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Abstract 

 

In this paper the complex heat transfer process of the vapour phase soldering has been 

investigated on the level of electronic components. VPS is gaining increased attention lately, 

and the process needs different approach of modelling, compared to conventional soldering 

processes in electronics mass manufacturing. Component level modelling was not studied 

deeply in the literature before, so our focus pointed to heat transfer on large size surface 

mounted electronic components. Applying the Fourier type heat conduction equation, a 

detailed 3D thermal model of a polyester capacitor on a printed circuit board was 

implemented based on x-ray images of an actual assembly. Our model incorporates inner 

geometry, material inhomogeneity, composite materials and anisotropic thermal conductivity 

as important thermal features. Transient heating was calculated with Finite Difference Method 

combining an alternating direction implicit (ADI) approach, using averaged heat transfer 

coefficient. Validation measurements were taken in our VPS system. The measured data show 

good agreement with the calculation results and points to possible application for use in 

advanced engineering environment. 
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1. Introduction 

 

Vapour phase soldering (VPS) is a reflow soldering method used in electronics 

manufacturing. It is an alternative to the widely used forced convection and nowadays less 

significant infrared heating processes [1-3]. During reflow soldering, solder paste is printed 

onto the pads of the printed circuit board (PCB), and then the electrical components are 

positioned and placed onto the deposits of the solder. The solder alloy is then melted by heat 

to form soldier joints. In case of infrared or forced convection heating, electromagnetic 

radiation or hot air stream is responsible for energy transfer, respectively. On the contrary, 

during VPS process a special heat transfer fluid is boiled to form a saturated vapour in closed 

space. The PCB assembly is immersed into the saturated vapour, indicating condensation on 

the assembly surface. The latent heat of the condensation provides energy for heating, while a 

continuous condensate film is formed. Then heat transfer occurs through this thin layer on the 

surface. Nowadays the most widely used fluid in VPS applications is called Galden 

(perfluoropolyether – PFPE type fluid), which is considered as an inert material, and do not 

produce any harmful gases during the process. The main advantages of VPS technology are 

rapid heating, the reduced risk of overheating, due to the fixed boiling point of the fluid, and 

the oxygen-free environment. Oxidation-free solder joint forming is achieved due to the 

presence of continuous condensate film layer. 

VPS is studied mainly from the practical aspects originated from the needs of the industry, 

such as the aspect of soldering with lead-free materials [4]. The general comeback of the 

method was described in [5]. Recently VPS was compared directly with more conventional 

convection type reflow by Dziurdzia [6], while the others focused more solely on VPS. It was 
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found by Pietrikova [7] and Liu [8] that the microstructure of the joints formed in VPS ovens 

are dependent of the given setting and mode of the applied ovens. 

Real time temperature profiling [9] or optimizations with statistical methods [10] were also 

investigated by Livovsky and Tsai, respectively. Power electronics manufacturers utilize VPS 

due to the efficient soldering of large components [11-16]. Research of the energy efficiency 

is also under active investigations [17]. Special applications, such as Pin-in-Paste technology 

[18] or vacuum suctioning during reflow also fits in the focus of VPS studies. It was found by 

Synkiewicz [19] and Lungen [20] that VPS process with a vacuum step, after reflowing the 

solder alloy, is effective in eliminating voids and improving joint quality. 

In the last few years, the process of VPS itself was also investigated on multiple levels. 

The basics of saturated vapour generation, condensation and film layer formation were 

investigated through detailed multi-physics modelling. Also, simpler models were applied to 

describe the heating of PCBs as 2D objects [1-2]. Continuing this line of research, we 

introduce 3D thermal modelling on component level during VPS. Modelling of electronic 

assemblies was presented recently for infra-red radiation based heat transfer on board level by 

Najib [21] and convection type heat transfer during reflow on component (package) level by 

Deng [22]. We considered a novel approach for VPS regarding inner geometry, material 

inhomogeneity, composite material content and anisotropic thermal conductivity. These 

component level aspects were not widely studied together in case of VPS before. We used the 

finite difference method with alternating direction implicit scheme (FDM ADI) due to its 

highly customable implementation possibilities and computation speed. 

The proposed method may be able to reveal different quality aspects (such as failures 

during assembly), and an extension of overall knowledge on the process of VPS.  

 

2. Experimental 

 

2.1 VPS system and component specification 

 

To prepare verify and fine tune our proposed model, several measurements were carried 

out in an experimental model VPS system, which was described in our previous work [23]. A 

simplified overview is shown on Fig. 1. The system is based on a closed stainless steel tank 

with a removable lid. An immersion resistor heater boils the Galden fluid at the bottom. A 

cooling tube circuit is positioned on the top of the tank with circulated ambient temperature 

water inside. In our experiment Galden HT170 [24] with 170 °C nominal boiling point was 

used to form saturated vapour blanket with the same temperature. The material is 

exchangeable with higher temperature fluids. 

 

 
Fig. 1 – Experimental VPS system with electronic assembly immersed in vapour space 

 



 

 

For modelling purposes, we chose a multilayer polymer (MLP) surface mount (SMD) 

capacitor (4036, 5.5x10x9 mm). In MLP capacitors the core is constructed of metal film 

electrodes with a dielectric material (polyethylene terephthalate (PET) in our case) 

sandwiched in between. The metal film layers and contact metallization are made of 

aluminium (Al); the film layers are 100-300 Angstrom thin, while the dielectric layers have 

the thickness between 0.9-1.2 µm. These extremely thin film layers make possible to stack 

several thousand layers to form the capacitor core, which is encapsulated in epoxy case 

(epoxy encapsulant and thin plastic box) with Al contact termination on both sides. The MLP 

capacitors are popular in high frequency applications [25-26]. 

We used XiDAT XD6600 x-ray microscope imaging to chart the build-up and inner 

geometry of the capacitor, where the results can be seen on Fig. 2. 

 

 
Fig. 2. - X-ray images of the capacitor’s inner structure with highlighted core (top: side view, bottom: top view) 

 

Two capacitors were assembled onto a bare laminate 1.6 mm thick PCB of FR4 (standard 

PCB material) with ~60 µm thick layer of epoxy adhesive (Loctite 3621 [27]) between the 

component and the PCB. The PCB was 10 cm x 10 cm in size, and the capacitors were 5 cm 

apart from each other. From the PCB side a small bore of 0.5 mm diameter was prepared 

through to the center of the capacitors. A 0.2 mm thin K-type thermocouple (±1 °C precision) 

was positioned into each bore with aforementioned epoxy adhesive. The adhesive gives good 

thermal coupling, enabling accurate temperature monitoring of the surrounding body. Later, 

the measurements will be used for verification of the FDM model with averaged transient 

temperature data of the two capacitors. 

We also measured the time delay between the beginning of the condensation and the 

temperature rise in the center of the capacitors. An additional thermocouple was attached 

1 cm below the board to indicate the start of the process. 

The average heat transfer coefficient of the condensation process was derived from the 

transient heating curve of a bare PCB as an approximation. Multiple thermocouples with 

different positions were placed into the board with the same technique as described above. 

The heat transfer coefficient was obtained from the averaged data using lumped system 

calculation. For our model, we assumed that the capacitor is heated with the same average 

heat transfer coefficient as the PCB.  

All material properties we used in our calculations can be found in Table 1. 

 



 

 

Table 1 

Properties of base materials in the capacitor model [27, 34, 39-44]. 

 

 ρ [kg/m3] c [J/(kg °C)] λ lateral [W/(m °C)] λ vertical [W/(m °C )] 

PET (1 µm layer) 1400 1200 0.1 0.1 

FR4 2100 600 0.76 0.53 

Epoxy encapsulant + plastic box 1900 1100 0.5 0.5 

Epoxy adhesive (60 µm layer) 1160 300 0.3 0.3 

Al (bulk) 2700 900 210 210 

Al (120 Angstrom layer) 2000 900 20 20 

 

2.2 Average heat transfer coefficient during condensation 

 

The heat transfer coefficient of the condensation can be calculated from transient 

temperature data if the interior temperature of the body remains nearly uniform during the 

heating process with lumped (concentrated) system modelling [28-29]. It was shown 

previously, that PCB plates can be treated such way in most cases [2]. The lumped model is 

written as [28-29]: 

 

 sat
dT

c m h A T T
dt

       (1) 

 

where c [J/kg °C] is the specific heat capacity, m [kg] is the mass, t [s] is the time, h [W/(m2 

°C)] is the heat transfer coefficient, A [m2] is the total heated surface, T [°C] is the 

temperature of the body and Tsat is the temperature of the saturated vapour. 

When the temperature changes with time only and the other variables are considered to be 

constant, the analytic solution of Eq. (1) is: 

 

 init sat init
t h A

T(t) T T T 1 exp
c m

   
       

  
 (2) 

 

where Tinit is the initial temperature of the body. 

We fitted Eq. (2) to the measured heating transient data of the PCB using weighted least 

squares method. The results are shown in Fig. 3 with h=240 W/(m2 °C) which can be 

accounted as the average heat transfer coefficient during the condensation process. 

 

 
Fig. 3. - Averaged transient heating curve of the PCB. 

 



 

 

During the first few seconds the fitted curve underestimates, later exceeds the 

measurement data. In the very beginning, for a small (<1 s) time interval actual heat transfer 

coefficient can jump up to ~320 W/(m2 °C). This is correlated with the initial lack of the 

condensate film layer, which boosts heat transfer when the cold PCB is inserted into the 

vapour space. After it is quickly formed, the layer serves as a thermal barrier during the rest of 

the process, lowering the heat transfer efficiency. These values agree well with previous 

works [2-3], and clearly show the rapid heating capability of the VPS. 

The validity of lumped system modelling is generally accepted for all geometries when the 

Biot number is below 0.1 as a rule of thumb [28-29]. For a plate that is heated from both side, 

the Biot number is given by [29]: 

 

h L
Bi

2





 (3) 

 

where L [m] is the thickness and λ [W/(m °C)] is the thermal conductivity of the plate. In our 

case Bi~0.3-0.4 and we used the 1D analytic solution of the interior temperature distribution 

to approximate the error of the uniform heating assumption. In a plate that is heated by 

saturated vapour with constant heat transfer coefficient, and the dominant heat flows 

perpendicularly to the surface, the interior temperature is given by [29]: 

 

   

sat

2
init sat

T(t) T 4 sin t x
exp cos

T T 2 sin 2 L / 2c L / 2





       
            

 (4) 

 

where σ is the first root of σ·tan(σ)=Bi, ρ is the density [kg/m3], -L/2≤x≤L/2 [m] is the inner 

spatial position perpendicularly to the surface. The equation is valid in the time domain where 

the Fourier number Fo=(λ·t)/(c·ρ·(L/2)2)>0.2. This value is ~0.27 s in our case. We defined 

the error as percentage of the maximal deviation from the average temperature in the plate. 

Calculations were carried out with Tsat=170 °C and Tinit=25 °C. For Bi<0.1, the error remains 

under 10% for the whole transient. For Bi~0.3-0.4, it grows up to 35% during the first 1 s 

duration, but decreases to 10% after 2 s and shows rapid decline afterwards. Consequently, 

the lumped system modelling is still acceptable for the PCB in our experiment. While the 

error may be significant at the beginning of the investigated time window, it is reduced 

insignificant at the practical regions around the actual melting point temperature for selected 

solder alloys. (For example: Galden HT170 fluid combined with 58Bi42Sn alloy of 138 °C 

melting point.) 

 

3 Applied finite difference model 

 

3.1 ADI scheme for non-homogeneous material 

 

Heat penetration into the body can be described with the Fourier type heat conduction 

equation. In 3D, it has the expression [28-31]: 

 

T T T T
c

t x x y y z z

          
              

          
 (5) 

 

where x, y and z refer to the Cartesian dimensions. Compared to the lumped system, the 

interior spatial temperature change is now part of the calculation. 



 

 

To solve this equation with FDM we used the effective Douglas-Gunn Alternating 

Direction Implicit (DG ADI) scheme, where the implicit equations are solved separately along 

each dimension in 3 phases [30-33]: 

 

n 1 2 2 2 n

x ijk x y z ijk

1 1
1 S T 1 S S S T

2 2

     
               

   
 (6) 

n 1 n n 1

y ijk y ijk ijk

1 1
1 S T S T T

2 2

      
          

 
 (7) 

n 1 n n 1

z ijk z ijk ijk

1 1
1 S T S T T

2 2

     
          

 
 (8) 

 

where i, j and k are step indexes of the thermal nodes along the Cartesian dimensions, and the 

n index stands for the time-step. The Tn+1 and Tn+1 values are gradual approximations to 

the real Tn+1, as Eq. (6) is a predictor phase followed by two correction phases in Eq. (7) and 

(8). The Sxδ
2, Syδ

2 and Szδ
2 symbols are operators for central second difference with respect to 

the material inhomogeneity. For x dimension, it gives: 

 

 x i i i 1 i i i i i 1S T S T S S T S T    

           (9) 

 

where Si
+=(λi

+·Δt)/(ρi·ci·Δx2), Si
-=(λi

-·Δt)/(ρi·ci·Δx2), Δx is the spatial and Δt is the temporal 

step size, respectively. Also, λi
+=(2· λi· λi+1)/( λi+λi+1) and λi

-=(2· λi· λi-1)/( λi+λi-1) are 

harmonic mean values and serve as the intermediate thermal conductivity between the right 

and left adjacent nodes. They describe abrupt material changes at the interfaces, which appear 

in thermal RC network modelling [34]. The y and z dimensions can be treated in the same 

way. 

Applying Eq. (6), (7) and (8) along with the boundary conditions to all nodes using 

continuous indexing result in a system of simultaneous (implicit) equations in every phase. It 

can be expressed with matrices in the general from of A·Tn+1=B·Tn+C, where double 

underline refers to square matrices and single underline represents column vectors. The 

system can be solved by Gaussian elimination to yield the unknown Tn+1 vector. 

All three equations have only one three-point central second difference term on the left 

side. Thus, with reordered node indexing, it is possible to construct simple tridiagonal 

matrices to solve in each phase. As a result, this method provides very fast computation even 

with high node count. The truncation error of the DG ADI scheme is O(Δt2, Δx2, Δy2, Δz2). 

 

3.2 Composite materials and anisotropic heat conduction 

 

Besides common base materials like aluminium or epoxy, practical thermal modelling 

requires the application of composites. In our case, we approximated the FR4 PCB with 

epoxy adhesive and the capacitor core in this way. Volume and mass fraction were used to 

obtain the density and heat capacity values of the composite, respectively [35-36], according 

to Table 1. Moreover, layered structures can be modelled with orthotropic anisotropy, where 

the heat conduction independently differs along each dimension. Hence, the vertical and 

lateral heat conduction values can be calculated using the series and parallel models [37-38]. 

Note that, the ultra-thin Al layers in the capacitor core were treated with separate 

properties from its bulk variant, as shown in Table 1. Literature data pointed out that the 

thermal properties, mainly the heat conductivity of metal thin films show considerable 

decrease from the bulk value below ~100 nm thickness [39-43]. 



 

 

 

3.3 Boundary conditions for VPS process 

 

To describe the heat transfer to the surface of the body we used Robin type boundary 

conditions. For x dimension and interior domain 0≤x≤L, the boundary conditions are [28-31]: 

 

 sat srf

x 0 x 0

T h
T T

x  


   

 
 (10) 

 sat srf

x L x L

T h
T T

x  


  

 
 (11) 

 

To keep O(Δx2) accuracy, we used centered difference with ghost nodes to discretize the 

boundary conditions. Thus, the central second difference operator can be applied to the 

boundary nodes as: 

 

 x i i i i i i 1 i sat
x 0

S T 2 S 2 H T 2 S T 2 H T  



              (12) 

 x i i i 1 i i i i sat
x L

S T 2 S T 2 S 2 H T 2 H T  



             (13) 

 

where Hi=(hi·Δt)/(ρi·ci·Δx). The boundary points along y and z dimensions can be treated 

similarly. 

The PCB carrier is also part of the thermal structure. To limit the size of the model we used 

only the part directly under the capacitor (Fig. 6 - bottom layers). Boundary conditions must 

be assigned to the side planes of the fictitious board cut-out. We assumed that the lateral heat 

distribution is locally homogeneous during the simulated time interval and the heat flow 

through the side planes can be neglected. Thus, we used ∂T/∂x=0 and ∂T/∂z=0 as boundary 

conditions on these surfaces by choosing h=0. Similar technique was used in [34]. 

During calculation, we neglected the convection and radiation heat loss because they are 

estimated to be at least one order of magnitude lower than the heat coupled by the heating 

process [34]. 

 

3.4 Programming considerations and stability 

 

For best correlation with the measurement, the material properties listed in Table 1 were 

adjusted in their generic domain in agreement with the MatWeb database [44], other literature 

data and the information received from the component manufacturer. 

The simulation was written in Matlab environment. We applied the built-in tridiagonal 

solver for Gauss elimination and used sparse matrices to decrease the memory demand, also 

double words for variables to minimize rounding error. Two models were built with distinct 

spatial resolution, shown on Fig. 4. The low definition variant works with the minimal 

resolution to represent the inner physical structure of the capacitor and contains 5985 thermal 

nodes (Δx=Δy=Δz=0.5 mm). The high definition variant contains 84456 thermal nodes 

(Δx=Δy=Δz=0.2 mm) to investigate the effect of higher spatial resolution and slight structure 

refinement. We accounted the transient data of the thermal node nearest to the position of the 

thermocouple sensing point as the simulation result. 



 

 

 

 
 

Fig. 4. - Finite difference capacitor models containing 5985 thermal nodes (top) and 84456 thermal nodes 

(bottom). Inner structure is shown. Lateral axes: x, z; vertical axis: y. 

 

As claimed by the von Neumann stability analysis, the DG ADI method is unconditionally 

stable with constant coefficients [30-31]. However, material inhomogeneity indicates variable 

coefficients, which terminates the symmetry at the material interfaces and causes conditional 

stability [45]. We determined the stable time-step sizes heuristically. Stable solution was 

found when Δt<0.8 s for the low definition model and Δt<0.1 s for the high definition model. 

For increased accuracy, we used Δt=0.1 s and Δt=0.05 s, respectively for each solution. The 

simulated time interval was 150 s with calculation duration 17 s for the low and 19 min for 

the high definition model. 

 

4. Results and discussion 

 

4.1 Transient heating curves and node count evaluation 

 

According to our measurement, the time delay between the beginning of the condensation 

and the onset of temperature rise in the center appeared to be ~4 s. It corresponds to the speed 

of heat propagation into the solid, which is characterized by the thermal diffusivity, i.e. 

λ/(ρ·c), of the assembly. During simulation, the process starts with the first time-step, and the 

measured transient curve should be shifted with this delay for valid fitting with the calculated 

results. 



 

 

The initial condition was 25 °C uniform temperature in the whole assembly. The Tsat 

temperature of the saturated vapor is equal with the boiling point of the heat transfer fluid. By 

our experience, the Galden HT170 has less than 7% boiling point drift around the nominal 

value, usually between 165 °C and 181 °C according to the state and usage of the Galden. 

Simulation results of both models, with Tsat=174 °C and h=240 W/(m2 °C) for all free 

surfaces, are compared to the measurement data on Fig. 5 as a validation. Temperature curve 

of the center of the Al termination is also included. 

 
Fig. 5. - Calculated transient heating curves for the central region of the capacitor, and the center point of the 

termination. 

 

Both models were capable to suitably reproduce the measured temperature transient. The 

differences between the results of the low and high definition models are appeared to be 

negligible, suggesting strong convergence with little spatial and temporal grid dependency. 

We got similar agreement with the measurement for different saturation temperatures 

caused by boiling point drift. This indicates that using the average heat transfer coefficient 

predicted by the PCB is also appropriate for components of given size on the board with 

acceptable limitations. Also, the calculated transient underestimates the measured data in the 

beginning, and exceeds it near the saturation temperature. As in Chapter 2.2, this indicates 

higher heat transfer coefficient at the start, which decreases during the process. It is clear, that 

the capacitor assembly does not act like a lumped system during rapid heating. Under the 

given circumstances, its thermal behaviour should be modelled with distributed physical 

parameters, as presented here.  

For further investigations, we used the high node count model. 

 

4.2 Temperature mapping in 3D 

 

As an overview, Fig. 6 shows the 3D temperature distribution of the capacitor as time 

evolves during the heating process. At t=1 s, the free peaks and edges experiences the highest 

temperature elevation, which is the consequence of the outer rectangular geometry. The Al 

terminations can conduct the heat to the inner region that is relatively well insulated from 

other directions, because of the weak heat conduction ability of the epoxy encapsulation 

material. Thus, the terminations and the interior body show little temperature rising in the 

beginning. After 10 s, the terminations have comparable temperature as other parts of the 

surface, but the interior region remains considerably colder. A very large temperature gradient 

can be observed across inner and outer regions of the assembly. At t=50 s, this temperature 

gradient decreased greatly and will be rapidly smaller as the whole structure approaches the 



 

 

thermal equilibrium at the saturation temperature. Proportionally the inner region of the 

capacitor experiences the greatest delay in temperature rising. 

 

 
Fig. 6. - Interpolated temperature distribution during heating at 1 s (top), 10 s (center) and 50 s (bottom). 

 

After several heating and cooling cycles, we observed the separation of the encapsulant at 

the interface with the adjacent plastic material on one capacitor, shown on Fig.7. The 

delamination phenomenon is usually caused by poor adhesion and mismatch of coefficient of 

thermal expansion (CTE). During heating or cooling, the CTE mismatch between the 

encapsulant and the adjacent material can lead to thermo-mechanical stresses that may 

eventually result in warpage, consequent cracking or delamination between the layers [46]. 



 

 

The large thermal gradient during rapid heating strongly points to this kind of component 

failure. This also points to the fact that immediate immersion into high temperature saturated 

vapour could be harmful for such structures. As a solution, more sophisticated VPS systems 

apply heat transfer control by regulation of the power for the heating elements, or by adjusting 

the penetration level of the specimen in the vapour [5]. 

 

 
Fig. 7. – Delamination of the encapsulant material. 

 

4.3 Structural analysis 

 

The PCB, the epoxy body and metallized PET core shows similar plastic-like thermal 

behaviour during the heating process, and the material interface between them do not causes 

major imprint in the temperature distribution. However, the Al terminations with very high 

thermal conductivity can be easily distinguished from the surroundings. Figures 8 and 9 are 

focusing on thermal aspects of the termination, which plays crucial role during the wetting of 

the solder material. Despite the homogenous heating, there are significant temperature 

differences across its surface. This can be accounted to the structural asymmetry, namely the 

metallic leads only on one side of the terminations, that reaching into the structure (as seen on 

Fig. 2). The metallic leads conduct the heat away from one side of the terminations into the 

plastic body. This is clearly depicted in Figure 8. The effect is slight, because the lids are 

heated too from the outside, but still able to produce considerable temperature gradient, 

shown on Fig. 9. 

 



 

 

 
Fig. 8. – Temperature map of component at an inner section revealing the effect (highlighted) of inner metallic 

lead (top, front views, respectively). 

 

 
Fig. 9. – Temperature distribution of the termination (highlighted) around the melting point of the given solder 

(138 °C). 
 



 

 

Figure 10 also emphasizes the finding. It shows the average absolute temperature difference 

between the left and right side of the same termination during the transient. The difference 

quickly rises and peaks in the first few seconds, while slowly decreases to zero as the 

temperature of the whole structure is advancing to the saturated vapour temperature. 

 

 
Fig. 10. – Absolute temperature difference between the left and right side of a termination. 

 

While the solder only wets the terminal surface after reaching the melting point (138 °C – in 

the given case, 217 °C in the case of more common SAC305 alloy and LS230 Galden), the 

lateral differences may affect wetting related issues, or the so called self-alignment effect of 

the component [47, 48]. Eventually this can alter the quality and reliability of the joint as well. 

This effect is not widely studied for such components in VPS, so this might point to a future 

research path with an emphasis on practical evaluation of the alignment. 

 

5. Conclusions 

 

In our paper, we present a novel FDM modelling method with ADI approach to simulate 

surface mounted component heating during vapour phase reflow soldering in saturated 

vapours. The method is applicable as a fast and efficient way of presenting the process of 

heating, also showing exact thermal distribution in surface mounted component packages 

during VPS reflow.  

We determined the average heat transfer coefficient of the condensation process in an 

experimental VPS system set for soldering in saturated vapours, using lumped system 

modelling. Applying this characteristic, we developed and verified a detailed 3D finite 

difference model of a surface mounted capacitor that accurately simulates the thermal 

behaviour of the real component. 

It was shown that the method can present overall differences in the temperature of the SMD 

component during the process. It was presented, that high temperature differences are 

observable (~100°C) in the relatively large structure of the SMD component, pointing to 

thermal stresses that may damage the component. A related damage was also observed and 

analysed on the component structure during the validation experiments.  

The results also revealed that the internal structure of the component may result in uneven 

temperature distribution along the terminations, which may affect soldering from the aspect of 

wetting at the transition of solidus-liquidus phases. Non-even melting can affect the alignment 

of the components during soldering, leading to quality and reliability concerns. 



 

 

The current research opens further paths of experiments. In the future, it is possible to 

investigate thermomechanical behaviour of the given component structure, highlighting 

possible stresses that may damage the component. Dynamic heating may also be included to 

our model in improve precision of future calculations. 
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Figures list 

 

Fig. 1. Experimental VPS system with electronic assembly immersed in vapor space. 

 

Fig. 2. X-ray images of the capacitor’s inner structure with highlighted core (top: side view, 

bottom: top view). 

 

Fig. 3. Averaged transient heating curve of the PCB. 

 

Fig. 4. Finite difference capacitor models containing 5985 thermal nodes (top) and 84456 

thermal nodes (bottom). Inner structure is shown. Lateral axes: x, z; vertical axis: y. 

 

Fig. 5. Calculated transient heating curves for the central region of the capacitor and the 

center point of the termination. 

 

Fig. 6. Interpolated temperature distribution during heating at 1 s (top), 10 s (center) and 50 s 

(bottom). 

 

Fig. 7. Delamination of the encapsulant material. 

 

Fig. 8. Temperature map of component at an inner section revealing the effect of inner 

metallic lead (top, front views, respectively). 

 

Fig. 9. Temperature distribution of the termination (highlighted) around the melting point of 

the given solder (138 °C). 

 

Fig. 10. Absolute temperature difference between the left and right side of a termination.  
 


