka, E.A., Vences, M. (2012): A simplified molecular method for
579	distinguishing among species and ploidy levels in European water frogs (Pelophylax).
580	Mol. Ecol. Resour. 12: 797-805.
581	Herczeg, D., Vörös, J., Christiansen, D.G., Benovics, M., Mikulícek, P. (2016): Taxonomic
582	composition and ploidy level among European water frogs (Anura: Ranidae:

Pelophylax) in eastern Hungary. J. Zool. Syst. Evol. Res. 55: 129-137.

584	Hervé, M. (2018): RVAideMemoire: Testing and Plotting Procedures for Biostatistics. R
585	package version 0.9-69-3. https://CRAN.R-project.org/package=RVAideMemoire
586	Hyatt, A.D., Boyle, D.G., Olsen, V., Boyle, D.B., Berger, L., Obendorf, D., Dalton, A.,
587	Kriger, K., Hero, M., Hines, H., Phillot, R., Campbell, R., Marantelli, G., Gleason, F.,
588	Coiling, A. (2007): Diagnostic assays and sampling protocols for the detection of
589	Batrachochytrium dendrobatidis. Dis. Aquat. Org. 73: 175-192.
590	Kolenda, K., Najbar, A., Ogielska, M., Baláž, V. (2017): Batrachochytrium dendrobatidis is
591	present in Poland and is associated with reduced fitness in wild population of
592	Pelophylax lessonae. Dis. Aquat. Org. 124: 241-245.
593	Kriger, K.M., Hines, H.B., Hyatt, A.D., Boyle, D.G., Hero, J.M. (2006): Techniques for
594	detecting chytridiomycosis in wild frogs: comparing histology with real-time Taqman
595	PCR. Dis. Aquat. Org. 71: 141-148.
596	Lips, K.R., Diffendorfer, J., Mendelson, J.R., Sears, M.W. (2008): Riding the wave:
597	reconciling the roles of disease and climate change in amphibian declines. PLoS Biol.
598	6: e72.
599	Longcore, J.E., Pessier, A.P., Nichols, D.K. (1999): Batrachochytrium dendrobatidis gen. et
600	sp. nov., a chytrid pathogenic to amphibians. Mycologia 91: 219-227.
601	Mali, I., Villamizar-Gomez, A., Krizmanić, I., Ajtić, R., Forstner, M.R.J. (2017): Evidence of
602	Batrachochytrium dendrobatidis infection in amphibians from Serbian lowlands. J.
603	Wildl. Dis. 53: 686-689.
604	Medina, D., Garner, T.W., Carrascal, L.M., Bosch, J. (2015): Delayed metamorphosis of
605	amphibian larvae facilitates Batrachochytrium dendrobatidis transmission and
606	persistence. Dis. Aquat. Org. 117: 85-92.

- Mezősi, G. (2017): Climate of Hungary. In: The Physical Geography of Hungary, pp. 101119. Mezősi, G., Ed, Springer, Cham.
- Murray, K.A., Skerratt, L.F., Speare, R., McCallum, H. (2009): Impact and dynamics of
 disease in species threatened by the amphibian chytrid fungus, *Batrachochytrium dendrobatidis*. Conserv. Biol. 23: 1242-1252.
- O'Hanlon, S.J., Rieux, A., Farrer R.A. et al. (2018): Recent Asian origin of chytrid fungi
 causing global amphibian declines. Science 360: 621-627.
- Ohst, T., Gräser, Y., Plötner, J. (2013): *Batrachochytrium dendrobatidis* in Germany:
 distribution, prevalences, and prediction of high risk areas. Dis. Aquat. Org. 107: 4959.
- 617 Olson, D.H., Aanensen, D.M., Ronnenber, K.L., Powell, C.I., Walker, S.F., Bielby, J.,
- Garner, T.W.J., Weaver, G., Fisher, M.C. (2013): Mapping the Global Emergence of *Batrachochytrium dendrobatidis*, the Amphibian Chytrid Fungus. PLoS ONE 8:
 e56802.
- Ósi, A.L., Makádi, M., Rabi, Z., Szentesi, G., Botfalvai, P., Gulyás, P. (2012): The Late
 Cretaceous continental vertebrate fauna from Iharkút, western Hungary: a review. In:
 Bernissart Dinosaurs and Early Cretaceous Terrestrial Ecosystems, pp. 533-568.
 Godefroit, P., Ed, Indiana University Press.
- Piotrowski, J.S., Annis, S.L., Longcore, J.E. (2004): Physiology of *Batrachochytrium dendrobatidis*, a chytrid pathogen of amphibians. Mycologia 96: 9-15.
- Plötner, J., Köhler, F., Uzzell, T., Beerli, P., Schreiber, R., Guex, G.-G., Hotz, H. (2009):
 Evolution of serum albumin intron-1 is shaped by a 5' truncated non-long terminal

629	repeat retrotransposon is western Palearctic water frogs (Neobatrachia). Mol.
630	Phylogenetic Evol. 53: 784-791.
631	R Core Team (2018): R: A language and environment for statistical computing. R Foundation
632	for Statistical Computing, Vienna, Austria. http://www.R-project.org/.
633	Rachowicz, L.J., Vredenburg, V.T. (2004): Transmission of Batrachochytrium dendrobatidis
634	within and between amphibian life stages. Dis. Aquat. Organ. 61: 75-83.
635	Rödder, D., Kielgast, J., Lötters, S. (2010): Future potential distribution of the emerging
636	amphibian chytrid fungus under anthropogenic climate change. Dis. Aquat. Organ.
637	92: 201-207.
638	Rohr, J.R., Raffel, T.R. (2010): Linking global climate and temperature variability to
639	widespread amphibian declines putatively caused by disease. Proc. Natl. Acad. Sci.
640	USA 107: 8269-8274.
641	Ron, S.R. (2005): Predicting the distribution of the amphibian pathogen Batrachochytrium
642	dendrobatidis in the New World. Biotropica 37: 209-221.
643	Rosa, G.M., Anza, I., Moreira, P.L., Conde, J., Martins, F., Fisher, M.C., Bosch, J. (2012):
644	Evidence of chytrid-mediated population declines in common midwife toads (Alytes
645	obstetricans) in Serra da Estrela Portugal. Anim. Conserv. 16: 306-315.
646	Savage, A.E., Zamudio, K.R. (2011): MHC genotypes associate with resistance to a frog-
647	killing fungus. Proc. Natl. Acad. Sci. USA 108: 16705-16710.
648	Scherer, R. (2018) PropCIs: Various confidence interval methods for proportions. R package
649	version 0.3-0. https://CRAN.R-project.org/package=PropCIs
650	Schielzeth, H. (2010) Simple means to improve the interpretability of regression coefficients.
651	Methods Ecol. Evol. 1: 103-113.

652	Skerratt, L.F., Berger, L., Speare, R., Cashins, S., McDonald, K., Hines, A., Kenyon, N.
653	(2007): Spread of chytridiomycosis has caused the rapid global decline and extinction
654	of frogs. EcoHealth 4: 125-134.
655	Soto-Azat, C., Clarke, B.T., Fisher, M.C., Walker, S.F., Cunningham, A.A. (2009): Non-
656	invasive sampling methods for the detection of Batrachochytrium dendrobatidis in
657	archived amphibians. Dis. Aquat. Organ. 84: 163-166.
658	Spitzen-Van Der Sluijs, A., Canessa, S., Martel, A., Pasmans, F. (2017): Fragile coexistence
659	of a global chytrid pathogen with amphibian populations is mediated by environment
660	and demography. Proc. R. Soc. B. 284: 20171444.
661	Spitzen-Van Der Sluijs, A., Martel, A., Hallmann, C.A., Bosman, W., Garner, T.W.J., Van
662	Rooij, P., Jooris, R., Haesebrouck, F., Pasmans, F. (2014): Environmental
663	determinants of recent endemism of Batrachochytrium dendrobatidis infections in
664	amphibian assemblages in the absence of disease outbreaks: environmental
665	determinants promote Bd endemism. Conserv. Biol. 28: 1302-1311.
666	Sura, P., Janulis, E., Profus, P. (2010): Chytridiomikoza – śmiertelne zagrożenie dla płazów
667	(Chytridiomycosis – a mortal danger for amphibians). Chrońmy Przyrodę Ojczystą
668	66: 406-421.
669	Sztatecsny, M., Glaser, F. (2011): From the eastern lowlands to the western mountains: first
670	records of the chytrid fungus Batrachochytrium dendrobatidis in wild amphibian
671	populations from Austria. Herpetol. J. 21: 87-90.
672	Tessa, G., Angelini, C., Bielby, J., Bovero, S., Giacoma, C., Sotgiu, G., Gardner, T.W.J.
673	(2013): The pandemic pathogen of amphibians, Batrachochytrium dendrobatidis
674	(Phlyum Chytridiomycota), in Italy. Ital. J. Zool. 80: 1-11.

675	Van Sluys, M., Hero, J.M. (2009): How does chytrid infection vary among habitats? The case
676	of Litoria wilcoxii (Anura, Hylidae) in SE Queensland, Australia. EcoHealth 6: 576-
677	583.
678	Vojar, J., Havlíková, B., Solský, M., Jablonski, D., Iković, V., Baláž, V. (2017): Distribution,
679	prevalence and amphibian hosts of Batrachochytrium dendrobatidis in the Balkans.
680	Salamandra 53: 44-49.
681	Vörös, J., Alcobendas, M., Martínez-Solano, I., García-París, M. (2006): Evolution of
682	Bombina bombina and Bombina variegata (Anura: Discoglossidae) in the Carpathian
683	Basin: a history of repeated mt-DNA introgression across species. Mol. Phylogenet.
684	Evol. 38: 705-715.
685	Vörös, J., Szalay, F., Barabás, L. (2007): A new computer-aided videomorphological method
686	for the quantitative analysis of ventral pattern in Bombina spp. (Anura:
687	Discoglossidae). Herpetol. J. 17: 97-103.
688	Vörös, J., Bosch, J., Dán, A., Hartel, T. (2012): First Record of Batrachochytrium
689	dendrobatidis in Romania. North-West. J. Zool. 9: 446-449.
690	Vörös, J., Kiss, I., Puky, M. (2014): Amphibian declines and conservation in Hungary. In:
691	Amphibian Biology: Status of decline of amphibians: Eastern hemisphere.
692	Amphibian, pp. 99-130. Heatwole, H., Wilkinson, J.W., Eds, Pelagic Publishing.
693	Walker, S.F., Bosch, J., Gomez, V., Garner, T.W.J., Cunningham, A.A., Schmeller, D.S.,
694	Ninyerola, M., Henk, D.A., Ginestet, C., Arthur, CP., Fisher, M.C. (2010): Factors
695	driving pathogenicity vs. prevalence of amphibian panzootic chytridiomycosis in
696	Iberia. Ecol. Lett. 13: 372-382.

- 697 Williams, L.A., Groves, J.D. (2014): Prevalence of the amphibian pathogen
- 698 Batrachochytrium dendrobatidis in eastern hellbenders (Cryptobranchus A-
- 699 *Alleganiensis*) in western North Carolina, USA. Herpetol. Conserv. Bio. 9: 454-467.
- Wood, L.R., Griffiths, R.A., Schley, L. (2009): Amphibian chytridiomycosis in Luxemburg.
- 701 Bull. Soc. Nat. luxemb. **110:** 109-114
- 702

703 **Table 1.** Summary of regions, sampling locations, coordinates and sampled species in our inventory. mtDNA lineages were indicated as

- Alpine (Alp) or Carpathian (Carp) in the case of *B. variegata*. Lat = Latitude; Long = Longitude N = Number of individuals sampled; Prev
- 705 = Prevalence; GE = Genomic equivalents; NA = not applicable

Nr. of	Alt	Lat	Long	Species	mtDNA	Ν	Positive/Sampled	Prev (%)	Prev 95%	GE	GE	GE	GE
region					lineage <i>B</i> .			5	CI (%)	mean	median	SD	range
					variegata								
1-Őrség	315.0	46.87	16.13	Bombina variegata	Alp	2	16 / 68	23.53	14.09 – 35.38	34.45	5.01	58.32	0.20 – 182.78
	264.0	46.87	16.45	Bombina variegata	Alp	7							
	253.0	46.89	16.43	Hyla arborea		1	CV.						
	253.0	46.89	16.43	Lissotriton vulgaris		1							
	253.0	46.89	16.43	Rana arvalis		1							
	253.0	46.89	16.43	Rana dalmatina		4							
	315.0	46.90	16.24	Bombina variegata	Alp	48							
	315.0	46.90	16.24	Ichthyosaura alpestris		1							
	267.0	46.91	16.23	Pelophylax esculentus		1							
	315.0	46.90	16.24	Rana temporaria		2							
2-Soproni	493.0	47.65	16.48	Bombina	Alp	14	4 / 14	28.57	8.38 -	2.05	2.40	1.13	0.48 -

Mts				variegata					58.10				2.90
3-Bakony Mts	455.0	47.06	17.67	Bombina bombina		2	37 / 606	6.11	4.33 – 8.32	21.15	5.19	45.58	0.16 – 210.30
	316.0	47.23	17.74	Bombina variegata	Alp	3							
	327.0	47.27	17.69	Bombina variegata	Alp	15		\mathcal{C}					
	327.0	47.27	17.69	Bufo bufo		2	C						
	327.0	47.27	17.69	Ichthyosaura alpestris		12		2					
	327.0	47.27	17.69	Lissotriton vulgaris		19	\sim	v					
	327.0	47.27	17.69	Rana dalmatina		25	()						
	348.0	47.23	17.64	Bombina bombina		2							
	348.0	47.23	17.64	Bombina variegata	Alp	310							
	356.0	47.23	17.65	Bufo bufo		61							
	356.0	47.23	17.65	Bufo viridis		39							
	348.0	47.23	17.64	Lissotriton vulgaris		5							
	356.0	47.23	17.65	Pelophylax ridibundus		24							
	348.0	47.23	17.64	<i>Pelophylax</i> sp.		4							
	348.0	47.23	17.64	Rana dalmatina		83							
4-Hanság	113.0	47.66	16.74	Bombina		4	3 / 33	9.09	1.92 -	0.56	0.16	0.70	0.15 -

				bombina					24.33				1.37
	116.0	47.63	17.08	Pelophylax ridibundus		29			$\overline{}$				
5-Mecsek Mts	381.0	46.22	18.33	Bombina variegata	Alp	12	0 / 23	0.00	0.00 – 14.82	NA	NA	NA	NA
	232.0	46.16	18.24	Bombina variegata	Alp	8		$\left(\right)$					
	415.0	46.20	18.33	Bombina variegata	Alp	3	C						
6- Kiskunság	89.0	46.61	19.12	Triturus dobrogicus		13	0 / 13	0.00	0.00 – 24.71	NA	NA	NA	NA
7- Budapest	100.0	47.18	18.53	Bombina bombina		4	2/18	11.11	1.38 – 34.71	36.77	36.77	50.11	1.34 – 72.20
_	111.0	47.42	19.14	Bufo viridis		4							
	156.0	47.53	19.22	Pelophylax ridibundus		10							
8-Pilis- Visegrádi Mts	168.0	47.78	19.04	Bombina bombina		1	0 / 78	0.00	0.00 – 4.62	NA	NA	NA	NA
	418.0	47.78	19.00	Rana dalmatina		5							
	261.0	47.57	18.94	Bufo bufo		1							
	261.0	47.57	18.94	Salamandra salamandra		35							
	216.0	47.64	18.78	Bombina bombina		2							
	329.0	47.76	18.85	Rana temporaria		2							

	183.0	47.76	18.91	Salamandra salamandra		7			X				
	234.0	47.61	18.88	Hyla arborea		1			\sim				
	234.0	47.61	18.88	<i>Pelophylax</i> sp.		3			\mathbf{X}				
	208.0	47.85	19.12	Rana temporaria		1							
	209.0	47.85	19.11	Salamandra salamandra		1		2					
	107.0	47.77	19.09	Hyla arborea		2							
	107.0	47.77	19.09	<i>Pelophylax</i> sp.		4							
	358.0	47.72	19.06	Bombina bombina x variegata		1							
	358.0	47.72	19.06	Bombina variegata	Alp	2							
	301.0	47.78	18.99	Pelophylax ridibundus		8							
	301.0	47.78	18.99	Rana temporaria	\checkmark	2							
9-Gödöllő Hills	224.0	47.63	19.38	Lissotriton vulgaris		20	0 / 56	0.00	0.00 – 6.38	NA	NA	NA	NA
	156.0	47.53	19.22	Pelophylax ridibundus		1							
	111.0	47.76	17.34	Rana arvalis		1							
	96.0	47.26	19.23	Rana arvalis		17							

	96.0	47.26	19.23	Rana dalmatina		3		×				
	96.0	47.26	19.23	Triturus dobrogicus		14						
Mátra Mts	492.0	47.90	19.98	Bombina variegata	Carp	2	7 / 103	$\begin{array}{r} 6.80 \\ 13.50 \end{array}$	6.93	2.13	9.19	0.61 – 23.55
	648.0	47.93	19.89	Bombina variegata	Carp	2	C	\mathbf{O}				
	648.0	47.93	19.89	Salamandra salamandra		6		2				
	598.0	47.90	19.97	Bombina bombina		2	\sim					
	587.0	47.85	19.96	Bombina variegata	Carp	3						
	316.0	47.97	19.52	Salamandra salamandra		1						
	720.0	47.90	19.93	Bombina variegata	Carp	4						
	403.0	47.92	19.97	Bombina bombina		2						
	304.0	47.93	19.98	Bombina bombina x variegata		1						
	636.0	47.87	19.97	Bombina variegata	Carp	32						
	727.0	47.88	20.01	Bufo bufo		1						
	727.0	47.88	20.01	Ichthyosaura alpestris		11						

	411.0	47.93	19.96	Pelophylax esculentus		1			X				
	727.0	47.88	20.01	Rana temporaria		1		•					
	727.0	47.88	20.01	Salamandra salamandra		3			X				
	364.0	47.90	19.74	Bombina bombina		3	. (
	362.0	47.93	19.76	Bombina variegata	Carp	1		2					
	522.0	47.89	20.10	Bombina bombina		6	\sim						
	274.0	47.91	20.14	Bombina bombina x		1	0						
	633.0	47.89	20.11	variegata Bombina variegata Pombing	Carp	12							
	636.0	47.93	19.93	bombina x		5							
	411.0	47.93	19.96	Bombina variegata	Carp	2							
	411.0	47.93	19.96	Pelophylax esculentus		1							
11-Bükk Mts	249.0	48.12	20.24	Bufo bufo		1	1 / 9	11.11	0.28 – 48.25	8.10	8.10	NA	NA
	320.0	48.15	20.10	Rana temporaria		1							

	443.0	48.04	20.56	Ichthyosaura alpestris		6			\mathbf{X}				
	330.0	48.15	20.08	Rana temporaria		1							
12- Aggtelek Karst	286.0	48.54	20.66	Bombina variegata	Carp	6	0 / 12	0.00	0.00 - 26.46	NA	NA	NA	NA
	238.0	48.53	20.64	Salamandra salamandra		6							
13- Zemplén Mts	468.0	48.27	21.29	Bombina variegata	Carp	10	6/22	27.27	10.73 - 50.22	244.00	101.15	328.43	13.03 - 882.54
	281.0	48.48	21.33	Bombina variegata	Carp	6							
	341.0	48.48	21.32	Rana temporaria		4							
	341.0	48.48	21.32	Salamandra salamandra		4							
	449.0	48.40	21.45	Bombina variegata	Carp	1							
14- Hortobágy	86.0	47.57	20.94	Pelophylax esculentus		18	16 / 178	8.99	5.23 – 14.19	10.48	1.48	17.98	0.64 – 57.91
	84.0	47.60	20.88	Pelophylax lessonae		1							
	86.0	47.57	20.94	Pelophylax ridibundus		2							
	85.0	47.62	21.08	Pelophylax esculentus		25							

	86.0	47.61	21.07	Pelophylax ridibundus	56	×
	86.0	47.63	21.08	<i>Pelophylax</i> sp.	12	
	85.0	47.44	21.14	Pelophylax esculentus	20	
	85.0	47.44	21.14	Pelophylax ridibundus	42	
	84.0	47.45	21.17	<i>Pelophylax</i> sp.	2	
Total					1233	
				Ň	er.	
				. Cer		

Table 2. Batrachochytrium dendrobatidis (Bd) infection in amphibian species sampled in Hungary between the years 2009 and 2015. Prev = 707

prevalence; GE = genomic equivalents of zoospores; NA = not applicable 708

prevalence; GE = genomic equi	evalence; GE = genomic equivalents of zoospores; NA = not applicable										
Species	Positive/Sampled	Prev (%)	Prev 95% CI (%)	GE mean	GE median	GE SD	GE range				
Order Anura											
Family Bombinatoridae				C							
Bombina bombina	1 / 29	3.45	0.09 – 17.76	16.41	16.41	NA	NA				
Bombina variegata	64 / 504	12.70	9.92 - 15.92	40.08	4.96	120.76	0.16 - 882.54				
Bombina bombina x variegata	0 / 8	NA	0.00 - 36.94	NA	NA	NA	NA				
Family Bufonidae											
Bufo bufo	0 / 66	NA	0.00 - 5.44	NA	NA	NA	NA				
Bufo viridis	2 / 43	4.65	0.57 - 15.81	36.77	36.77	50.11	1.34 - 72.20				
Family Hylidae											
Hyla arborea	0 / 4	NA	0.00 - 60.24	NA	NA	NA	NA				
Family Ranidae											
Pelophylax esculentus	2 / 66	3.03	0.37 - 10.52	1.07	1.07	0.41	0.78 - 1.36				
Pelophylax lessonae	0 / 1	NA	0.00 - 97.5	NA	NA	NA	NA				
Pelophylax ridibundus	21 / 164	12.80	8.10 - 18.91	20.21	1.59	41.72	0.15 - 164.30				
<i>Pelophylax</i> sp.	1 / 33	3.03	0.08 - 15.76	15.75	15.75	NA	NA				
Rana dalmatina	0 / 120	NA	0.00 - 3.03	NA	NA	NA	NA				
Rana arvalis	0 / 19	NA	0.00 - 17.65	NA	NA	NA	NA				
Rana temporaria	0 / 11	NA	0.00 - 28.49	NA	NA	NA	NA				
Order Caudata											
Family Salamandridae											
Salamandra salamandra	0 / 63	NA	0.00 - 5.69	NA	NA	NA	NA				
Triturus dobrogicus	0 / 27	NA	0.00 - 12.77	NA	NA	NA	NA				

Lissotriton vulgaris	0 / 45	NA	0.00 - 7.87	NA	NA	NA	NA
Ichthyosaura alpestris	1 / 30	3.33	0.08 - 17.22	8.10	8.10	NA	NA
Total	92 / 1233	7.46	6.05 – 9.07				
				5			
			SC.				
		6					
		ser .					
	CCC.	<					
	. 2.						

Table 3. Batrachochytrium dendrobatidis (Bd) detection in regions representing the surveyed local populations of B. variegata in Hungary. GE =

Genetic	Region	Positive/Sampled	Prev (%)	Prev 95% CI	GE	GE median	GE SD	GE range
lineage				(%)	mean			
Alpine	Őrség	16 / 57	28.07	16.97 – 41.54	34.45	5.01	58.32	0.20 - 182.78
	Soproni Mts	4 / 14	28.57	8.39 - 58.10	2.05	2.40	1.13	0.48 - 2.90
	Bakony Mts	32 / 328	9.76	6.77 - 13.49	15.93	5.09	38.61	0.16 - 210.30
	Mecsek Mts	0 / 23	0.00	0.00 - 14.82	0.00	0.00	0.00	NA
	Pilis-Visegrádi Mts	0 / 2	0.00	0.00 - 84.19	0.00	0.00	0.00	NA
Carpathian	Mátra Mts	6 / 58	10.34	3.89 - 21.17	5.36	1.86	8.97	0.61 - 23.55
	Aggtelek Karst	0 / 6	0.00	0.00 - 45.93	0.00	0.00	0.00	NA
	Zemplén Mts	6 / 16	37.50	15.20 - 64.57	244.00	101.15	328.43	13.03 - 882.54
Total		64 / 508	12.59	9.83 - 15.80				

710 genomic equivalents of zoospores; NA = not applicable

- Fig.1. Map of Hungary showing sampling locations of *Bd* negative (black filled circles), *Bd*positive (red/grey triangles) and archived (white circles) samples. Pie charts indicate *Bd*prevalence of the 14 studied geographic regions. Numbers of regions correspond to Table 1.
 The two core areas are marked with asterisk (Region 3 and 14). Drawing of *Bombina variegata* and *Pelophylax ridibundus* courtesy of Márton Zsoldos.

Region	Locality	Code	Species	Date of collection	Catalogue number	WGSX	WGSY
Aggtelek karts	Aggtelek, Vörös lake	MA1	B. bombina x B. variegata	1990.04.19	HNHMHER 2002.680.1 HNHMHER	48.47	20.54
Aggtelek karts	Aggtelek, Vörös lake	MA2	B. bombina x B. variegata	1990.04.19	2002.680.2 HNHMHER	48.47	20.54
Aggtelek karts	Aggtelek, Vörös lake	MA3	B. bombina x B. variegata	1990.04.19	2002.680.3	48.47	20.54
Aggtelek karts	Aggtelek, Vörös lake	MA4	B. bombina x B. variegata	1990.04.19	HNHMHER 90.18.1 HNHMHER	48.47	20.54
Bakony Mts	Bakonybél, Vörös János stream	MB1	B. bombina	1959.05.20-21.	2002.419.1 HNHMHER	47.27	17.70
Bakony Mts	Bakonybél, Vörös János stream	MB2	B. variegata	1959.05.20-21.	2002.609.1 HNHMHER	47.27	17.70
Bakony Mts	Bakonybél, Vörös János stream	MB3	B. variegata	1959.05.20-21.	2002.609.2 HNHMHER	47.27	17.70
Bakony Mts	Bakonybél, Vörös János stream	MB4	B. variegata	1959.05.20-21.	2002.609.3 HNHMHER	47.27	17.70
Bakony Mts	Bakonybél, Vörös János stream	MB5	B. variegata	1959.05.20-21.	2002.609.4 HNHMHER	47.27	17.70
Bakony Mts	Bakonybél, Vörös János stream	MB6	B. variegata	1959.05.20-21.	2002.609.5 HNHMHER	47.27	17.70
Bakony Mts	Bakonybél, Vörös János stream	MB7	B. variegata	1959.05.20-21.	2002.610.1 HNHMHER	47.27	17.70
Bakony Mts	Bakonybél, Vörös János stream	MB8	B. variegata	1959.05.20-21.	2002.610.2	47.27	17.70
Bakony Mts	Bakonybél, Vörös János stream	MB13	B. variegata	1959.05.20-21.	HNHMHER 60.27.1	47.27	17.70
Bakony Mts	Bakonybél, Vörös János stream	MB14	B. bombina	1959.05.20-21.	HNHMHER 60.28.1	47.27	17.70
Bakony Mts	Bakonybél, Vörös János stream	MB17	B. variegata	1959.05.20-21.	HNHMHER 76.166.1 HNHMHER	47.27	17.70
Bakony Mts	Németbánya	MB9	B. variegata	1964.06.12-13.	2002.615.1 HNHMHER	47.17	17.55
Bakony Mts	Németbánya	MB10	B. bombina x B. variegata	1964.06.12-13.	2002.678.1 HNHMHER	47.17	17.55
Bakony Mts	Németbánya	MB11	B. bombina x B. variegata	1964.06.12-13.	2002.678.2 HNHMHER	47.17	17.55
Bakony Mts	Németbánya	MB12	B. bombina x B. variegata	1964.06.12-13.	2002.678.3	47.17	17.55

Appendix 1 List of archived and analysed samples of *Bombina* spp. in this study

Bakony Mts	Németbánya	MB15	B. bombina x B. variegata	1964.06.12-13.	HNHMHER 64.47.1	47.17	17.55
Bakony Mts	Németbánya	MB16	B. variegata	1964.06.12-13.	HNHMHER 64.49.1	47.17	17.55
Kőszegi Mts	Cák, rock mine	SM7	B. variegata	1976.07.05	SAMU 87.150.1.4.	47.36	16.52
Kőszegi Mts	Cák, rock mine	SM8	B. variegata	1976.07.05	SAMU 87.150.1.4.	47.36	16.52
Kőszegi Mts	Kőszeg	SM6	B. variegata	1936.07.15	SAMU 2002.36.1	47.38	16.53
Kőszegi Mts	Kőszeg	SM11	B. variegata	1981.07.25	SAMU 87.75.1.2.	47.36	16.49
Kőszegi Mts	Kőszeg	SM12	B. variegata	1981.07.25	SAMU 87.75.1.2.	47.36	16.49
Mátra Mts	Padrag	MM11	B. bombina	1957.06.20	HNHMHER 2006.49.1 HNHMHER	47.07	17.52
Mátra Mts	Padrag	MM12	B. bombina	1957.06.20	2006.49.10	47.07	17.52
Mátra Mts	Padrag	MM13	B. bombina	1957.06.20	HNHMHER 2006.49.2	47.07	17.52
Mátra Mts	Padrag	MM14	B. bombina	1957.06.20	HNHMHER 2006.49.3	47.07	17.52
Mátra Mts	Padrag	MM15	B. bombina	1957.06.20	HNHMHER 2006.49.4	47.07	17.52
Mátra Mts	Padrag	MM16	B. bombina	1957.06.20	HNHMHER 2006.49.5	47.07	17.52
Mátra Mts	Padrag	MM17	B. bombina	1957.06.20	HNHMHER 2006.49.6	47.07	17.52
Mátra Mts	Padrag	MM18	B. bombina	1957.06.20	HNHMHER 2006.49.7	47.07	17.52
Mátra Mts	Padrag	MM19	B. bombina	1957.06.20	HNHMHER 2006.49.8	47.07	17.52
Mátra Mts	Padrag	MM20	B. bombina	1957.06.20	HNHMHER 2006.49.9	47.07	17.52
Mátra Mts	Padrag	MM21	B. bombina	1957.06.20	HNHMHER 57.241.1	47.07	17.52
Mátra Mts	Parádfürdő, Pisztrángos-lake	MM1	B. variegata	1969.07.07	HNHMHER 2002.618.1 HNHMHER	47.88	20.01
Mátra Mts	Parádfürdő, Pisztrángos-lake	MM2	B. variegata	1969.07.07	2002.618.2 HNHMHER	47.88	20.01
Mátra Mts	Parádfürdő, Pisztrángos-lake	MM3	B. variegata	1969.07.07	2002.618.3 HNHMHER	47.88	20.01
Mátra Mts	Parádfürdő, Pisztrángos-lake	MM4	B. bombina x B. variegata	1969.07.07	2002.677.1 HNHMHER	47.88	20.01
Mátra Mts	Parádfürdő, Pisztrángos-lake	MM5	B. bombina x B. variegata	1969.07.07	2002.677.2 HNHMHER	47.88	20.01
Mátra Mts	Parádfürdő, Pisztrángos-lake	MM6	B. bombina x B. variegata	1969.07.07	2002.677.3 HNHMHER	47.88	20.01
Mátra Mts	Parádfürdő, Pisztrángos-lake	MM7	B. bombina x B. variegata	1967.05.12	2002.682.1	47.88	20.01

Mátra Mts	Parádfürdő, Pisztrángos-lake	MM8	B. bombina x B. variegata	1967.05.12	HNHMHER 2002.682.2 HNHMHER	47.88	20.01
Mátra Mts	Parádfürdő, Pisztrángos-lake	MM9	B. bombina x B. variegata	1967.05.12	2002.682.3 HNHMHER	47.88	20.01
Mátra Mts	Parádfürdő, Pisztrángos-lake	MM10	B. bombina x B. variegata	1967.05.12	2002.682.4	47.88	20.01
Mátra Mts	Parádfürdő, Pisztrángos-lake	MM22	B. bombina x B. variegata	1967.05.12	HNHMHER 67.18.1	48.54	21.45
Mátra Mts	Parádfürdő, Pisztrángos-lake	MM23	B. variegata	1969.07.07	HNHMHER 69.8.1	48.54	21.45
Mátra Mts	Parádfürdő, Pisztrángos-lake	MM24	B. bombina x B. variegata	1969.07.07	HNHMHER 69.9.1	48.43	21.43
Őrség	Cák	SM13	B. variegata	1976.04.05	SAMU 87.143.1.4.	47.36	16.51
Őrség	Cák	SM14	B. variegata	1976.04.05	SAMU 87.143.1.4.	47.36	16.51
Őrség	Cák	SM15	B. variegata	1976.04.05	SAMU 87.143.1.4.	47.36	16.51
Őrség	Cák	SM16	B. variegata	1976.04.05	SAMU 87.143.1.4.	47.36	16.51
Őrség	Farkasfa	SM4	B. variegata	1983.05.27	SAMU 87.158.1.1.	46.91	16.31
Őrség	Orfalu	SM3	B. variegata	1977.07.13	SAMU 87.156.1.2. HNHMHER	46.88	16.29
Őrség	Őriszentpéter, Disznós stream	MO1	B. variegata	1970.08.05-08.	2002.614.1	46.84	16.40
Őrség	Őriszentpéter, Disznós stream	MO2	B. variegata	1970.08.05-08.	HNHMHER 2002.614.2 HNHMHER	46.84	16.40
Őrség	Őriszentpéter, Disznós stream	MO3	B. variegata	1970.08.05-08.	2002.614.3 HNHMHER	46.84	16.40
Őrség	Őriszentpéter, Disznós stream	MO4	B. variegata	1970.08.05-08.	2002.614.4 HNHMHER	46.84	16.40
Őrség	Őriszentpéter, Disznós stream	MO5	B. variegata	1970.08.05-08.	2002.614.5 HNHMHER	46.84	16.40
Őrség	Őriszentpéter, Disznós stream	MO6	B. bombina	1970.08.05-08.	2002.644.1 HNHMHER	46.84	16.40
Őrség	Őriszentpéter, Disznós stream	MO7	B. bombina	1970.08.05-08.	2002.644.2 HNHMHER	46.84	16.40
Őrség	Őriszentpéter, Disznós stream	MO8	B. bombina	1970.08.05-08.	2002.644.3 HNHMHER	46.84	16.40
Őrség	Őriszentpéter, Disznós stream	MO9	B. bombina	1970.08.05-08.	2002.644.4 HNHMHER	46.84	16.40
Őrség	Őriszentpéter, Disznós stream	MO10	B. bombina	1970.08.05-08.	2002.644.5	46.84	16.40
Őrség	Őriszentpéter, Disznós stream	MO11	B. bombina	1970.08.05-08.	HNHMHER	46.84	16.40

					2002.644.6		
<i>"</i> , '		1.610		1050 00 05 00	HNHMHER	46.04	16.40
Orseg	Oriszentpéter, Disznós stream	MO12	B. bombina	1970.08.05-08.	2002.644.7	46.84	16.40
Orség	Oriszentpéter, Disznós stream	MO17	B. bombina	1970.08.05-08.	HNHMHER 70.88.1	46.84	16.40
Őrség	Öriszentpéter, Disznós stream	MO18	B. variegata	1970.08.05-08.	HNHMHER 70.89.1	46.84	16.40
Őrség	Sopron	SM5	B. variegata	1971.06.10	SAMU 87.147.1.1.	47.39	16.50
Őrség	Szentgotthárd	SM9	B. variegata	1977.07.13	SAMU 87.205.1.2.	46.94	16.30
Őrség	Szentgotthárd	SM10	B. variegata	1977.07.13	SAMU 87.205.1.2. HNHMHER	46.94	16.30
Őrség	Szőce	MO13	B. bombina x B. variegata	1990.08.13	2002.673.1 HNHMHER	46.89	16.57
Őrség	Szőce	MO14	B. bombina x B. variegata	1990.08.13	2002.673.2 HNHMHER	46.89	16.57
Őrség	Szőce	MO15	B. bombina x B. variegata	1990.08.13	2002.673.3 HNHMHER	46.89	16.57
Őrség	Szőce	MO16	B. bombina x B. variegata	1990.08.13	2002.673.4	46.89	16.57
Őrség	Szőce	MO19	B. bombina x B. variegata	1990.08.13	HNHMHER 90.53.1	46.89	16.57
Őrség	Velem	SM17	B. variegata	1982.05.13	SAMU 87.124.1.3	47.35	16.48
Őrség	Velem	SM18	B. variegata	1982.05.13	SAMU 87.124.1.3	47.35	16.48
Őrség	Velem	SM19	B. variegata	1982.05.13	SAMU 87.124.1.3	47.35	16.48
Visegrádi Mts	Leányfalu, Csíkos lake	MP8	B. bombina	1952.05.20	HNHMHER 57.16.1 HNHMHER	47.72	19.06
Visegrádi Mts	Leányfalu, Rekettyés lake	MP1	B. bombina	1960.04.04	2002.554.1 HNHMHER	47.72	19.06
Visegrádi Mts	Leányfalu, Rekettyés lake	MP2	B. bombina	1960.04.04	2002.554.2	47.72	19.06
Visegrádi Mts	Leányfalu, Rekettyés lake	MP9	B. bombina	1960.04.04	HNHMHER 60.77.1	47.72	19.06
Visegrádi Mts	Leányfalu, Rekettyés lake	MP10	B. bombina	1960.04.04	HNHMHER 60.91.1 HNHMHER	47.72	19.06
Visegrádi Mts	Leányfalu, Sztradovavalley	MP4	B. variegata	2005.06.09	2006.136.1 HNHMHER	47.72	19.06
Visegrádi Mts	Leányfalu, Sztradovavalley	MP5	B. variegata	2005.06.09	2006.136.2 HNHMHER	47.72	19.06
Visegrádi Mts	Leányfalu, Sztradovavalley	MP6	B. variegata	2005.06.01	2007.109.1 HNHMHER	47.72	19.06
Visegrádi Mts	Leányfalu, Sztradovavalley	MP7	B. variegata	2005.06.01	2007.109.2	47.72	19.06

Zemplén Mts	Füzér	MZ36	B. variegata	1977.04.03-08.	HNHMHER 76.138.1 HNHMHER	48.54	21.46
Zemplén Mts	Füzér	MZ5	B. variegata	1969.05.10	2002.612.1 HNHMHER	48.54	21.46
Zemplén Mts	Füzér, belowthecastle	MZ1	B. variegata	1959.06.12	2002.611.1 HNHMHER	48.54	21.46
Zemplén Mts	Füzér, belowthecastle	MZ2	B. variegata	1959.06.12	2002.611.2 HNHMHER	48.54	21.46
Zemplén Mts	Füzér, belowthecastle	MZ3	B. variegata	1959.06.12	2002.611.3 HNHMHER	48.54	21.46
Zemplén Mts	Füzér, belowthecastle	MZ4	B. variegata	1959.06.12	2002.611.5	48.54	21.46
Zemplén Mts	Füzér, belowthecastle	MZ32	B. variegata	1960.05.16-21.	HNHMHER 59.228.1 HNHMHER	48.54	21.46
Zemplén Mts	Füzér, Great Milic	MZ12	B. variegata	1960.07.12-14.	2002.631.10 HNHMHER	48.43	21.44
Zemplén Mts	Füzér, Great Milic	MZ13	B. variegata	1960.07.12-14.	2002.631.12 HNHMHER	48.43	21.43
Zemplén Mts	Füzér, Great Milic	MZ14	B. variegata	1960.07.12-14.	2002.631.4 HNHMHER	48.43	21.43
Zemplén Mts	Füzér, Great Milic	MZ15	B. variegata	1960.07.12-14.	2002.631.7	48.41	21.40
Zemplén Mts	Füzér, Great Milic	MZ34	B. variegata	1960.07.13-15.	HNHMHER 60.172.1 HNHMHER	48.88	21.46
Zemplén Mts	Istvánkút, Pálháza	MZ7	B. variegata	1960.05.16-21.	2002.626.8 HNHMHER	48.46	21.47
Zemplén Mts	Istvánkút, Pálháza	MZ8	B. variegata	1957.05.30	2002.627.1 HNHMHER	48.46	21.47
Zemplén Mts	Kőkapu	MZ9	B. variegata	1957.05.30	2002.629.4 HNHMHER	48.43	21.44
Zemplén Mts	Kőkapu	MZ10	B. variegata	1957.05.30	2002.629.9 HNHMHER	48.43	21.44
Zemplén Mts	Kőkapu	MZ11	B. variegata	1957.05.31	2002.630.1	48.43	21.44
Zemplén Mts	Kőkapu	MZ29	B. variegata	1958.06.12	HNHMHER 57.186.1	48.43	21.44
Zemplén Mts	Pálháza, Istvánkút, Istvánkútispring	MZ28	B. variegata	1957.05.31	HNHMHER 57.182.1	48.46	21.47
Zemplén Mts	Pálháza, Istvánkút, Istvánkútispring	MZ33	B. variegata	1960.07.12-14.	HNHMHER 60.112.1 HNHMHER	48.46	21.47
Zemplén Mts	Rostalló	MZ24	B. variegata	1977.04.03-08.	2002.638.1	48.42	21.43
Zemplén Mts	Rostalló	MZ25	B. variegata	1977.04.03-08.	HNHMHER	48.42	21.43

					2002.638.5		
Zemplén Mts	Rostalló	MZ26	B. variegata	1977.04.03-08.	HNHMHER 2002.638.7 HNHMHER	48.42	21.43
Zemplén Mts	Rostalló	MZ27	B. variegata	1957.05.30	2002.638.8	48.42	21.43
Zemplén Mts	Rostalló, Pálháza	MZ37	B. variegata	1977.04.03-08.	HNHMHER 77.43.1 HNHMHER	48.42	21.43
Zemplén Mts	Suslya Hill	MZ16	B. variegata	1960.07.13-15.	2002.634.1 HNHMHER	48.41	21.40
Zemplén Mts	Suslya Hill	MZ17	B. variegata	1960.07.13-15.	2002.634.3 HNHMHER	48.43	21.43
Zemplén Mts	Suslya Hill	MZ18	B. variegata	1960.07.13-15.	2002.634.5 HNHMHER	48.43	21.43
Zemplén Mts	Suslya Hill	MZ19	B. variegata	1959.06.12	2002.634.6	48.43	21.43
Zemplén Mts	Suslya Hill	MZ35	B. variegata	1969.05.10	HNHMHER 60.181.1 HNHMHER	48.43	21.43
Zemplén Mts	Telkibánya, Ósvavalley	MZ20	B. variegata	1959.06.12	2002.637.1 HNHMHER	48.48	21.34
Zemplén Mts	Telkibánya, Ósvavalley	MZ21	B. variegata	1959.06.12	2002.637.2 HNHMHER	48.48	21.34
Zemplén Mts	Telkibánya, Ósvavalley	MZ22	B. variegata	1959.06.12	2002.637.4 HNHMHER	48.48	21.34
Zemplén Mts	Telkibánya, Ósvavalley	MZ23	B. variegata	1977.04.03-08.	2002.637.5	48.48	21.34
Zemplén Mts	Telkibánya, Ósvavalley	MZ31	B. variegata	1959.06.12	HNHMHER 59.227.1 HNHMHER	48.48	21.34
Zemplén Mts	Vadásztető	MZ6	B. variegata	1958.06.12	2002.625.5	48.46	21.47
Zemplén Mts	Vadás ztető	MZ30	B. variegata	1959.06.12	HNHMHER 58.686.1	48.46	21.47
	Sc						