VARIANCE ESTIMATES FOR RANDOM DISC-POLYGONS IN SMOOTH CONVEX DISCS

FERENC FODOR,* University of Szeged
[
Email address: fodorf@math.u-szeged.hu
VIKTOR VíGH,** University of Szeged
[
Email address: vigvik@gmail.com

Abstract

In this paper we prove asymptotic upper bounds on the variance of the number of vertices and missed area of inscribed random disc-polygons in smooth convex discs whose boundary is C_{+}^{2}. We also consider a circumscribed variant of this probability model in which the convex disc is approximated by the intersection of random circles. Keywords: Disc-polygon, random approximation, variance 2010 Mathematics Subject Classification: Primary 52A22

Secondary 60D05

1. Introduction and results

Let K be a convex disc (compact convex set with non-empty interior) in the Euclidean plane \mathbb{R}^{2}. We will use the notation B^{2} for origin centred unit radius closed circular disc, and S^{1} for its boundary, the unit circle. The area of Lebesgue measurable subsets of \mathbb{R}^{2} is denoted by $A(\cdot)$. Assume that the boundary ∂K is of class C_{+}^{2}, that is, two times continuously differentiable and the curvature at every point of ∂K is strictly positive. Let $\kappa(x)$ denote the curvature at $x \in \partial K$, and let $\kappa_{m}\left(\kappa_{M}\right)$ be the minimum (maximum) of $\kappa(x)$ over ∂K. It is known, see 28, Section 3.2], that in this case a closed circular disc of radius $r_{m}=1 / \kappa_{M}$ rolls freely in K, that is, for each $x \in \partial K$, there exists a $p \in \mathbb{R}^{2}$ with $x \in r_{m} B^{2}+p \subset K$. Moreover, K slides freely in a circle of

[^0]radius $r_{M}=1 / \kappa_{m}$, which means that for each $x \in \partial K$ there is a vector $p \in \mathbb{R}^{2}$ such that $x \in r_{M} \partial B^{2}+p$ and $K \subset r_{M} B^{2}+p$. The latter yields that for any two points $x, y \in K$, the intersection of all closed circular discs of radius $r \geq r_{M}$ containing x and y, denoted by $[x, y]_{r}$ and called the r-spindle of x and y, is also contained in K. Furthermore, for any $X \subset K$, the intersection of all radius $r \geq r_{M}$ circles containing X, called the closed r-hyperconvex hull (or r-hull for short) and denoted by conv ${ }_{r}(X)$, is contained in K. The concept of hyperconvexity, also called spindle convexity or r convexity, can be traced back to Mayer's 1935 paper 20. For a systematic treatment of geometric properties of hyperconvex sets and further references, see, for example, the recent papers by Bezdek, Lángi, Naszódi, Papez 8, Fodor, Kurusa, Vígh [17, and in a more general setting the paper by Jahn, Martini, Richter 19]. This notion of convexity arises naturally in many questions where a convex set can be represented as the intersection of equal radius closed balls. As recent examples of such problems, we mention the Kneser-Poulsen conjecture, see, for example, Bezdek, Connelly 7], Bezdek [6], Bezdek, Naszódi (9], and inequalities for intrinsic volumes by Pauris, Pivovarov 21. A more complete list can be found in [8], for short overviews see also Fejes Tóth, Fodor [14], Fodor, Kevei, Vígh [16], and Fodor, Vígh 18.

Let K be a convex disc with C_{+}^{2} boundary, and let x_{1}, x_{2}, \ldots be independent random points chosen from K according to the uniform probability distribution, and write $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$. The classical convex hull conv $\left(X_{n}\right)$ is a random convex polygon in K. The geometric properties of conv $\left(X_{n}\right)$ have been investigated extensively in the literature. For more information on this topic and further references we refer to the surveys by Bárány [1], Schneider [27,29, Weil and Wieacker 36 and the book by Schneider and Weil 30.

Here we examine the following random model. Let $r \geq r_{M}$, and let $K_{n}^{r}=\operatorname{conv}{ }_{r}\left(X_{n}\right)$ be the r-hull of X_{n}, which is a (uniform) random disc-polygon in K. Let $f_{0}\left(K_{n}^{r}\right)$ denote the number of vertices (and also the number of edges) of K_{n}^{r}, and let $A\left(K_{n}^{r}\right)$ denote the area of K_{n}^{r}. The asymptotic behaviour of the expectation of the random variables $A\left(K_{n}^{r}\right)$ and $f_{0}\left(K_{n}^{r}\right)$ was investigated by Fodor, Kevei and Vígh in 16, where (among others) the following two theorems were proved.

Theorem 1. ($[16$, Theorem 1.1, p. 901.) Let K be a convex disc whose boundary is
of class C_{+}^{2}. For any $r>r_{M}$ it holds that

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(f_{0}\left(K_{n}^{r}\right)\right) \cdot n^{-1 / 3}=\sqrt[3]{\frac{2}{3 A(K)}} \Gamma\left(\frac{5}{3}\right) \int_{\partial K}\left(\kappa(x)-\frac{1}{r}\right)^{1 / 3} \mathrm{~d} x
$$

and

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(A\left(K \backslash K_{n}^{r}\right)\right) \cdot n^{2 / 3}=\sqrt[3]{\frac{2 A(K)^{2}}{3}} \Gamma\left(\frac{5}{3}\right) \int_{\partial K}\left(\kappa(x)-\frac{1}{r}\right)^{1 / 3} \mathrm{~d} x
$$

Theorem 2. (16, Theorem 1.2 (1.7), p. 901.) For $r>0$ let $K=r B^{2}$ be the closed circular disc of radius r. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{E}\left(f_{0}\left(K_{n}^{r}\right)\right)=\frac{\pi^{2}}{2} \tag{1}
\end{equation*}
$$

and

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(A\left(K \backslash K_{n}^{r}\right)\right) \cdot n=\frac{r^{2} \cdot \pi^{3}}{3}
$$

$\Gamma(\cdot)$ denotes Euler's gamma function, and integration on ∂K is with respect to arc length.

Observe that in Theorem 2 the expectation $\mathbb{E}\left(f_{0}\left(K_{n}^{r}\right)\right)$ of the number of vertices tends to a constant as $n \rightarrow \infty$. This is a surprising fact that has no clear analogue in the classical convex case. A similar phenomenon was recently established by Bárány, Hug, Reitzner, Schneider [3] about the expectation of the number of facets of certain spherical random polytopes in halfspheres, see [3, Theorem 3.1].

We note that Theorem 1 can also be considered as a generalization of the classical asymptotic results of Rényi and Sulanke about the expectation of the vertex number and missed area of classical random convex polygons in smooth convex discs, see 24,25 , in the sense that it reproduces the formulas of Rényi and Sulanke in the limit as $r \rightarrow \infty$, see 16, Section 3].

Obtaining information on the second order properties of random variables associated with random polytopes is much harder than on first order properties. It is only recently that variance estimates, laws of large numbers, and central limit theorems have been proved in various models, see, for example, Bárány, Fodor, Vígh 2], Bárány, Reitzner [4], Bárány, Vu 5], Fodor, Hug, Ziebarth (15], Böröczky, Fodor, Reitzner, Vígh 11, Reitzner 22, 23, Schreiber, Yukich 31, Vu 34, 35, and the very recent papers by Thäle, Turchi, Wespi 32], Turchi, Wespi [33. For an overview, we refer to Bárány [1] and Schneider 29].

In this paper, we prove the following asymptotic estimates for the variance of $f_{0}\left(K_{n}^{r}\right)$ and $A\left(K_{n}^{r}\right)$ in the spirit of Reitzner 22.

For the order of magnitude, we use the following common symbols: if for two functions $f, g: I \rightarrow \mathbb{R}, I \subset \mathbb{R}$, there is a constant $\gamma>0$ such that $|f| \leq \gamma g$ on I, then we write $f \ll g$ or $f=O(g)$. If $f \ll g$ and $g \ll f$, then this fact is indicated by the notation $f \approx g$.

Theorem 3. With the same hypotheses as in Theorem 1, it holds that

$$
\begin{equation*}
\operatorname{Var}\left(f_{0}\left(K_{n}^{r}\right)\right) \ll n^{\frac{1}{3}} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}\left(A\left(K_{n}^{r}\right)\right) \ll n^{-\frac{5}{3}} \tag{3}
\end{equation*}
$$

where the implied constants depend only on K and r.
In the special case when K is the closed circular disc of radius r, we prove the following.

Theorem 4. With the same hypotheses as in Theorem 2, it holds that

$$
\begin{equation*}
\operatorname{Var}\left(f_{0}\left(K_{n}^{r}\right)\right) \approx \text { const. } \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\operatorname{Var}\left(A\left(K_{n}^{r}\right)\right)\right) \ll n^{-2} \tag{5}
\end{equation*}
$$

where the implied constants depend only on r.
From Theorem 3 we can conclude the following strong laws of large numbers. Since the proof follows a standard argument based on Chebysev's inequality and the BorellCantelli lemma, see, for example, Böröczky, Fodor, Reitzner, Vígh [11, p. 2294] or Reitzner [22, Section 5], we omit the details.

Theorem 5. With the same hypotheses as in Theorem 1, it holds with probability 1 that

$$
\lim _{n \rightarrow \infty} f_{0}\left(K_{n}^{r}\right) \cdot n^{-1 / 3}=\sqrt[3]{\frac{2}{3 A(K)}} \Gamma\left(\frac{5}{3}\right) \int_{\partial K}\left(\kappa(x)-\frac{1}{r}\right)^{1 / 3} \mathrm{~d} x
$$

and

$$
\lim _{n \rightarrow \infty} A\left(K \backslash K_{n}^{r}\right) \cdot n^{2 / 3}=\sqrt[3]{\frac{2 A(K)^{2}}{3}} \Gamma\left(\frac{5}{3}\right) \int_{\partial K}\left(\kappa(x)-\frac{1}{r}\right)^{1 / 3} \mathrm{~d} x
$$

In the theory of random polytopes there is more information on models in which the polytopes are generated as the convex hull of random points from a convex body K than on polyhedral sets produced by random closed half-spaces containing K. For some recent results and references in this direction see, for example, Böröczky, Fodor, Hug [10], Böröczky, Schneider 12], Fodor, Hug, Ziebarth 15] and the survey by Schneider [29].

In Section 5, we consider a model of random disc-polygons that contain a given convex disc with C_{+}^{2} boundary. In this circumscribed probability model, we give asymptotic formulas for the expectation of the number of vertices of the random discpolygon, the area difference and the perimeter difference of the random disc-polygon and K, see Theorem 6. Furthermore, Theorem 7 provides an asymptotic upper bound on the variance of the number of vertices of the random disc-polygons.

The outline of the paper is the following. In Section 2 we collect some geometric facts that are needed for the arguments. Theorem 3 is proved in Section 3, and Theorem 4 is verified in Section 4. In Section 5, we discuss a different probability model in which K is approximated by the intersection of random closed circular discs. This model is a kind of dual to the inscribed one.

2. Preparations

We note that it is enough to prove Theorem 3 for the case when $r_{M}<1$ and $r=1$, and Theorem 4 for $r=1$. The general statements then follow by a simple scaling argument. Therefore, from now on we assume that $r=1$ and to simplify notation we write K_{n} for K_{n}^{1}.

Let \bar{B}^{2} denote the open unit ball of radius 1 centred at the origin o. A disc-cap (of radius 1) of K is a set of the form $K \backslash\left(\bar{B}^{2}+p\right)$ for some $p \in \mathbb{R}^{2}$.

We start with recalling the following notations from 16. Let x and y be two points from K. The two unit circles passing through x and y determine two disc-caps of K, which we denote by $D_{-}(x, y)$ and $D_{+}(x, y)$, respectively, such that $A\left(D_{-}(x, y)\right) \leq$ $A\left(D_{+}(x, y)\right)$. For brevity of notation, we write $A_{-}(x, y)=A\left(D_{-}(x, y)\right)$ and $A_{+}(x, y)=$ $A\left(D_{+}(x, y)\right)$. It was shown in 16] (see Lemma 3) that if the boundary of K is of class $C_{+}^{2}\left(r_{M}<1\right)$, then there exists a $\delta>0$ (depending only on K) with the property that
for any $x, y \in \operatorname{int} K$ it holds that $A_{+}(x, y)>\delta$.
We need some further technical lemmas about general disc-caps. Let $u_{x} \in S^{1}$ denote the (unique) outer unit normal to K at the boundary point x, and $x_{u} \in \partial K$ the unique boundary point with outer unit normal $u \in S^{1}$.

Lemma 1. (16, p. 905, Lemma 4.1..) Let K be a convex disc with C_{+}^{2} smooth boundary and assume that $\kappa_{m}>1$. Let $D=K \backslash\left(\bar{B}^{2}+p\right)$ be a non-empty disc-cap of K (as above). Then there exists a unique point $x_{0} \in \partial K \cap \partial D$ such that there exists a $t \geq 0$ with $B^{2}+p=B^{2}+x_{0}-(1+t) u_{x_{0}}$. We refer to x_{0} as the vertex of D and to t as the height of D.

Let $D(u, t)$ denote the disc-cap with vertex $x_{u} \in \partial K$ and height t. Note that for each $u \in S^{1}$, there exists a maximal positive constant $t^{*}(u)$ such that $\left(B+x_{u}-(1+t) u\right) \cap K \neq$ \emptyset for all $t \in\left[0, t^{*}(u)\right]$. For simplicity we let $A(u, t)=A(D(u, t))$ and let $\ell(u, t)$ denote the arc-length of $\partial D(u, t) \cap\left(\partial B+x_{u}-(1+t) u\right)$.

We need the following limit relations about the behaviour of $A(u, t)$ and $\ell(u, t)$, that we recall from 16, p. 905, Lemma 4.2]:

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \ell\left(u_{x}, t\right) \cdot t^{-1 / 2}=2 \sqrt{\frac{2}{\kappa(x)-1}}, \quad \lim _{t \rightarrow 0^{+}} A\left(u_{x}, t\right) \cdot t^{-3 / 2}=\frac{4}{3} \sqrt{\frac{2}{\kappa(x)-1}} \tag{6}
\end{equation*}
$$

It is clear that (6) implies that $A(u, t)$ and $\ell(u, t)$ satisfy the following relations uniformly in u :

$$
\begin{equation*}
\ell\left(u_{x}, t\right) \approx t^{1 / 2}, \quad A\left(u_{x}, t\right) \approx t^{3 / 2} \tag{7}
\end{equation*}
$$

where the implied constants depend only on K.
Let D be a disc-cap of K with vertex x. For a line $e \subset \mathbb{R}^{2}$ with $e \perp u_{x}$, let e_{+} denote the closed half plane containing x. Then there exist a maximal cap $C_{-}(D)=$ $K \cap e_{+} \subset D$, and a minimal cap $C_{+}(D)=e_{+}^{\prime} \cap K \supset D$.

Claim 1. There exists a constant \hat{c} depending only K such that if the height of the disc-cap D is sufficiently small, then

$$
C_{-}(D)-x \supset \hat{c}\left(C_{+}(D)-x\right)
$$

Proof. Let us denote by $h_{-}\left(h_{+}\right)$the height of $C_{-}(D)\left(C_{+}(D)\right.$ resp. $)$, which is the distance of x and e (e^{\prime} resp.). By convexity, it is enough to find a constant $\hat{c}>0$ such that for all disc-caps of K with sufficiently small height $h_{+} / h_{-}<\hat{c}$ holds.

Choose an arbitrary $R \in\left(1 / \kappa_{m}, 1\right)$, and consider $\hat{B}=R B^{2}+x-R u_{x}$, the disc of radius R that supports K in x. Clearly, $\hat{B} \supset K$ implies $D=K \cap\left(\bar{B}^{2}+p\right) \subset$ $\left(\hat{B} \cap\left(\bar{B}^{2}+p\right)=\hat{D}\right.$. Also, for the respective heights \hat{h}_{-}and \hat{h}_{+}of $C_{-}(\hat{D})$ and $C_{+}(\hat{D})$, we have $\hat{h}_{-}=h_{-}$and $\hat{h}_{+}>h_{+}$. Thus, it is enough to find \hat{c} such that $\hat{h}_{+} / \hat{h}_{-}<\hat{c}$. The existence of such \hat{c} is clear from elementary geometry.

Let $x_{i}, x_{j}(i \neq j)$ be two points from X_{n}, and let $B\left(x_{i}, x_{j}\right)$ be one of the unit discs that contain x_{i} and x_{j} on its boundary. The shorter arc of $\partial B\left(x_{i}, x_{j}\right)$ forms an edge of K_{n} if the entire set X_{n} is contained in $B\left(x_{i}, x_{j}\right)$. Note that it may happen that the pair x_{i}, x_{j} determines two edges of K_{n} if the above condition holds for both unit discs that contain x_{i} and x_{j} on its boundary.

We recall that the Hausdorff distance $d_{H}(A, B)$ of two non-empty compact sets $A, B \subset \mathbb{R}^{2}$ is defined as

$$
d_{H}(A, B):=\max \left\{\max _{a \in A} \min _{b \in B} d(a, b), \max _{a \in A} \min _{b \in B} d(a, b)\right\}
$$

where $d(a, b)$ is the Euclidean distance of a and b.
First, we note that for the proof of Theorem 3. similar to Reitzner 22], we may assume that the Hausdorff distance $d_{H}\left(K, K_{n}\right)$ of K and K_{n} is at most ε_{K}, where $\varepsilon_{K}>0$ is a suitably chosen constant. This can be seen the following way. Assume that $d_{H}\left(K, K_{n}\right) \geq \varepsilon_{K}$. Then there exists a point x on the boundary of K_{n} such that $\varepsilon_{K} B^{2}+x \subset K$. There exists a supporting circle of K_{n} through x that determines a disc-cap of height at least ε_{K}. By the above remark, the probability content of this disc-cap is at least $c_{K}>0$, where c_{K} is a suitable constant depending on K and ε_{K}. Then

$$
\begin{equation*}
\mathbb{P}\left(d_{H}\left(K, K_{n}\right) \geq \varepsilon_{K}\right) \leq\left(1-c_{K}\right)^{n} \tag{8}
\end{equation*}
$$

Our main tool in the variance estimates is the Efron-Stein inequality [13], which has previously been used to provide upper estimates on the variance of various geometric quantities associated with random polytopes in convex bodies, see Reitzner [22], and for further references in this topic we recommend the recent survey articles by Bárány (1) and Schneider 29].

3. Proof of Theorem 3

We present the proof of the asymptotic upper bound on the variance of the vertex number in detail. Since the argument for the variance of the missed area is very similar, we only indicate the key steps in the last few paragraphs of this section. Our argument is similar to the one in Reitzner [22, Sections 4 and 6]. The basic idea of the argument rests on the Efron-Stein inequality, which bounds the variance of a random variable (in our case the vertex number or the missed area) in terms of expectations. To calculate the involved expectations we use some basic geometric properties of disc caps and the integral transformation 16, pp. 907-909], see also [26. Finally, the asymptotic estimate (11) in [11, pp. 2290] for the order of magnitude of beta integrals yields the desired asymptotic upper bound.

For the number of vertices of K_{n}, the Efron-Stein inequality 13 states the following

$$
\operatorname{Var} f_{0}\left(K_{n}\right) \leq(n+1) \mathbb{E}\left(f_{0}\left(K_{n+1}\right)-f_{0}\left(K_{n}\right)\right)^{2}
$$

Let x be an arbitrary point of K and let $x_{i} x_{j}$ be an edge of K_{n}. Following Reitzner [22], we say that the edge $x_{i} x_{j}$ is visible from x if x is not contained in K_{n} and it is not contained in the unit disc of the edge $x_{i} x_{j}$. For a point $x \in K \backslash K_{n}$, let $\mathcal{F}_{n}(x)$ denote the set of edges of K_{n} that can be seen from x, and for $x \in K_{n}$ set $\mathcal{F}_{n}(x)=\emptyset$. Let $F_{n}(x)=\left|\mathcal{F}_{n}(x)\right|$.

Let x_{n+1} be a uniform random point in K chosen independently from X_{n}. If $x_{n+1} \in$ K_{n}, then $f_{0}\left(K_{n+1}\right)=f_{0}\left(K_{n}\right)$. If, on the other hand, $x_{n+1} \notin K_{n}$, then

$$
\begin{aligned}
f_{0}\left(K_{n+1}\right) & =f_{0}\left(K_{n}\right)+1-\left(F_{n}\left(x_{n+1}\right)-1\right) \\
& =f_{0}\left(K_{n}\right)-F_{n}\left(x_{n+1}\right)+2
\end{aligned}
$$

Therefore,

$$
\left|f_{0}\left(K_{n+1}\right)-f_{0}\left(K_{n}\right)\right| \leq 2 F_{n}\left(x_{n+1}\right)
$$

and by the Efron-Stein jackknife inequality

$$
\begin{align*}
\operatorname{Var}\left(f_{0}\left(K_{n}\right)\right) & \leq(n+1) \mathbb{E}\left(f_{0}\left(K_{n+1}\right)-f_{0}\left(K_{n}\right)\right)^{2} \tag{9}\\
& \leq 4(n+1) \mathbb{E}\left(F_{n}^{2}\left(x_{n+1}\right)\right)
\end{align*}
$$

Similar to Reitzner, we introduce the following notation (see 22 p. 2147). Let $I=\left(i_{1}, i_{2}\right), i_{1} \neq i_{2}, i_{1}, i_{2} \in\{1,2, \ldots\}$ be an ordered pair of indices. Denote by F_{I} the shorter arc of the unique unit circle incident with $x_{i_{1}}$ and $x_{i_{2}}$ on which $x_{i_{1}}$ follows $x_{i_{2}}$ in the positive cyclic ordering of the circle. Let $\mathbb{1}(A)$ denote the indicator function of the event A. For the sake of brevity, we use the notation x_{1}, x_{2}, \ldots for the integration variables as well.

We wish to estimate the expectation $\mathbb{E}\left(F_{n}^{2}\left(x_{n+1}\right)\right)$ under the condition that $d_{H}\left(K, K_{n}\right)<$ ε_{K}. To compensate for the cases in which $d_{H}\left(K, K_{n}\right) \geq \varepsilon_{k}$, using 8, we add an error term $O\left(\left(1-c_{K}\right)^{n}\right)$.

$$
\begin{align*}
& \mathbb{E}\left(F_{n}\left(x_{n+1}\right)^{2}\right)=\frac{1}{A(K)^{n+1}} \int_{K} \int_{K^{n}}\left(\sum_{I} \mathbb{1}\left(F_{I} \in \mathcal{F}_{n}\left(x_{n+1}\right)\right)\right)^{2} \mathrm{~d} X_{n} \mathrm{~d} x_{n+1} \\
& =\frac{1}{A(K)^{n+1}} \int_{K} \int_{K^{n}}\left(\sum_{I} \mathbb{1}\left(F_{I} \in \mathcal{F}_{n}\left(x_{n+1}\right)\right)\right) \\
& \quad \times\left(\sum_{J} \mathbb{1}\left(F_{J} \in \mathcal{F}_{n}\left(x_{n+1}\right)\right)\right) \mathrm{d} X_{n} \mathrm{~d} x_{n+1} \\
& \leq \frac{1}{A(K)^{n+1}} \sum_{I} \sum_{J} \int_{K} \int_{K^{n}} \mathbb{1}\left(F_{I} \in \mathcal{F}_{n}\left(x_{n+1}\right)\right) \mathbb{1}\left(F_{J} \in \mathcal{F}_{n}\left(x_{n+1}\right)\right) \\
& \quad \times \mathbb{1}\left(d_{H}\left(K, K_{n}\right) \leq \varepsilon_{K}\right) \mathrm{d} X_{n} \mathrm{~d} x_{n+1}+O\left(\left(1-c_{K}\right)^{n}\right) \tag{10}
\end{align*}
$$

Choose ε_{K} so small that $A\left(K \backslash K_{n}\right)<\delta$. Note that with this choice of ε_{K} only one of the two shorter arcs determined by $x_{i_{1}}$ and $x_{i_{2}}$ can determine an edge of K_{n}.

Now we fix the number k of common elements of I and J, that is, $|I \cap J|=k$. Let F_{1} denote one of the shorter arcs spanned by x_{1} and x_{2}, and let F_{2} be one of the shorter arcs determined by x_{3-k} and x_{4-k}. Since the random points are independent, we have that

$$
\begin{align*}
(10)< & \frac{1}{A(K)^{n+1}} \sum_{k=0}^{2}\binom{n}{2}\binom{2}{k}\binom{n-2}{2-k} \int_{K} \int_{K^{n}} \mathbb{1}\left(F_{1} \in \mathcal{F}_{n}\left(x_{n+1}\right)\right) \\
& \times \mathbb{1}\left(F_{2} \in \mathcal{F}_{n}\left(x_{n+1}\right)\right) \mathbb{1}\left(d_{H}\left(K, K_{n}\right) \leq \varepsilon_{K}\right) \mathrm{d} X_{n} \mathrm{~d} x_{n+1}+O\left(\left(1-c_{K}\right)^{n}\right) \\
\ll & \frac{1}{A(K)^{n+1}} \sum_{k=0}^{2} n^{4-k} \int_{K} \cdots \int_{K} \mathbb{1}\left(F_{1} \in \mathcal{F}_{n}\left(x_{n+1}\right)\right) \\
& \times \mathbb{1}\left(F_{2} \in \mathcal{F}_{n}\left(x_{n+1}\right)\right) \mathbb{1}\left(d_{H}\left(K, K_{n}\right) \leq \varepsilon_{K}\right) \mathrm{d} X_{n} \mathrm{~d} x_{n+1}+O\left(\left(1-c_{K}\right)^{n}\right) . \tag{11}
\end{align*}
$$

Since the roles of F_{1} and F_{2} are symmetric, we may assume that diam $C_{+}\left(D_{1}\right) \geq$
$\operatorname{diam} C_{+}\left(D_{2}\right)$, where $D_{1}=D_{-}\left(x_{1}, x_{2}\right)$ and $D_{2}=D_{-}\left(x_{3-k}, x_{4-k}\right)$ are the corresponding disc-caps, and $\operatorname{diam}(\cdot)$ denotes the diameter of a set. Thus,

$$
\begin{align*}
& \text { (11) } \frac{1}{A(K)^{n+1}} \sum_{k=0}^{2} n^{4-k} \int_{K} \int_{K^{n}} \mathbb{1}\left(F_{1} \in \mathcal{F}_{n}\left(x_{n+1}\right)\right) \\
& \times \mathbb{1}\left(F_{2} \in \mathcal{F}_{n}\left(x_{n+1}\right)\right) \mathbb{1}\left(\operatorname{diam} C_{+}\left(D_{1}\right) \geq \operatorname{diam} C_{+}\left(D_{2}\right)\right) \\
& \tag{12}\\
& \times \mathbb{1}\left(d_{H}\left(K, K_{n}\right) \leq \varepsilon_{K}\right) \mathrm{d} X_{n} \mathrm{~d} x_{n+1}+O\left(\left(1-c_{K}\right)^{n}\right)
\end{align*}
$$

Clearly, x_{n+1} is a common point of the disc caps D_{1} and D_{2}, so we may write that

$$
\begin{align*}
(12) \leq & \frac{1}{A(K)^{n+1}} \sum_{k=0}^{2} n^{4-k} \int_{K} \int_{K^{n}} \mathbb{1}\left(F_{1} \in \mathcal{F}_{n}\left(x_{n+1}\right)\right) \\
& \times \mathbb{1}\left(D_{1} \cap D_{2} \neq \emptyset\right) \mathbb{1}\left(\operatorname{diam} C_{+}\left(D_{1}\right) \geq \operatorname{diam} C_{+}\left(D_{2}\right)\right) \\
& \times \mathbb{1}\left(d_{H}\left(K, K_{n}\right) \leq \varepsilon_{K}\right) \mathrm{d} X_{n} \mathrm{~d} x_{n+1}+O\left(\left(1-c_{K}\right)^{n}\right) \tag{13}
\end{align*}
$$

In order for F_{1} to be an edge of K_{n}, it is necessary that $x_{5-k}, \ldots x_{n} \in K \backslash D_{1}$, and for $F_{1} \in \mathcal{F}_{n}\left(x_{n+1}\right) x_{n+1}$ must be in D_{1}. Therefore

$$
\begin{align*}
(13)< & \left.\frac{1}{A(K)^{n+1}} \sum_{k=0}^{2} n^{4-k} \int_{K} \cdots \int_{K}\left(A(K)-A\left(D_{1}\right)\right)\right)^{n-4+k} A\left(D_{1}\right) \\
& \times \mathbb{1}\left(D_{1} \cap D_{2} \neq \emptyset\right) \mathbb{1}\left(\operatorname{diam} C_{+}\left(D_{1}\right) \geq \operatorname{diam} C_{+}\left(D_{2}\right)\right) \\
& \times \mathbb{1}\left(d_{H}\left(K, K_{n}\right) \leq \varepsilon_{K}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{4-k}+O\left(\left(1-c_{K}\right)^{n}\right) \\
\ll & \sum_{k=0}^{2} n^{4-k} \int_{K} \cdots \int_{K}\left(1-\frac{A\left(D_{1}\right)}{A(K)}\right)^{n-4+k} \frac{A\left(D_{1}\right)}{A(K)} \\
& \times \mathbb{1}\left(D_{1} \cap D_{2} \neq \emptyset\right) \mathbb{1}\left(\operatorname{diam} C_{+}\left(D_{1}\right) \geq \operatorname{diam} C_{+}\left(D_{2}\right)\right) \\
& \times \mathbb{1}\left(d_{H}\left(K, K_{n}\right) \leq \varepsilon_{K}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{4-k}+O\left(\left(1-c_{K}\right)^{n}\right) \tag{14}
\end{align*}
$$

Reitzner proved (see 22, pp. 2149-2150]) that if $D_{1} \cap D_{2} \neq \emptyset, d_{H}\left(K, K_{n}\right) \leq \varepsilon_{K}$ and $\operatorname{diam} C_{+}\left(D_{1}\right) \geq \operatorname{diam} C_{+}\left(D_{2}\right)$ then there exists a constant \bar{c} (depending only on K) such that $C_{+}\left(D_{2}\right) \subset \bar{c}\left(C_{+}\left(D_{1}\right)-x_{D_{1}}\right)+x_{D_{1}}$, where $x_{D_{1}}$ is the vertex of D_{1}. Combining this with Claim 1 we obtain that there is a constant c_{1} depending only on K, such that $D_{2} \subset c_{1}\left(D_{1}-x_{D_{1}}\right)+x_{D_{1}}$. Hence $A\left(D_{2}\right) \leq c_{1}^{2} A\left(D_{1}\right)$, and therefore

$$
\begin{array}{rl}
\int_{K} \cdots \int_{K} & \mathbb{1}\left(D_{1} \cap D_{2} \neq \emptyset\right) \mathbb{1}\left(\operatorname{diam} C_{c}\left(D_{1}\right) \geq \operatorname{diam} C_{c}\left(D_{2}\right)\right) \\
& \times \mathbb{1}\left(d_{H}\left(K, K_{n}\right) \leq \varepsilon_{K}\right) \mathrm{d} x_{3} \cdots \mathrm{~d} x_{4-k}
\end{array} \ll A\left(D_{1}\right)^{2-k} .
$$

We continue by estimating (14) term by term (omitting the $O\left(\left(1-c_{K}\right)^{n}\right)$ term).

$$
\begin{align*}
& n^{4-k} \int_{K} \cdots \int_{K}\left(1-\frac{A\left(D_{1}\right)}{A(K)}\right)^{n-4+k} \frac{A\left(D_{1}\right)}{A(K)} \mathbb{1}\left(D_{1} \cap D_{2} \neq \emptyset\right) \\
& \quad \times \mathbb{1}\left(\operatorname{diam} C_{c}\left(D_{1}\right) \geq \operatorname{diam} C_{c}\left(D_{2}\right)\right) \mathbb{1}\left(d_{H}\left(K, K_{n}\right) \leq \varepsilon_{K}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{4-k} \\
& \ll n^{4-k} \int_{K} \int_{K}\left(1-\frac{A\left(D_{1}\right)}{A(K)}\right)^{n-4+k}\left(\frac{A\left(D_{1}\right)}{A(K)}\right)^{3-k} \mathbb{1}\left(d_{H}\left(K, K_{n}\right) \leq \varepsilon_{K}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} . \tag{15}
\end{align*}
$$

Now, we use the following parametrization of $\left(x_{1}, x_{2}\right)$ the same way as in 16 to transform the integral. Let

$$
\left(x_{1}, x_{2}\right)=\Phi\left(u, t, u_{1}, u_{2}\right),
$$

where $u, u_{1}, u_{2} \in S^{1}$ and $0 \leq t \leq t_{0}(u)$ are chosen such that

$$
D(u, t)=D_{1}=D_{-}\left(x_{1}, x_{2}\right),
$$

and

$$
\left(x_{1}, x_{2}\right)=\left(x_{u}-(1+t) u+u_{1}, x_{u}-(1+t) u+u_{2}\right) .
$$

More information on this transformation can be found in [16, pp. 907-909]. Here we just recall that the Jacobian of Φ is

$$
|J \Phi|=\left(1+t-\frac{1}{\kappa\left(x_{u}\right)}\right)\left|u_{1} \times u_{2}\right|,
$$

where $u_{1} \times u_{2}$ denotes the cross product of u_{1} and u_{2}.
Let $L(u, t)=\partial D_{1} \cap \operatorname{int} K$, then we obtain that

$$
\text { (15) } \begin{align*}
& \ll n^{4-k} \int_{S^{1}} \int_{0}^{t^{*}(u)} \int_{L(u, t)} \int_{L(u, t)}\left(1-\frac{A(u, t)}{A(K)}\right)^{n-4+k}\left(\frac{A(u, t)}{A(K)}\right)^{3-k} \\
& \times\left(1+t-\frac{1}{\kappa\left(x_{u}\right)}\right)\left|u_{1} \times u_{2}\right| \mathrm{d} u_{1} \mathrm{~d} u_{2} \mathrm{~d} t \mathrm{~d} u \\
& =n^{4-k} \int_{S^{1}} \int_{0}^{t^{*}(u)}\left(1-\frac{A(u, t)}{A(K)}\right)^{n-4+k}\left(\frac{A(u, t)}{A(K)}\right)^{3-k} \\
& \times\left(1+t-\frac{1}{\kappa\left(x_{u}\right)}\right)(\ell(u, t)-\sin \ell(u, t)) \mathrm{d} t \mathrm{~d} u . \tag{16}
\end{align*}
$$

From now on the evaluation follows a standard way. First, we split the domain of integration with respect to t into two parts. Let $h(n)=(c \ln n / n)^{2 / 3}$, where $c>0$ is a sufficiently large absolute constant. Using (7), we have that $A(u, t) \geq \gamma t^{3 / 2}$ uniformly in $u \in S^{1}$, hence

$$
\begin{aligned}
& n^{4-k} \int_{S^{1}} \int_{h(n)}^{t^{*}(u)}\left(1-\frac{A(u, t)}{A(K)}\right)^{n-4+k}\left(\frac{A(u, t)}{A(K)}\right)^{3-k} \\
& \times\left(1+t-\frac{1}{\kappa\left(x_{u}\right)}\right)(\ell(u, t)-\sin \ell(u, t)) \mathrm{d} t \mathrm{~d} u \\
& \ll n^{4-k} \int_{S^{1}} \int_{h(n)}^{t^{*}(u)}\left(1-\frac{A(u, t)}{A(K)}\right)^{n-4+k} \mathrm{~d} t \mathrm{~d} u \\
& \ll n^{4-k} \int_{S^{1}} \int_{h(n)}^{t^{*}(u)}\left(1-\frac{\gamma t^{3 / 2}}{A(K)}\right)^{n-4+k} \mathrm{~d} t \mathrm{~d} u \\
& \ll n^{4-k}\left(1-\frac{\gamma h(n)^{3 / 2}}{A(K)}\right)^{n-4+k} \\
& =n^{4-k}\left(1-\frac{\gamma(c \ln n)}{n A(K)}\right)^{n-4+k}<n^{-2 / 3}
\end{aligned}
$$

if $\gamma c / A(K)$ is sufficiently large.
Therefore, it is enough to estimate the following part of (16)

$$
\begin{align*}
& n^{4-k} \int_{S^{1}} \int_{0}^{h(n)}\left(1-\frac{A(u, t)}{A(K)}\right)^{n-4+k}\left(\frac{A(u, t)}{A(K)}\right)^{3-k} \\
& \times\left(1+t-\frac{1}{\kappa\left(x_{u}\right)}\right)(\ell(u, t)-\sin \ell(u, t)) \mathrm{d} t \mathrm{~d} u . \tag{17}
\end{align*}
$$

Using (7) and the Taylor series of the sine function, we obtain that $\ell(u, t)-\sin \ell(u, t) \ll$ $t^{3 / 2}$. Since $\kappa(x)>1$ for all $x \in \partial K$, it follows that $0<1+t-\kappa\left(x_{u}\right)^{-1} \ll 1$. We also use 7 to estimate $A(u, t)$, similarly as before. Assuming that n is large enough, we obtain that

$$
\begin{aligned}
17 & \ll n^{4-k} \int_{S^{1}} \int_{0}^{h(n)}\left(1-\frac{\gamma t^{3 / 2}}{A(K)}\right)^{n-4+k}\left(t^{3 / 2}\right)^{3-k} \cdot 1 \cdot t^{3 / 2} \mathrm{~d} t \mathrm{~d} u \\
& \ll n^{4-k} \int_{0}^{h(n)}\left(1-\frac{\gamma t^{3 / 2}}{A(K)}\right)^{n-4+k} t^{\frac{12-3 k}{2}} \mathrm{~d} t \ll n^{-2 / 3}
\end{aligned}
$$

where the last inequality follows directly from formula (11) in [11, p. 2290]. Together with (9), this yields the desired upper estimate for $\operatorname{Var} f_{0}\left(K_{n}\right)$.

As the argument for the case of the missing area is very similar, we only highlight the major steps.

Again, we use the Efron-Stein inequality [13], which states the following for the missed area

$$
\operatorname{Var} A\left(K \backslash K_{n}\right) \leq(n+1) \mathbb{E}\left(A\left(K_{n+1}\right)-A\left(K_{n}\right)\right)^{2}
$$

Therefore, we need to estimate $\mathbb{E}\left(A\left(K_{n+1}\right)-A\left(K_{n}\right)\right)^{2}$. Following the ideas of Reitzner 22], one can see that

$$
\begin{align*}
& \mathbb{E}\left(A\left(K_{n+1}\right)-A\left(K_{n}\right)\right)^{2} \ll \sum_{I} \sum_{J} \int_{K} \int_{K^{n}} \mathbb{1}\left(F_{1} \in \mathcal{F}_{n}\left(x_{n+1}\right)\right) A\left(D_{1}\right) \\
& \quad \times \mathbb{1}\left(F_{2} \in \mathcal{F}_{n}\left(x_{n+1}\right)\right) A\left(D_{2}\right) \mathbb{1}\left(d_{H}\left(K, K_{n}\right) \leq \varepsilon_{K}\right) \mathrm{d} X_{n} \mathrm{~d} x_{n+1} \tag{18}
\end{align*}
$$

From here, we may closely follow the proof of (2), the only major difference being the extra $A\left(D_{1}\right) A\left(D_{2}\right) \leq A^{2}\left(D_{1}\right)$ factor in the integrand. After similar calculations as for the vertex number, we obtain that

$$
\begin{aligned}
18 & \ll n^{4-k} \int_{S^{1}} \int_{0}^{h(n)}\left(1-\frac{A(u, t)}{A(K)}\right)^{n-4+k}\left(\frac{A(u, t)}{A(K)}\right)^{5-k} \\
& \times\left(1+t-\frac{1}{\kappa\left(x_{u}\right)}\right)(\ell(u, t)-\sin \ell(u, t)) \mathrm{d} t \mathrm{~d} u \\
& \ll n^{4-k} \int_{0}^{h(n)}\left(1-c_{K} t^{3 / 2}\right)^{n-4+k} t^{\frac{20-3 k}{2}} \mathrm{~d} t \ll n^{-8 / 3}
\end{aligned}
$$

which proves (3) (the missing factor n comes from the Efron-Stein inequality).

4. The case of the circle

In this section we prove Theorem 4. In particular, we give a detailed proof of the estimate (4) for the variance of the number of vertices of the random disc-polygon. The case of the missed area (5) is very similar.

Without loss of generality, we may assume that $K=B^{2}$, and that $r=1$.
We begin by recalling from 16 that for any $u \in S^{1}$ and $0 \leq t \leq 2$, it holds that

$$
\ell(u, t)=2 \arcsin \sqrt{1-\frac{t^{2}}{2}}
$$

and

$$
A(u, t)=A(t)=t \sqrt{1-\frac{t^{2}}{2}}+2 \arcsin \frac{t}{2}
$$

Proof of Theorem (4). From (1) and Chebyshev's inequality, it follows that

$$
1=\mathbb{P}\left(\left|f_{0}\left(K_{n}^{1}\right)-\frac{\pi^{2}}{2}\right|>0.05\right) \leq \frac{\operatorname{Var}\left(f_{0}\left(K_{n}^{1}\right)\right)}{0.05^{2}}
$$

thus

$$
\operatorname{Var}\left(f_{0}\left(K_{n}^{1}\right)\right) \geq 0.05^{2}
$$

This proves that $\operatorname{Var}\left(f_{0}\left(K_{n}^{1}\right)\right) \gg$ const..
In order to prove the asymptotic upper bound in (4), we use a modified version of the argument of the previous section. With the same notation as in Section 3, the Efron-Stein inequality for the vertex number yields that

$$
\operatorname{Var}\left(f_{0}\left(K_{n}^{1}\right)\right) \ll n \mathbb{E}\left(F_{n}\left(x_{n+1}\right)\right)^{2}
$$

Following a similar line of argument as above, we obtain that

$$
\begin{align*}
& n \mathbb{E}\left(F_{n}\left(x_{n+1}\right)\right)^{2}=\frac{n}{\pi^{n+1}} \int_{\left(B^{2}\right)^{n+1}}\left(\sum_{I} \mathbb{1}\left(F_{I} \in \mathcal{F}_{n}\left(x_{n+1}\right)\right)\right) \\
& \quad \times\left(\sum_{J} \mathbb{1}\left(F_{J} \in \mathcal{F}_{n}\left(x_{n+1}\right)\right)\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n} \mathrm{~d} x_{n+1} \\
& \leq \frac{n}{\pi^{n+1}} \sum_{I} \sum_{J} \int_{\left(B^{2}\right)^{n+1}} \mathbb{1}\left(F_{I} \in \mathcal{F}_{n}\left(x_{n+1}\right)\right) \mathbb{1}\left(F_{J} \in \mathcal{F}_{n}\left(x_{n+1}\right)\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n} \mathrm{~d} x_{n+1} \tag{19}
\end{align*}
$$

Now, let $|I \cap J|=k$, where $k=0,1,2$, and let $F_{1}=x_{1} x_{2}$ and $F_{2}=x_{3-k} x_{4-k}$. By the independence of the random points (and by also taking into account their order), we get that

$$
\begin{align*}
& (19) \ll \frac{n}{\pi^{n+1}} \sum_{k=0}^{2}\binom{n}{2}\binom{2}{k}\binom{n-2}{2-k} \int_{\left(B^{2}\right)^{n+1}} \mathbb{1}\left(F_{1} \in \mathcal{F}_{n}\left(x_{n+1}\right)\right) \\
& \times \mathbb{1}\left(F_{2} \in \mathcal{F}_{n}\left(x_{n+1}\right)\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n} \mathrm{~d} x_{n+1} \\
& \ll \frac{1}{\pi^{n+1}} \sum_{k=0}^{2} n^{5-k} \int_{\left(B^{2}\right)^{n+1}} \mathbb{1}\left(F_{1} \in \mathcal{F}_{n}\left(x_{n+1}\right)\right) \mathbb{1}\left(F_{2} \in \mathcal{F}_{n}\left(x_{n+1}\right)\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n} \mathrm{~d} x_{n+1} . \tag{20}
\end{align*}
$$

By symmetry, we may also assume that $A\left(D_{1}\right) \geq A\left(D_{2}\right)$, therefore

$$
\begin{align*}
(20) \ll \sum_{k=0}^{2} n^{5-k} & \int_{\left(B^{2}\right)^{n+1}} \mathbb{1}\left(F_{1} \in \mathcal{F}_{n}\left(x_{n+1}\right)\right) \mathbb{1}\left(F_{2} \in \mathcal{F}_{n}\left(x_{n+1}\right)\right) \\
& \times \mathbb{1}\left(A\left(D_{1}\right) \geq A\left(D_{2}\right)\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n} \mathrm{~d} x_{n+1} \tag{21}
\end{align*}
$$

By integrating with respect to x_{5-k}, \ldots, x_{n} and x_{n+1} we obtain that

$$
\text { (21) } \ll \sum_{k=0}^{2} n^{5-k} \int_{B^{2}} \cdots \int_{B^{2}}\left(1-\frac{A\left(D_{1}\right)}{\pi}\right)^{n-4+k} \frac{A\left(D_{1}\right)}{\pi}
$$

$$
\begin{equation*}
\times \mathbb{1}\left(A\left(D_{1}\right) \geq A\left(D_{2}\right)\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{4-k} \tag{22}
\end{equation*}
$$

If $A\left(D_{1}\right) \geq A\left(D_{2}\right)$, then D_{2} is fully contained in the circular annulus whose width is equal to the height of the disc-cap D_{1}. The area of this annulus is not more than $2 A\left(D_{1}\right)$. Therefore,

$$
(22) \ll \sum_{k=0}^{2} n^{5-k} \int_{B^{2}} \int_{B^{2}}\left(1-\frac{A\left(D_{1}\right)}{\pi}\right)^{n-4+k} A\left(D_{1}\right)^{3-k} \mathrm{~d} x_{1} \mathrm{~d} x_{2}
$$

As common in these arguments, we may assume that $A\left(D_{1}\right) / \pi<c \log n / n$ for some suitable constant $c>0$ that will be determined later. To see this, let $A\left(D_{1}\right) / \pi \geq$ $c \log n / n$. Then

$$
\begin{aligned}
& \left(1-\frac{A\left(D_{1}\right)}{\pi}\right)^{n-4+k} A\left(D_{1}\right)^{3-k} \\
& \leq\left(\frac{\pi c \log n}{n}\right)^{3-k} \cdot \exp \left(-\frac{c(n-4+k) \log n}{n}\right) \\
& \ll\left(\frac{\log n}{n}\right)^{3-k} \cdot n^{-c} \\
& \ll n^{-c}
\end{aligned}
$$

If $c>0$ is sufficiently large, then the contribution of the case when $A\left(D_{1}\right) / \pi \geq c \log n / n$ is $O\left(n^{-1}\right)$. Thus,

$$
\begin{align*}
n \mathbb{E}\left(F_{n}\left(x_{n+1}\right)\right) \ll \sum_{k=0}^{2} n^{5-k} \int_{B^{2}} \int_{B^{2}} & \left(1-\frac{A\left(D_{1}\right)}{\pi}\right)^{n-4+k} A\left(D_{1}\right)^{3-k} \\
& \times \mathbb{1}\left(A\left(D_{1}\right) \leq c \log n / n\right) \mathrm{d} x_{1} \mathrm{~d} x_{2}+O\left(n^{-1}\right) \tag{23}
\end{align*}
$$

Now, we use the same type of reparametrization as in the previous section. Let $\left(x_{1}, x_{2}\right)=\left(-t u_{1},-t u_{2}\right), u \in S^{1}$ and $0 \leq t<c \log n / n$. Then

$$
\begin{align*}
23) & \ll \sum_{k=0}^{2} n^{5-k} \int_{S^{1}} \int_{0}^{c^{*} \log n / n} \int_{S^{1}} \int_{S^{1}}\left(1-\frac{A(u, t)}{\pi}\right)^{n-4+k} A(u, t)^{3-k} \\
& \times t\left|u_{1} \times u_{2}\right| \mathrm{d} u_{1} \mathrm{~d} u_{2} \mathrm{~d} u \mathrm{~d} t+O\left(n^{-1}\right) \\
& \ll \sum_{k=0}^{2} n^{5-k} \int_{0}^{c^{*} \log n / n}\left(1-\frac{A(u, t)}{\pi}\right)^{n-4+k} A(u, t)^{3-k} \\
& \times t(l(t)-\sin l(t)) \mathrm{d} t+O\left(n^{-1}\right) \tag{24}
\end{align*}
$$

Using that $l(t) \rightarrow \pi$ as $t \rightarrow 0^{+}$, and the Taylor series of $V(u, t)$ at $t=0$, we obtain that there exists a constant $\omega>0$ such that

$$
\begin{equation*}
(24) \ll \sum_{k=0}^{2} n^{5-k} \int_{0}^{c^{*} \log n / n}(1-\omega t)^{n-4+k} t^{4-k} \mathrm{~d} t+O\left(n^{-1}\right) \tag{25}
\end{equation*}
$$

Now, using a formula for the asymptotic order of beta integrals (see 11, p. 2290, formula (11)]), we obtain that

$$
\begin{aligned}
25) & \ll \sum_{k=0}^{2} n^{5-k} n^{-(5-k)}+O\left(n^{-1}\right) \\
& \ll \text { const }
\end{aligned}
$$

which finishes the proof of the upper bound in (4).
In order to prove the asymptotic upper bound (5), only slight modifications are needed in the above argument.

5. A circumscribed model

In the section we consider circumscribed random disc-polygons. Let $K \subset \mathbb{R}^{2}$ be a convex disc with C_{+}^{2} smooth boundary, and $r \geq \kappa_{m}^{-1}$. Consider the following set

$$
K^{*, r}=\left\{x \in \mathbb{R}^{2} \mid K \subset r B^{2}+x\right\},
$$

which is also called the r-hyperconvex dual, or r-dual for short, of K. It is known that $K^{*, r}$ is a convex disc with C_{+}^{2} boundary, and it also has the property that the curvature is at least $1 / r$ at every boundary point. For further information see 17 and the references therein.

For $u \in S^{1}$, let $x(K, u) \in \partial K\left(x\left(K^{*, r}, u\right) \in \partial K^{*, r}\right.$ resp. $)$ be the unique point on ∂K ($\partial K^{*, r}$ resp.), where the outer unit normal to $K\left(K^{*, r}\right.$ resp.) is u. For a convex disc $K \subset \mathbb{R}^{2}$ with $o \in \operatorname{int} K$, let $h_{K}(u)=\max _{x \in K}\langle x, u\rangle$ denote the support function of K. Let $\operatorname{Per}(\cdot)$ denote the perimeter.

The following Lemma collects some results from 17, Section 2].
Lemma 2. 17 With the notation above

1. $h_{K}(u)+h_{K^{*, r}}(-u)=r$ for any $u \in S^{1}$,
2. $\kappa_{K}^{-1}(x(u, K))+\kappa_{K^{*, r}}^{-1}\left(x\left(-u, K^{*, r}\right)\right)=r$ for any $u \in S^{1}$,
3. $\operatorname{Per}(K)+\operatorname{Per}\left(K^{*, r}\right)=2 r \pi$,
4. $A\left(K^{*, r}\right)=A(K)-r \cdot \operatorname{Per}(K)+r^{2} \pi$.

Now, we turn to the probability model. Let K be a convex disc with C_{+}^{2} boundary, and let $r>\kappa_{m}^{-1}$ as before. Let $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ be a sample of n independent random points chosen from $K^{*, r}$ according to the uniform probability distribution, and define

$$
K_{(n)}^{*, r}=\bigcap_{x \in X_{n}} r B^{2}+x .
$$

$K_{(n)}^{*, r}$ is a random disc-polygon that contains K. Observe that, by definition $K_{(n)}^{*, r}=$ $\left(\operatorname{conv}_{r}\left(X_{n}\right)\right)^{*, r}$, and consequently $f_{0}\left(K_{(n)}^{*, r}\right)=f_{0}\left(\operatorname{conv}_{r}\left(X_{n}\right)\right)$. We note that this is a very natural approach to define a random disc-polygon that is circumscribed about K that has no clear analogy in classical convexity. (If one takes the limit as $r \rightarrow \infty$, the underlying probability measures do not converge.) The model is of special interest in the case $K=K_{(n)}^{*, r}$, which happens exactly when K is of constant width r.

Theorem 6. Assume that K has C_{+}^{2} boundary, and let $r>\kappa_{m}^{-1}$. With the notation above

$$
\begin{align*}
\lim _{n \rightarrow \infty} \mathbb{E}\left(f_{0}\left(K_{(n)}^{*, r}\right)\right) \cdot n^{-1 / 3}= & \sqrt[3]{\frac{2 r}{3\left(A(K)-r \cdot \operatorname{Per}(K)+r^{2} \pi\right)}} \times \tag{26}\\
& \Gamma\left(\frac{5}{3}\right) \int_{\partial K}\left(\kappa(x)-\frac{1}{r}\right)^{2 / 3} \mathrm{~d} x .
\end{align*}
$$

Furthermore if K has C_{+}^{5} boundary, then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n^{2 / 3} \cdot\left(\operatorname{Per} K_{(n)}^{*, r}-\operatorname{Per} K\right)= & \frac{\left(12\left(A(K)-r \cdot \operatorname{Per}(K)+r^{2} \pi\right)\right)^{2 / 3}}{36} \cdot \Gamma\left(\frac{2}{3}\right) \\
& \times r^{-2 / 3} \int_{\partial K}\left(\kappa(x)-\frac{1}{r}\right)^{-1 / 3}\left(4 \kappa(x)-\frac{1}{r}\right) \mathrm{d} x ; \\
\lim _{n \rightarrow \infty} n^{2 / 3} \cdot A\left(K_{(n)}^{*, r} \backslash K\right)= & \frac{\left(12\left(A(K)-r \cdot \operatorname{Per}(K)+r^{2} \pi\right)\right)^{2 / 3}}{12} \times \\
& \Gamma\left(\frac{2}{3}\right) \cdot r^{-2 / 3} \int_{\partial K}\left(\kappa(x)-\frac{1}{r}\right)^{-1 / 3} \mathrm{~d} x .
\end{aligned}
$$

Proof. By Lemma 2 it follows that $K^{*, r}$ has also C_{+}^{2} boundary. As $f_{0}\left(K_{(n)}^{*, r}\right)=$ $f_{0}\left(\operatorname{conv}_{r}\left(X_{n}\right)\right)$, we immediately get from [16, Theorem 1.1] that

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(f_{0}\left(K_{(n)}^{*, r}\right)\right) \cdot n^{-1 / 3}=\sqrt[3]{\frac{2}{3 A\left(K^{*, r}\right)}} \cdot \Gamma\left(\frac{5}{3}\right) \int_{\partial K^{*, r}}\left(\kappa(x)-\frac{1}{r}\right)^{1 / 3} \mathrm{~d} x .
$$

Using Lemma 2, we proceed as follows

$$
\begin{aligned}
\int_{\partial K^{*, r}}\left(\kappa(x)-\frac{1}{r}\right)^{1 / 3} \mathrm{~d} x & =\int_{S^{1}} \frac{\left(\kappa\left(x\left(K^{*, r}, u\right)\right)-\frac{1}{r}\right)^{1 / 3}}{\kappa\left(x\left(K^{*, r}, u\right)\right)} \mathrm{d} u= \\
\int_{S^{1}} \frac{\left(\frac{\kappa(x(K,-u))}{r \kappa(x(K,-u))-1}-\frac{1}{r}\right)^{1 / 3}}{\frac{\kappa(x(K,-u))}{r \kappa(x(K,-u))-1} \mathrm{~d} u} & =\int_{S^{1}} r^{1 / 3} \frac{\left(\kappa(x(K, u))-\frac{1}{r}\right)^{2 / 3}}{\kappa(x(K, u))} \mathrm{d} u \\
& =r^{1 / 3} \int_{\partial K}\left(\kappa(x)-\frac{1}{r}\right)^{2 / 3} \mathrm{~d} x
\end{aligned}
$$

Together with Lemma 2, this proves 26.
The rest of the theorem can be proved similarly, by using 16. Theorem 1.1 and Theorem 1.2], and Lemma 2 .

As an obvious consequence of Theorem 3. Lemma 2, and the definition of $K_{(n)}^{*, r}$, we obtain the following theorem.

Corollary 1. Assume that K has C_{+}^{2} boundary, and let $r>\kappa_{m}^{-1}$. With the notation above

$$
\operatorname{Var}\left(f_{0}\left(K_{(n)}^{*, r}\right)\right) \ll n^{1 / 3} .
$$

Remark. We note that if K is a convex disc of constant width r, then $K^{*, r}=K$ (see e.g. 17]), and similar calculations to those in the proof of Theorem 6 provide some interesting integral formulas. For example, for a real p we obtain that

$$
\int_{\partial K}\left(\kappa(x)-\frac{1}{r}\right)^{p} \mathrm{~d} x=r^{1-2 p} \int_{\partial K}\left(\kappa(x)-\frac{1}{r}\right)^{1-p} \mathrm{~d} x .
$$

Acknowledgements

The research of the authors was partially supported by the National Research, Development and Innovation Office of Hungary NKFIH 116451 grant. V. Vígh was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. This research was also supported by the EU-funded Hungarian grant EFOP-3.6.2-16-2017-00015.

References

[1] BÁrány, I. (2008). Random points and lattice points in convex bodies, Bull. Amer. Math. Soc. (N.S.) 45, 339-365.
[2] Bárány, I., Fodor, F., Vígh, V. (2010). Intrinsic volumes of inscribed random polytopes in smooth convex bodies, Adv. in Appl. Probab. 42, 605-619.
[3] Bárány, I., Hug, D., Reitzner, M., Schneider, R. (2017). Random points in halfspheres, Random Structures Algorithms 50, 3-22.
[4] BÁrány, I., Reitzner, M. (2010). On the variance of random polytopes, Adv. Math. 225, 19862001.
[5] BÁRÁNy, I., Vu,V. H. (2007). Central limit theorems for Gaussian polytopes, Ann. Probab. 35, 1593-1621.
[6] Bezdek, K. (2018). From r-dual sets to uniform contractions, Aequationes Math. 92, 123-134.
[7] Bezdek, K., Connelly, R. (2002). Pushing disks apart-the Kneser-Poulsen conjecture in the plane, J. Reine Angew. Math. 553, 221-236.
[8] Bezdek, K., Lángi, Z., Naszódi, M., Papez, P. (2007). Ball-polyhedra, Discrete Comput. Geom. 38, 201-230.
[9] Bezdek, K., Naszódi, M. (2018). The Kneser-Poulsen Conjecture for Special Contractions, Discrete Comput. Geom., First online 12 March 2018.
[10] Böröczky, K. J., Fodor, F., Hug, D. (2010). The mean width of random polytopes circumscribed around a convex body, J. Lond. Math. Soc. (2), 81, 499-523.
[11] Böröczky, K. J., Fodor, F., Reitzner, M., Vígh, V. (2009). Mean width of random polytopes in a reasonably smooth convex body, J. Multivariate Anal., 100, 2287-2295.
[12] BöröcZky, K. J., Schneider, R. (2010). The mean width of circumscribed random polytopes, Canad. Math. Bull., 53, 614-628.
[13] Efron, B., Stein, C. (1981). The jackknife estimate of variance, Ann. Statist., 9, 586-596.
[14] Fejes Tóth, G., Fodor, F. (2015). Dowker-type theorems for hyperconvex discs, Period. Math. Hungar., 70, 131-144.
[15] Fodor, F., Hug, D., Ziebarth, I. (2016). The volume of random polytopes circumscribed around a convex body, Mathematika, 62, 283-306.
[16] Fodor, F., Kevei, P., Vígh, V. (2014). On random disc polygons in smooth convex discs, Adv. in Appl. Probab., 46, 899-918.
[17] Fodor, F., Kurusa, Á., Vígh, V. (2016). Inequalities for hyperconvex sets, Adv. in Geom., 16, 337-348.
[18] Fodor, F., VÍGh, V. (2012). Disc-polygonal approximations of planar spindle convex sets, Acta Sci. Math. (Szeged), 78, 331-350.
[19] Jahn, T., Martini, H., Richter, C. (2017). Ball convex bodies in Minkowski spaces, Pacific J. Math., 289, 287-316.
[20] Mayer, A. E. (1935). Eine Überkonvexität, Math. Z., 39, 511-531.
[21] Paouris, G., Pivovarov, P. (2017). Random ball-polyhedra and inequalities for intrinsic volumes, Monatsh. Math., 182, 709-729.
[22] Reitzner, M. (2003). Random polytopes and the Efron-Stein jackknife inequality, Ann. Probab., 31, 2136-2166.
[23] Reitzner, M. (2005). Central limit theorems for random polytopes, Probab. Theory Related Fields, 133, 483-507.
[24] Rényi, A., Sulanke, R. (1963). Über die konvexe Hülle von n zufällig gewählten Punkten, Z. Wahrscheinlichkeitsth. verw. Geb., 2, 75-84.
[25] Rényi, A., Sulanke, R. (1964). Über die konvexe Hülle von n zufällig gewählten Punkten, II., Z. Wahrscheinlichkeitsth. verw. Geb., 3, 138-147.
[26] Santaló, L. A. (1946). On plane hyperconvex figures, Summa Brasil. Math., 1, 221-239.
[27] Schneider, R. (2008). Recent results on random polytopes. (Survey), Boll. Un. Mat. Ital., Ser. (9), 1, 17-39.
[28] Schneider, R. (2014). Convex bodies: the Brunn-Minkowski theory, 2nd edn. Cambridge University Press, Cambridge.
[29] Schneider, R. (2017). Discrete aspects of stochastic geometry, in Handbook of Discrete and Computational Geometry, 3rd ed., CRC Press, Boca Raton, 299-329.
[30] Schneider, R., Weil, W. (2008). Stochastic and integral geometry, Springer-Verlag, Berlin.
[31] Schreiber, T., Yukich, J. E. (2008). Variance asymptotics and central limit theorems for generalized growth processes with applications to convex hulls and maximal points, Ann. Probab., 36, 363-396.
[32] Thäle, C., Turchi, N., Wespi, F. (2018). Random polytopes: central limit theorems for intrinsic volumes, Proc. Amer. Math. Soc., 146, 3063-3071.
[33] Turchi, N., Wespi, F. (2017). Limit theorems for random polytopes with vertices on convex surfaces, arXiv:1706.02944.
[34] Vu, V. H. (2005). Sharp concentration of random polytopes, Geom. Funct. Anal., 15, 1284-1318.
[35] Vu, V. H. (2006). Central limit theorems for random polytopes in a smooth convex set, Adv. Math., 207, 221-243.
[36] Weil, W., Wieacker, J. A. (1993). Stochastic geometry, in Handbook of convex geometria, Vol. B, North-Holland, Amsterdam, 1391-1438.

[^0]: * Postal address: Bolyai Institute, Aradi vértanúk tere 1, 6720 Szeged, Hungary
 ** Postal address: Bolyai Institute, Aradi vértanúk tere 1, 6720 Szeged, Hungary

