
Hybrid time-quality-cost trade-off problems

Zsolt T. Kosztyán1, István Szalkai2

1Department of Quantitative Methods, 2Department of Mathematics,
1−2University of Pannonia, Hungary

Abstract

Agile and hybrid project management has become increasingly popular among
practitioners, particularly in the IT sector. In contrast to the theoreti-
cally and algorithmically well-established and developed time-cost and time-
quality-cost project management methods, agile and hybrid project manage-
ment lacks a principle foundation and algorithmic treatment. The aim of this
paper is to fill this gap. We propose a matrix-based method that provides
scores for alternative project plans that host flexible task dependencies and
undecided, supplementary task completion while also covering traditional
time-quality-cost trade-off problems. The proposed method can bridge the
agile and traditional approaches.

Keywords: Time-quality-cost trade-off problems, Hybrid project
management approaches, Matrix-based project planning

1. Introduction

The importance of time-cost trade-off problems was recognized over five
decades ago, with the nearly simultaneous development of project planning
techniques [1]. From the 1960s to the 1980s, continuous time-cost relation-
ship problems were addressed extensively in the literature [see, e.g., 2, 3].
The discrete time-cost trade-off problem (DTCTP), which can be treated
as a specific resource-allocation problem [4], is a well-known problem in the
project management literature [see, e.g., 5, 6, 7]. At first, Ref. [8] suggested
that the quality of a completed project may be affected by project crash-
ing. They developed a solution procedure that considers trade-offs among
time, cost and quality in a continuous mode. Since discrete time-cost trade-
off problems (DTCTP) are NP-hard problems, discrete time-quality-cost
trade-off problems (DTQCTP) are also NP-hard problems and are therefore

Preprint submitted to Operations Research Perspectives August 31, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/163100089?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

usually solved using heuristic or meta-heuristic methods. However, contin-
uous versions of these problems can usually be solved within a polynomial
computational time (e.g., in the case of linear trade-off functions between
time-cost and time-quality) [9]. All of these problems assume a fixed-logic
plan, whereas recent project management (e.g., agile and hybrid) approaches
allow for the restructuring or reorganization of the project. They approaches
apply flexible-logic plans instead of fixed-logic plans. This paper extends the
traditional trade-off problem to address flexible project plans.

Continuous and discrete versions of time-cost and time-quality-cost trade-
off analyses assume that the time, cost and quality of an option within an
activity are deterministic. However, the time, quality and cost may be un-
certain. The stochastic versions of time-cost and time-quality-cost trade-off
problems [see, e.g., 10, 11] treat time, quality and cost as uncertain param-
eters. In the proposed method, the task (e.g., time/cost/resource) demands
are not uncertain, but the logical structure is. The proposed model can
address uncertainty regarding supplementary task completion and/or un-
certain or flexible dependencies.

It is interesting to combine uncertain task durations, uncertain cost de-
mands, uncertain quality parameters (undecided), supplementary task com-
pletion and uncertain or flexible task dependencies into one stochastic model;
however, this paper mainly focuses on how to extend continuous and dis-
crete time-quality-cost trade-off methods to treat flexible dependencies and
(undecided or uncertain) supplementary task completion.

Every traditional trade-off method assumes an accepted logic plan by
which the tasks and the dependencies between them are determined. How-
ever, several project management approaches, e.g., agile and extreme project
management (see Ref. [12]), allow for one to restructure or reorganize the
project plan in response to changes in the client’s demands.

Wysocki found in a 2009 study of the practices of software project man-
agers that only 20% of IT projects were managed using a traditional project
management (TPM) methodology. Methods for investment and construc-
tion projects usually cannot be directly applied to software development or
R&D projects, as these are managed using agile project management (APM)
approaches. Currently, hybrid (i.e., combinations of traditional and agile)
approaches are becoming increasingly popular [see, e.g., 13, 14]. However,
these approaches lack a principled foundation and algorithmic treatment.
The aim of this paper is to fill this gap.

Whereas a project manager who follows a TPM approach uses TCTP/TQCTP
method(s) to reduce task duration, an agile project manager tries to restruc-
ture the project. The project duration can be reduced without increasing

2

the project cost by reducing the number of flexible dependencies. However,
in real project situations, most dependencies are fixed; therefore, the TPM
and APM approaches should be integrated.

There are different combinations of agile and traditional project man-
agement approaches [see, e.g., 15, 16, 13]. However, to the best of our
knowledge, there is no exact algorithm that can be used to in hybrid time-
quality-cost trade-off problems. Nevertheless, production development and
IT projects, such as introducing and setting up new information systems,
may require that part of the project be reorganized, particularly in the devel-
opment phase. However, decreasing the time demands of mandatory tasks
may also be an important requirement. Neither the agile nor the traditional
approach can address this situation properly. Traditional approaches, or
network-based methods, assume static logic plans, but the reorganization of
projects may produce insufficient reductions in project duration and/or sup-
plementary tasks, and important tasks may be excluded from the project due
to budget constraints and/or project deadlines. A hybrid project manage-
ment (HPM) approach may combine the traditional and agile approaches;
however, HPM approaches are not yet supported by project planning meth-
ods. The proposed algorithm combines the agile and traditional approaches.
This method extends traditional time-cost and time-quality trade-off meth-
ods by allowing for the restructuring and reorganizing of projects.

The proposed hybrid time-cost and hybrid time-quality-cost trade-off
models manage flexible project plans and allow us to restructure or reorga-
nize these project plans to satisfy customer and management demands. In
contrast to the traditional project scoring and selection methods, there is no
need to specify all project alternatives to select the most desirable project
scenario or the one with the shortest duration or lowest cost.

To handle flexible project plans, matrix-based techniques will be used
instead of traditional network-based project planning techniques.

The basis of the proposed methods is a matrix-based method, the project
domain matrix (PDM) [see 17]. The PDM is an n by m matrix, where n is
the number of tasks, m = n+t+c+q+r, t is the number of possible durations,
c is the number of possible (direct) costs, q is the number of possible quality
parameters, and r is the number of possible resource demands of tasks.

The PDM has five domains. The first domain is the logic domain (LD),
which is described as an n by n project expert matrix (PEM) [see 18] or
numerical dependency structure matrix (NDSM)[see 19]1. Since the PEM

1The NDSM does not represent supplementary tasks but can represent flexible depen-

3

has specified and semi-specified versions, the PDM is specified if and only if
the LD is specified; otherwise, the PDM is semi-specified.

The other domains are the time domain (TD), cost domain (CD), qual-
ity domain (QD) and resource domain (RD). If the demands are deter-
ministic, we say that the PDM is deterministic; otherwise, the PDM is
non-deterministic. In this study, the deterministic versions of hybrid time-
quality-cost trade-off problems are considered: the TD, CD, QD, and RD
contain deterministic values but at least two completion modes. Therefore,
this version is a semi-specified, deterministic, multi-modal PDM.

Whereas the basis of the proposed model is the PDM, the basis of the
proposed method is the expert project ranking (EPR) algorithm [see 17],
which can evaluate specified and semi-specified deterministic PDMs. How-
ever, that method cannot address the trade-off problem. Therefore, although
EPR can be used to schedule a flexible project plan and can thus be used in
agile project management approaches, it cannot address trade-offs between
time and cost or between time and quality and therefore cannot be used in
hybrid project management directly.

This paper proposes a hybrid time-quality-cost trade-off model to bridge
APM and TPM.

The proposed hybrid algorithm combines the features of EPR and time-
quality-cost trade-off problems to solve hybrid time-quality-cost trade-off
problems.

The proposed algorithm can be used not only for project planning but
also for project risk management. Despite risk management and mitigation
not being the main focus of this paper, in the section of the simulation
beyond traditional risk management, in which project networks are usually
assumed to have a fixed logic plan [20] or be a result of a negotiation [21], it
was possible to measure the effect of the ratio of flexible dependencies and
the ratio of uncertain (supplementary) task completions. The use of flexible
dependencies and supplementary tasks enables us to model and compare
different project management approaches.

The paper organized as follows: after this section, in Section 2, the
mathematical background is described. In Section 3, we present the pro-
posed algorithm, and different types of project management approaches are
modeled and compared. In the last section (Section 4), we summarize the
conclusions and discuss the limitations of the proposed algorithm and future

dencies; however, the PEM can represent both flexible dependencies and supplementary
tasks

4

directions.

2. Solving hybrid time-quality-cost trade-off problems

In this section, a (resource-constrained) hybrid time-quality-cost trade-
off problem (RC-HTQCTP) is first specified. Then, a matrix-based model
representation is proposed. At the end of this section, an exact algorithm
for a hybrid continuous time-quality-cost trade-off problem is proposed. The
decisions for finding the optimum will be directed by score functions and
matrices (P,Q) and time-quality-cost functions; thus, we need several defi-
nitions and notations before proceeding.

2.1. Definitions and problem statements

In the proposed model, mandatory and supplementary activities are dis-
tinguished.

Definition 1. We call any finite set A = {a1, ..., an} the set of possible
activities or tasks in the project. The subset of supplementary task is
Ã = {ã1, ..., ãσ} ⊆ A, where Ã is any fixed subset of A. Then, A = A \ Ã is
the subset of mandatory tasks.

Whereas mandatory (or high-priority) tasks must be realized, supple-
mentary (or lower-priority) tasks can be omitted from the project or post-
poned to the next or another project. Decisions about supplementary task
realization always have two options: to include or to exclude.

S denotes the set of tasks that will be fulfilled by the algorithm (further-
more called as project scenario). The number of possible project scenarios

is 2σ, where σ =
∣∣∣Ã∣∣∣.

Definition 2. Any function P : A→ [0, 1] is called the score function of
task inclusion if P (ai) = 1 for ai ∈ A and P (ai) ∈ [0, 1) for ai ∈ Ã.
The function Q : A→ [0, 1] is called the score function of task exclusion
if Q (ai) = 0 for ai ∈ A and Q (ai) ∈ (0, 1] for ai ∈ Ã.

The task inclusion and exclusion scores can mean probability, importance
or relative priority values.

Example 1. If every task completion (inclusion) score is a probability value,
then Q = 1− P .

5

Definition 3. For any associative and monotone2 operation ⊗ on R+, we
define the aggregation function ⊗ : Ξ (A)→ R as

⊗ (S) :=
⊗
a∈S

P (a) ⊗
⊗
a∈A\S

Q (a) , (1)

where ⊗ indicates Σ or Π (addition or multiplication, respectively) or ∨ or
∧ (maximum or minimum, respectively).

Example 2. If scores are probability values, then we have ⊗ = Π.
If scores indicate the importance of task completion, then ⊗ = Σ.

The phase one of the proposed algorithm decides which tasks will be
included in the project scenario by maximizing ⊗ (S), fulfilling certain time,
quality and cost requirements. Nevertheless, the proposed model also treats
flexible relations between two tasks. Therefore, in phase two of the pro-
posed algorithm, we decide the order in which we will complete these tasks.
This order is a relation of tasks, and our algorithm receives three types of re-
lations (dependencies) as inputs: no dependency, required and flexible.
We have to resolve (i.e., decide) all flexible relations.

Definition 4. The relation triplet (≺,∼,on) is a relation representation
of a hybrid project plan if for any i, j ≤ n and i 6= j, we let
(i) ai ≺ aj represent the strict or required dependencies between tasks ai
and aj, i.e., aj may not be started unless activity ai has been completed;
(ii) ai ∼ aj represents no dependency between tasks ai and aj, i.e., the
starting time of aj is not affected by ai;
(iii) ai on aj represents flexible dependencies between tasks ai and aj.

Remark 1. It is important to note that ≺is naturally a transitive and asym-
metric relation, which excludes circles such as a1 ≺ a2 ≺ ... ≺ a1. There-
fore, by a standard topological ordering algorithm, we may assume that
ai ≺ aj ⇒ i < j.

Whereas strict dependency ai ≺ aj between tasks ai and aj must be
realized (in a sequential manner) and ai ∼ aj means indifference (we may
choose either sequential or parallel realization), flexible dependencies (on)
must be resolved. In this case, we can decide whether these tasks will

2⊗ is monotone if x ≤ y and u ≤ v implies x⊗ u ≤ y ⊗ v for x, y, u, v ∈ R+.

6

be completed in a sequential manner, i.e., ai ≺ aj will be declared, or
in a parallel manner, ai ∼ aj . When we decide that these tasks should
be completed in either a sequential or a parallel manner, we say that the
flexible dependency is decided to realize (include) or to resolve (exclude).
If every flexible relation is decided to realize or resolve, we obtain a project
structure.

Proposition 1. For any binary relation ≺,∼,on on A, the triplet (≺,∼,on)
is a relation representation of a hybrid project plan if and only if {≺,∼,on}
is a partition of A × A \ ι (ι is the diagonal) and ≺ is a strict partial
ordering.

The easiest method to input and modify all data is by using a special
n×n matrix M, which we call a hybrid logic plan. ([M]i,j denotes the entry
in row i and column j.)

Definition 5. The matrix representation of an input for a hybrid logic
plan means that any n×n matrix with entries ∅, X, ?, i.e., M ∈ {X, ∅, ?}n×n,
assuming the following requirements:
(i) for any i ≤ n, [M]i,i = “X” for ai ∈ A and [M]i,i = “?” for ai ∈ Ã;
(ii) for any i, j ≤ n, i 6= j [M]i,j = “X” ⇐⇒ ai ≺ aj , [M]i,j =
“∅” ⇐⇒ ai ∼ aj and [M]i,j = “?” ⇐⇒ ai on aj.

On the diagonal, [M]i,i = “X”, “∅”, “?” represent whether a task ai
will be executed, will not be executed, or will be decided later, respectively.
Similarly, [M]i,j = “?” for any i 6= j indicates a flexible task dependency,

about which we have to decide in the algorithm3. The algorithm will change
“?” to either “X” or “∅” in M step-by-step on the diagonal in phase one
and on the off-diagonal in phase two.

From Remark 1, we know that considering the entries X, M is an up-
per triangular matrix both in the input and in all subsequent steps of the
algorithm. In what follows, M is any such matrix M ∈ {X, ∅, ?}n×n.

Proposition 2. For any realized project scenario S ⊆ A, the diagonal of
the matrix representation does not contain “?”: Mi,i = ”X” for ai ∈ S and
Mi,i = “∅” for ai ∈ A\S. Furthermore, M does not contain “?” at all when
all flexible dependencies are decided.

3The reader is allowed to replace the symbols “∅”, “X” and “?” with any numbers. In
Table 1, we use 0 for ∅, 1 for X and numbers from (0, 1) for ?.

7

Example 3. Let M be a hybrid project plan.

M =

 X ? ∅
∅ ? ∅
∅ ∅ ∅

 (2)

Considering diagonal values, two possible project scenarios (M′
1 and M′

2)
can be specified:

M′
1 =

 X ? ∅
∅ X ∅
∅ ∅ ∅

 ,M′
2 =

 X ? ∅
∅ ∅ ∅
∅ ∅ ∅

 (3)

Based on M′
1, two types of project structures can be specified (see M′′

11 and
M′′

12):

M′′
11 =

 X X ∅
∅ X ∅
∅ ∅ ∅

 ,M′′
12 =

 X ∅ ∅
∅ X ∅
∅ ∅ ∅

 (4)

Since we plan to omit all tasks a ∈ A \ S, we might also omit the rows
and columns of M that do not belong to S, which might be important for
computational purposes (saving time and memory) and could be defined
axiomatically. We leave these details to the reader.

Example 4.

M′
1 =

 X ? ∅
∅ X ∅
∅ ∅ ∅

 :=

(
X ?
∅ ?

)
,M′

2 =

 X ? ∅
∅ ∅ ∅
∅ ∅ ∅

 := (X) (5)

Similarly to Definition 2, we are given score values for each dependency.

Definition 6. Any two matrices P,Q ∈ [0, 1]n×n are called score func-
tions of the input matrix M if
(i) for every i ≤ n, we have [P]i,i = P (ai) and [Q]i,i = Q(ai);

4

(ii) for every i, j ≤ n, i 6= j we have
[M]i,j = “X” ⇐⇒ [P]i,j = 1 and [Q]i,j = 0,

[M]i,j = “∅” ⇐⇒ [P]i,j = 0 and [Q]i,j = 1, and

[M]i,j = “?” ⇐⇒ 0 < [P]i,j , [Q]i,j < 1.

4P and Q were introduced in Definition 2.

8

Let us emphasize that (i) and (ii) above are requirements for the input ma-
trix M. Whereas the “?” entries in M change during the algorithm run, P
and Q remain unchanged.

The off-diagonal values of [P]i,j represent the score of realizing the task
dependency between ai and aj , whereas [Q]i,j represents the score of resolv-
ing the task dependency between ai and aj .

Example 5. Suppose that diagonal of the matrix P represents the probabil-
ity values of tasks in matrix M. Further suppose that [P]i,j , i 6= j elements
represent the probability values of the dependency between task i and task j.
In this case, we can assume that Q = 1−P. Eq.(6) shows possible score
matrices for M.

M =

(
X ?
∅ ?

)
,P =

(
1 0.7
0 0.6

)
,Q = 1−P =

(
1 0.3
1 0.4

)
(6)

Corollary 1. If M contains no “?” in the diagonal, then for the represented
scenario S ⊆ A, we have

⊗ (S) = ⊗diag (M) . (7)

From the diagonal of M, we can provide sharp bounds on ⊗ (S) (see Eq.
(1)) in each step of the algorithm.

Example 6. In the case ⊗ =
∏

, ⊗max
diag (M) = 1 ·max(0.6, 0.4) = 0.6, which

is a score value of scenario M′
1, whereas ⊗min

diag (M) = 1 ·min(0.6, 0.4) = 0.4,
which is a score value of M′

2.

Definition 7. For any M,N ∈ {X, ∅, ?}n×n, we say that
(i) N is an in-/out-diagonal extension of M if all the symbols “X” and
“∅” in M remain unchanged in N and some (possibly none) of the “?”
inside/outside of the diagonal of M are changed to “X” or “∅”. In this
case, M is a restriction of N.
(ii) For i, j ≤ n and [M]i,j = “?”, we denote by M [i, j = X] and M [i, j = ∅]
the matrices if only Mi,j has been changed to either “X” or “∅”.
(iii) N is an in-/out- diagonal closure of M if N contains no “?”s in/out
of the diagonal and N in/out extends M.

Remark 2. Note that every possible project scenario and every possible
project structure are restrictions of the hybrid project plan.

9

When replacing a “?”, the algorithm makes newer extensions of the
recent (or input) matrix, and our goal in phase one and phase two are
suitable in- and out-closures of the input matrix, respectively. In-closures
represent scenarios, whereas out-closures decide all flexible dependencies.

Definition 8.

⊗diag (M) : =
⊗

[M]i,i=”X”

P (ai) ⊗
⊗

[M]i,i=”∅”

Q (ai) , (8)

⊗min
diag (M) : = ⊗diag (M) ⊗

⊗
[M]i,i=”?”

min {P (ai) , Q (ai)} , (9)

⊗max
diag (M) : = ⊗diag (M) ⊗

⊗
[M]i,i=”?”

max {P (ai) , Q (ai)} . (10)

For some ⊗ (e.g., multiplying probabilities), ⊗max
diag (M) may be less than

⊗diag (M) (see also Definition 6). However, we have the following inequali-
ties:

Theorem 1. For any M,

⊗min
diag (M) ≤ ⊗max

diag (M) . (11)

For any in-extension N of M,

⊗min
diag (M) ≤ ⊗min

diag (N) ≤ ⊗max
diag (N) ≤ ⊗max

diag (M) , (12)

and for any i ≤ n,

⊗min
diag (M) = min

{
⊗min
diag (M [i, i = X]) , ⊗min

diag (M [i, i = ∅])
}

, (13)

⊗max
diag (M) = max

{
⊗max
diag (M [i, i = X]) , ⊗max

diag (M [i, i = ∅])
}

. (14)

For any in-closure N of M,

⊗min
diag (N) = ⊗diag (N) = ⊗max

diag (N) (15)

and
⊗min
diag (M) ≤ ⊗diag (N) ≤ ⊗max

diag (M) . (16)

For any M, there are N1 and N2 in-closures such that

⊗min
diag (M) = ⊗diag (N1) and ⊗diag (N2) = ⊗max

diag (M) . � (17)

10

In phase three, we must decide how to treat the elements of A by
choosing elements from the sets of modes (or methods) called protocols.

Definition 9. (i) Any finite set of quadruplets W = {(ti, qi, ci, ri) : i =
1, ..., k}, ri = {ri,1, .., ri,r} of positive real numbers is called a discrete
time-quality-cost trade-off protocol (DTQCTp) with resource demands if
t1 < ... < tk, q1 < ... < qk and c1 ≥ ... ≥ ck, r1 ≥ ... ≥ rk and k ∈ N is
arbitrary. We may write tmin , tmax, qmin, qmax, cmin, cmax, rmin and rmax

instead of t1, tk, q1, qk, rk, r1, ck and c1, respectively.
If for each a ∈ A, we are given a protocol Wa, then we call the set W =
{Wa : a ∈ A} a discrete time-quality-cost trade-off problem (DTQCTP)
on A.
(ii) Any positive, continuous, strictly decreasing function w : [tmin, tmax]
→ [qmin, qmax] × [cmin, cmax] × [rmin, rmax] is called a continuous time-
quality-cost trade-off protocol (CTCQTp) with resource demands, where
0 < tmin, tmax,
qmin, qmax, cmin, cmax, rmin, and rmax are also assumed.
If for each a ∈ A, we are given a protocol wa, then we call the set W =
{wa : a ∈ A} a continuous time-quality-cost trade-off problem (CTQCTP).
(iii) Any finite set of two dimensional continuous random variables ξ =
{µi : i = 1, ..., k} on any set Ω is called a stochastic time-quality-cost trade-
off protocol (STQCTp) if the set of expected values E := {(ti, qi, ci, ri) : i = 1, ..., k},
i.e., (ti, qi, ci, ri) = E (µi) for i ≤ k , forms a DTQCTp.
If for each a ∈ A, we are given a protocol ξa, then we call the set S =
{ξa : a ∈ A} a stochastic time-quality-cost trade-off problem (STQCTP).

We interpret (t, q, c, r) ∈ Wa or wa (t) = (q, c, r) as paying cost c with
quality q and resource (vector) r to solve the element a ∈ A in time t using
the mode assigned to (t, q, c, r). For a parallel explanation of discrete and
continuous problems, we write (t, q, c, r) ∈ wa in both cases. The elements
tamin, tamax, qamin, qamax, camin, camax, ramin and ramax may be different in different
protocols wa (Wa) for each a ∈ A in general. The cases tmin = tmax, qmin =
qmax, cmin = cmax or rmin = rmax are also allowed.
The final goal of our algorithm is an optimal project schedule.

Definition 10. Let S ∈ Ξ (A) be any realized project scenario and W be
either a CTQCTP or a DTQCTP. A project schedule is a set

−→w = {(ta, qa, ca, ra) : a ∈ S} , (18)

where (ta, qa, ca, ra) ∈ wa for a ∈ S.

11

We are now ready to provide upper and lower bounds for time and cost
in each stage (in any phase) of the algorithm, that is, for any matrix M ∈
{X, ∅, ?}n×n.

Definition 11. (i) For any M andW DTQCTP or CTQCTP, the minimal
cost-bound is

Cmin (M,W) :=
∑

[M]i,i=”X”

camin. (19)

(ii) For any project schedule −→w , the total project cost of −→w is

c (−→w) :=
∑

(ta,qa,ca,ra)∈wa , a∈S

ca. (20)

To quantify project quality, both quality parameters and the task com-
pletion scores ([P]i,i) are considered.

Definition 12. (i) Denote p :=
∑

[M]i,i=”X” [P]i,i as the sum of task (com-

pletion) scores. For any M and W DTQCTP or CTQCTP, the maximal
(relative) quality bound is

Qmax (M,W) := 1. (21)

(ii) For any project schedule −→w , the total project quality of −→w is

q (−→w) :=

∑
(ta,qa,ca,ra)∈wa , a∈S

qa∑
a∈A

qamax

. (22)

The quality function (q (−→w)) has two components. The first component
of the multiplication is the ratio the sum of scores for the selected tasks
(sum of task scores for selected/all tasks), whereas the second component
is the weighted geometric mean of the quality components for the selected
tasks, where the weights are the task scores.

For time bounds, we must not forget the ≺ dependencies.

Definition 13. (i) For any real path

−→
P = “ai1 ≺ ai2 ≺ ... ≺ aik” (23)

(Mij ,ij+1 = “X” for 1 ≤ ij < k), the minimal time bound of the path is

Tmin

(−→
P ,W

)
:=
∑
a∈
−→
P

tamin. (24)

12

(ii)
−→
P is the longest min-path of M if Tmin

(−→
P ,W

)
is maximal, as-

suming that
−→
P contains mandatory tasks only (i.e., assuming Mi,i = “X”

whenever ai ∈
−→
P). We denote this maximum by

Tmin (M,W) := max
P

Tmin

(−→
P ,W

)
. (25)

Thus,
−→
P is called the critical path, and the set {ai1 , ai2 , ..., aik} is called

the set of critical activities.
(iii) For any project schedule −→w , the total project time of −→w is

t (−→w) :=
∑

(ta,qa,ca,ra)∈wa , a∈
−→
P

ta, (26)

where
−→
P is any longest min-path.

The length and definition of the longest min-path do not depend on
the project schedule −→w since tamin are summed in Eq. 26. In fact, critical
paths are longest min-paths. Clearly, t(−→w) ≥ Tmin(M,W) for any W and
−→w .A longest min-path in any M can be found by a standard algorithm

within O(n + d), where n is the number of tasks and d is the number of
dependencies.

Definition 14. Denote A(−→w , t) ⊆ A as a set of running activities in time
t for the schedule −→w . The maximal resource demand for resource k is

rk(
−→w) := max

t

∑
ai∈A(−→w ,t)

ri,k , k := 1, .., r. (27)

Theorem 2. For any M and for any in- or out-closure N of M,

Cmin (M,W) ≤ Cmin (N,W) , (28)

Qmax (M,W) ≥ Qmax (N,W) (29)

and
Tmin (M,W) ≤ Tmin (N,W) . (30)

Furthermore, for any project schedule −→w (for the scenario S, determined by
the diagonal of N),

Cmin (N,W) ≤ c (−→w) , (31)

13

Qmax (N,W) ≥ q (−→w) (32)

and
Tmin (N,W) ≤ t (−→w) . (33)

For M ∈ {X, ∅}n×n and −→w , we also use the following notation for total
project quality, cost, time and resource demand:

TPC (M,−→w) := c (−→w) , (34)

TPQ (M,−→w) := q (−→w) (35)

and
TPT (M,−→w) := t (−→w) (36)

and
TPR (M,−→w) := [r1(

−→w) , .., rr(
−→w)]T . (37)

The matrix representation of a project structure contains no “?” symbols
at all.

In phase two, we must address the score values of the dependencies on
A using the off-diagonal elements of P and Q (see Definition 6).

Definition 15. For any associative operation ⊗ on R, we define the ag-
gregation function for project structures as

⊗nd (M) :=
⊗

Mi,j=”X” , i6=j
Pi,j ⊗

⊗
Mi,j=”∅” , i6=j

Qi,j (38)

and its extreme values

⊗min
nd (M) : = ⊗nd (M) ⊗

⊗
Mi,j=? , i6=j

min {Pi,j ,Qi,j} , (39)

⊗max
nd (M) : = ⊗nd (M) ⊗

⊗
Mi,j=? , i6=j

max {Pi,j ,Qi,j} . (40)

If M is the matrix representation of a realized project structure, ⊗nd (M)
gives the score value of this project structure5.

In all versions of the time-quality-cost trade-off functions, the maxi-
mal/minimal time, quality and cost demands can be determined for all ac-
tivities. In this manner, the maximal/minimal total project time (TPT),

5The abbreviation nd in the index means ”no diagonal”.

14

total project quality and maximal/minimal total project cost (TPC) can be
determined. This feature will be used when calculating the maximal and
minimal demands for a project scenario and the maximal/minimal duration
of a project structure.

In the case of (multi-mode) resource-constrained hybrid time-quality-
cost trade-off problems, activities can be supplementary, and the dependen-
cies can be flexible. If we exclude a task from the project, we also exclude
the time/quality and cost/resource demands of this activity.

Instead, phases 1 through 3 are directed by (41)–(60), where the con-
stants Cc, Ct, Cq, Cr, Cdiag and Cnd might be varied upon request. Clearly,
some constant values allow for few or fewer solutions.

We are now ready to define the problems that we will solve in phases
one, two and three.

Resource-constrained hybrid time-quality-cost trade-off prob-
lems:

Problem 1. phase one: Let A be a finite set of activities and M be
a matrix representation of A. Let Cc, Ct, Cdiag ∈ R+ be given such that
Cmin (M,W) ≤ Cc, Tmin (M,W) ≤ Ct and Cdiag ≤ ⊗max

diag (M). Now, find a
scenario S ⊆ A, i.e., an in-closure M′ of M such that

⊗diag
(
M′)→ max (41)

assuming

Cmin

(
M′,W

)
≤ Cc, (42)

Tmin

(
M′,W

)
≤ Ct, (43)

⊗diag
(
M′) ≥ Cdiag, (44)

Qmax
(
M′,W

)
≥ Cq. (45)

The role of (44) is to stop the algorithm from searching for the maximum
in (41) when (44), together with (42), (43) and (45), cannot be achieved.

Problem 2. phase two: Let M′ be a solution to Problem 1 phase one,
i.e., a matrix representation of a project scenario S ⊆ A. Let Ct, Cnd ∈ R+

be given such that Tmin (M′,W) ≤ Ct and Cnd ≤ ⊗max
nd (M”). Now, find a

structure, i.e., an off-closure M” of M′ such that

⊗nd (M”)→ max (46)

assuming

Tmin (M”,W) ≤ Ct, (47)

⊗nd (M”) ≥ Cnd. (48)

15

The role of (48) is to stop the algorithm from searching for the maximum
in (46) when (48), together with (47), cannot be achieved.

After phase two, we are faced with a traditional time-cost trade-off
problem; therefore, in phase three, we can specify different types of ob-
jective functions in Problem 3: phase three/1 and /2.

Problem 3. phase three: Let M be a solution to Problem 1 phase two,
i.e., a matrix representation of a given project structure X = (S,≺,∼). Let
Cc, Ct ∈ R+ be given such that Cmin (M”,W) ≤ Cc and Tmin (M”,W) ≤ Ct.
Problem 3 phase three/1) Find a project schedule −→w such that

t (−→w)→ min (49)

assuming

c (−→w) ≤ Cc, (50)

q (−→w) ≥ Cq, (51)

r (−→w) ≤ Cr. (52)

Problem 3 phase three/2) Find a project schedule −→w such that

c (−→w)→ min (53)

assuming

t (−→w) ≤ Ct, (54)

q (−→w) ≥ Cq, (55)

r (−→w) ≤ Cr. (56)

Problem 3 phase three/3) Find a project schedule −→w such that

q (−→w)→ max (57)

assuming

c (−→w) ≤ Cc, (58)

q (−→w) ≥ Cq, (59)

r (−→w) ≤ Cr. (60)

Note that the requirements for all the constants in each phase ensure
that this phase has at least one solution and that this matrix can be treated
in the next phase.

16

2.2. Modeling flexible project plans

Although the proposed model can be used for both discrete and contin-
uous versions of trade-off problems, in simulations, we addressed continu-
ous version of time-quality-cost trade-off problems to accelerate the com-
putations. For practical reasons, we use a specific, deterministic, multi-
modal project domain matrix (PDM) to model the multi-mode resource-
constrained hybrid continuous time-quality-cost trade-off problem. The
PDM is an n by n + 6 + r matrix (see, e.g., Table 1), where n is the num-
ber of tasks and r is the number of resources ([17]). The PDM has five
domains: the logic domain (LD), time domain (TD), quality domain (QD),
cost domain (CD) and resource domain (RD) (see Table 1).

In the initial step, LD := P, where P ∈[0, 1]n×n is a score matrix. The
diagonal [PDM]i,i = [LD]i,i = [P]i,i represents the task completion scores,
and those terms off of the diagonal [PDM]i,j = [LD]i,j = [P]i,j (i 6= j)
represent the task dependency scores between task ai and task aj .

TD, QD and CD contain of pair of columns of (minimum and maxi-
mum) values, whereas the resource domain (RD) contains columns of mini-
mum/maximum values for every resource (see Table 1).

Ref. [17] shows how to address and resolve cycles in a PDM. Therefore,
if the dependency scores can be characterized as probability values, then
without loss of generality, we can assume that there is no cycle in the project
net. In other words, the LD of the PDM can be rearranged as an upper
triangular matrix.

Example 7. Table 1 specifies a PDM matrix in which there are two modes
and two resources. Suppose that LD = P. Additionally, suppose that the
score values represents probability values; therefore, ⊗ =

∏
and Q = 1−P = 1− LD.

We assumed that if task j was the successor of task i in every case ⇒
[M]i,j := “X”, then [P]i,j = 1 ([Q]i,j = 0).

If in every task j was not the successor of task i ⇒ [M]i,j := “∅”, then
[P]i,j = 0 ([Q]i,j = 1).

If at least in one case task j was the successor of task i ⇒ [M]i,j := “?”,
then [P]i,j ∈ (0, 1) ([Q]i,j = 1− [P]i,j).

⊗max
nd (M) := ⊗nd (M) ·

∏
[M]i,j=? , i6=j

max
{

[P]i,j , [Q]i,j

}
, (61)

⊗min
nd (M) := ⊗nd (M) ·

∏
[M]i,j=? , i6=j

min
{

[P]i,j , [Q]i,j

}
. (62)

17

We assumed that [P]i,j was the relative frequency of task/dependency
occurrences. Therefore, the aim of the simulation was to determine the
most probable project structure that can be completed given a specified dead-
line/budget/resource availability.

⊗max
diag (M) := ⊗diag (M) ·

∏
Mi,i=?

max
{

[P]i,i, [Q]i,i

}
, (63)

⊗min
diag (M) := ⊗diag (M) ·

∏
Mi,i=?

min
{

[P]i,i, [Q]i,i

}
. (64)

Let the durations be in weeks, cost demands be in $1, 000 and resource
demands be in number of employees. The most-probable project scenario

Table 1: Multi-modal specified PDM

Logic Domain TD CD QD RD
PDM

A B C D E tmin tmax cmin cmax qmin qmax r1min r1max r2min r2max

A 0.8 1.0 0.8 0.2 0.1 4 6 2.4 3.4 0.8 0.9 2.5 4.5 1.6 3.7
B 0.0 1.0 0.0 0.4 0.8 2 3 1.8 2.6 0.7 0.8 3.4 4.2 2.5 4.8
C 0.0 0.0 0.9 0.0 0.2 4 8 9.5 9.9 0.8 0.9 3.8 5.7 1.2 3.5
D 0.0 0.0 0.0 0.4 0.3 9 9 4.2 4.2 0.8 0.8 2.3 2.3 1.4 1.4
E 0.0 0.0 0.0 0.0 0.7 3 4 0.9 1.2 0.7 0.8 3.4 4.7 2.5 6.2

Constraints: 10.0 18.0 0.7 10.0 10.0

contains tasks A,B,C and E, and the probability value of this project sce-
nario is ⊗(LD)max

diag = 0.8 · 1.0 · 0.9 · (1 − 0.4) · 0.7 = 0.3024, whereas

⊗(LD)min
diag = (1− 0.8) · 1.0 · (1− 0.9) · 0.4 · (1− 0.7) = 0.0024. The minimal

project duration is obtained if all flexible tasks and all flexible dependencies
are excluded from this project and all tasks are completed within the shortest
possible duration. Since only task 2 (task B) is a mandatory task, TPTmin =
minj [TD]2,j = min{2, 3} = 2 weeks. This is a global minimum; therefore,
there is no way to complete the project in less than 2 weeks. The minimal
project cost also occurs if only the mandatory task is completed; however, the
cost demands are assumed to be independent of the completion sequences of
the tasks. TPCmin = minj [CD]2,j = min{1.8, 2.6} = 1.8× $1, 000 = $1, 800.
According to Eqs. (21)-(21), TPQmax = 1, and the maximum of the re-
source demands is minimal when all supplementary tasks are ignored but
all flexible dependencies between mandatory tasks are prescribed and the
resource demands in the completion modes of mandatory tasks are mini-
mal. TPRmin = {3.4; 2.5}. These bounds specify global minima/maxima;
however, if a supplementary task or a flexible dependency is decided to be
included in or excluded from the project, and in this manner, we obtain a

18

restricted matrix, the minimal project cost/durations/resource demands and
maximal project quality can be calculated for the restricted matrix.

Remark 3. Since Eqs. (63)–(64) give small values, if there are many tasks,
the geometric mean of task scores is calculated and explored. The main
advantage of using the geometric mean of task scores instead of multiplying
the relative frequencies is that different project scores can be compared.

If M represents the initial hybrid logic plan and M′ is the result (final
project scenario) of phase one, then

TPS% = ⊗diag(M)% :=

 n
√
⊗diag (M′)

n

√
⊗min
diag (M)

− 1

× 100 (65)

denotes the total project score (TPS) performance of project sce-
nario M′.

TPS%=⊗diag% ∈ [0,∞]. This value shows us how many times larger
the project score is compared to the minimal requirement.

The performance schedules for the remaining parameters are specified as
follows (similarly to Eq. 65):

TPQ% :=

(
TPQ(M, (W))

TPQmin(M, (W))
− 1

)
× 100, (66)

TPT% :=

(
TPTmax(M, (W))

TPT (M, (W))
− 1

)
× 100, (67)

TPC% :=

(
TPCmax(M, (W))

TPC(M, (W))
− 1

)
× 100, (68)

TPRi% :=

(
TPRimax(M, (W))

TPRi(M, (W))
− 1

)
× 100, i = 1, 2.., r. (69)

Remark 4. Eqs. (65)–(69) are between [0,∞] if the project schedules are
feasible. Otherwise, these values are 0.

2.3. The Algorithms

2.3.1. Phase one

We are given the matrix M0 ∈ {X, ∅, ?}n×n. Suppose that all the “?”
symbols in the diagonal are in the first σ rows (columns). The algorithm
sequentially changes these symbols to either “X” or “∅” in this order; such a

19

change is called a step. These changes are not final, and the original matrix
M0 is also saved. We look for the optimum similarly to a “back-and-forth”
method, saving information in the buffer B (a set) of possible manners we
might investigate later. After replacing as many elements of M as we can
(satisfying Eqs. (42), (43), and (45)), we go back to the cases in which B
has higher scores ⊗diag than M. (All the possible variations of M0 form a
binary tree of size 2σ with root M0.)

Here, M denotes the actual matrix before the next replacement, such
that [M]j,j = “?” ⇐⇒ i ≤ j ≤ σ for some 1 ≤ i ≤ σ, and denote by
M [i, i = Y] the matrix after replacing Mi,i to Y , where Y ∈ {X, ∅}. Before
replacing [M]i,i, we save the other possibility, which we do not follow in the
present step, in B. The elements of B are of the form

b =
(
i, [M]1..n,1..n , Y, ⊗

max
diag (M [i, i = Y])

)
(70)

= (i,−→m,Y,⊗b) , (71)

where i denotes the elements in the diagonal of M that we are replacing,
−→m = M1..n,1..n is the actual content of the diagonal of M (specifically Mi,i =
“?”), Y ∈ {X, ∅} and ⊗b = ⊗max

diag (M [i, i = Y]) is the“ideal” score that we

may achieve by replacing Mi,i with Y .6 B may contain several elements
with the same ⊗b value, but at this moment, we do not know which pf
these elements can be realized later, i.e., satisfy (42)–(45)

Remark 5. B contains only M [i, i = Y] extensions that have not yet been
investigated but fulfill the bounds of (42)–(45). More precisely, for their
extension,

Cmin (M [i, i = Y] ,W) ≤ Cc, (72)

Tmin (M [i, i = Y] ,W) ≤ Ct, (73)

Qmax (M [i, i = Y] ,W) ≥ Cq, (74)

⊗max
diag (M [i, i = Y]) ≥ Cdiag. (75)

Remark 6. Before starting step i for 1 < i, at the end of step i − 1,
we have inserted Y into the i − 1-th entry of M. Since we are now ex-
tending this configuration, B does not contain the corresponding record
b = (i− 1,−→m,Y,⊗b).

6⊗b in (71) denotes a nonnegative real number, and ⊗max
diag was defined in (10).

20

The algorithm starts a new cycle whenever it goes back to an element
of B and starts to replace “?” from the i = i0 + 1-th entry of the diagonal.
Problem 1 may have a solution if, for at least one cycle, we are able to
step i to σ (satisfying (42)–(45)). Of course, we store all the in-closures M′

of M0 that were found by the algorithm and may be optimal solutions to
Problem 1. If B contains an element b with a higher score than M′ has
(i.e., ⊗b > ⊗diag (M′)), then we start a new cycle from b. During this
cycle, i cannot be increased to σ, ⊗b = ⊗max

diag (M [i, i = Y]) may fall below
⊗diag (M), or we might obtain a solution better than M′.

START Let i0 := 0, i = 1, B := ∅.
GENERAL STEP (1 ≤ i ≤ σ), M is the actual matrix. Let

biX : =
(
i, M1..n,1..n, X, ⊗max

diag (M [i, i = X])
)
, (76)

bi∅ : =
(
i, M1..n,1..n, ∅, ⊗max

diag (M [i, i = ∅])
)

. (77)

Case i) Neither bi∅ nor biX fulfills (72)–(75) and B = ∅. Then, STOP
since Problem 1 has no solution.

Case ii) Neither bi∅ nor biX fulfills (72)–(75) but B 6= ∅. Recall that
in Cases i) and ii), B may contain elements of type b = (j,−→m,Y,⊗b) only
if j < i by Note 5 and (70), (71), and (76), (77). In Case ii), choose any
element b ∈ B such that ⊗b is maximal (in B). Then, reset the diagonal of
M according to −→m, set i := j, delete b from B, and proceed to the General
Step.

Case iii) Exactly one of biX or bi∅ fulfills (72)–(75), say, biY . Let
Mi,i := “Y ” and go to Step Increasing i.

Case iv) Both biX and bi∅ fulfill (72)–(75).
If ⊗max

diag (M [i, i = X]) ≤ ⊗max
diag (M [i, i = ∅]), then let Mi,i := “∅”, B :=

B ∪
{
biX
}

, and go to Step Increasing i.
If ⊗max

diag (M [i, i = X]) > ⊗max
diag (M [i, i = ∅]), then let Mi,i := “X”, B :=

B ∪
{
bi∅
}

, and go to Step Increasing i.
STEP INCREASING (i) If i < σ, then let i := i+ 1 , and go to the

General Step. In the case i = σ, go to the Check Step.
CHECK STEP (i = σ) First, save the recent M with its ⊗diag (M).

If B contains an element b = (i,−→m,Y,⊗b) such that

⊗b > ⊗diag (M) , (78)

then go back to b and start a new cycle, i.e., reset the diagonal of M
according to −→m, set i := j, delete b from B, and go to the General Step.

END of the Algorithm.

21

Remark 7. If we want to find all optimal solutions to Problem 1, then
replace (78) with

⊗b ≥ ⊗diag (M) . (79)

Of course, we must first save (in an output buffer) the solution(s) we have
found thus far. Then, we pick the next element b ∈ B in the buffer, reset
the diagonal of M according to −→m, set i := j, delete b from B, and go to
the General Step.
We call this algorithm the Hybrid Project Ranking algorithm.

Theorem 3. The saved matrices (in the Check Step) of the above algorithm
are exactly the optimal solutions to Problem 1. Specifically, there are no
saved matrices if and only if (42)–(44) in Problem 1 has no solution at all.

Proof. In each step, the algorithm chooses the best of (at most) two possi-
bilities but buffers the other for further investigation. The value ⊗diag (M)
for each M is a sharp upper bound for further continuation of M. Therefore,
all the buffered possibilities with smaller ⊗ than those of the finished (and
saved) matrices (in the Check Step) could be deleted from the buffer. Since
the algorithm checks each remaining element of the buffer (see the Check
Step), at the end, we must obtain each optimal solution.

The result of phase one is to find (depending on the meaning of the
completion scores and the aggregation functions (see Definition 4)) the most-
desirable or most-probable project scenario. The goal of phase two is to
find the most-desirable/most-probable project structure within a project
scenario. However, the project structure always depends on the result of
phase one. Therefore, the “highest”-scoring project structure can be in-
terpreted only within a specified project scenario.

2.3.2. Phase two

In phase two, the goal is to find the most-probable or most-desirable
project structure within the specified project scenario. The algorithm and
most of the notation for phase two are the same as in phase one. We
have to determine the “?” symbols off of the diagonal of M in a fixed (but
arbitrary) order. Before each replacement, we save the other possibility in
a buffer similarly to (70), checking the conditions corresponding to (47) and
(48), such as (72)–(75) corresponded to (42)–(44). In each step, we have
to refresh Tmin (M,W) and ⊗nd (M). The properties of the phase two
algorithm can be proven along the lines of Theorem 3 and Subsection 2.3.4.

22

2.3.3. Phase three

After phase two we obtain a project structure, which represents a
traditional resource-constrained time-quality-cost trade-off problem (RC-
TQCTP). If there is no feasible solution to the given RC-TQCTP algorithm,
we should go back to phase two and select the next project structure from
the buffer.

The result of the RC-TQCTP will produce the optimal solution to the
resource-constrained hybrid time-quality-cost trade-off problem.

The optimal output matrix is a domain mapping matrix (DMM) (see
Table 2), in which flexible dependency and uncertain task completion are
excluded or included. Therefore, the logic domain of the output matrix is a
DSM.

Table 2: The output matrix of the proposed algorithm if the input is specified by Table 1

LD TD CD QD RD
DMM

A B C E t c q r1 r2
SST

A 1 1 1 4 3.4 0.8000 4.5000 3.7000 0

B 1 1 2 2.6 0.7000 4.2000 4.8000 6

C 1 5 9.8 0.8250 5.2250 2.9250 6

E 1 3 1.2 0.7000 4.7000 6.2000 9

TPT,TPC,TPQ,TPR 9 18.0 0.7202 9.9250 9.1250 –

The optimal output matrix (furthermore, the project schedule matrix)
contains one vector of time/cost demands (TD,CD) and one vector of quality
parameters (QD). The PSM also contains an n by r submatrix of resource
demands (RD) and a vector of scheduled start times (SST).

2.3.4. Algorithmic complexity

Briefly, in phase one, ⊗diag (M) is calculated and Tmin (M,W) is re-
freshed (see Definition 13) such that each cycle is at most quasilinear, but we
have no bounds on the total size of the buffer. Similarly, in phase two, we
have to calculate Tmin (M,W) and ⊗nd (M), which implies the same upper
bound on time as in phase one. Perhaps some extreme counterexamples
may cause exponential running time, but practical runs (see Section 3) pro-
vide quadratic runs.

In more detail, in general, the nth-largest value can be determined within
O(n log n) computation time (e.g., [22]); however, our decision tree is a spe-
cial binary heap in which a quasilinear search algorithm can be specified.
In Section 2.3, we saw that the best project structures can be found within

23

O(t+ d), where t is the number of supplementary task to be completed and
d is the number of flexible task dependencies. If there are no supplementary
tasks to be completed, the number of possible project structures depends
only on the number of flexible dependencies. If there are d flexible depen-
dencies, then there are 2d possible project plans. The project network can
be specified as an NDSM. In case of acyclic project networks, the maximal
number of flexible dependency is n(n − 1)/2, and in this case, the number
of possible project structures is 2n(n−1)/2.

If there are t supplementary tasks, then 2t project scenarios can be spec-
ified. In a special case, if t = n and d = n(n−1)/2, then there are 2n project

scenarios and
n∑
j=0

(
n
j

)
2j(j−1)/2 project plans.

The computational demand of the proposed hybrid algorithm with re-
spect to the fulfilled PEM=LD of a specified deterministic PEM is O(d) =
O(n(n−1)/2) ≈ O(n2) in the case of a fulfilled upper-triangular NDSM, and
the runtime O(d+ t) = O(n+n(n−1)/2) ≈ O(n2) is similar when consider-
ing a fulfilled upper-triangular PEM. For example, when n = 50, completely
filled upper-triangular NDSM and PEM specify 5, 78 · 10368 possible project
plans, whereas our algorithm finds a project structure within O(502) steps.
However, at the end of the project selection process, where we have a fea-
sible project structure, the proposed algorithm has to utilize a RC-TQCTP
method. In this case, the complexity of the RC-TQCTP method and the
complexity of project selection are multiplied. As (multi-mode) resource-
constrained versions of TQCTPs, DTQCTPs and STQCTPs, a stochas-
tic version of DTQCTPs, are NP-hard problems. The hybrid versions of
these problems, namely, hybrid discrete time-quality-cost trade-off prob-
lems (HDTQCTP), hybrid stochastic time-quality-cost trade-off problems
(HSTQCTP) and (multi-mode) resource-constrained hybrid time-quality-
cost trade-off problems, are also NP-hard problems.

3. Simulation results

The main goal of the simulation was to compare project scheduling per-
formances (see Eqs. (65)–(69)) of the different types of project management
approaches.

The first problem was to select an adequate project plan from project
database because neither known project generators (such as ProGen [23],
RanGen I[24], and II[25]) nor open project data sources (such as MMLIB[26],
and PSPLIB[23]) distinguish mandatory and supplementary tasks or con-
sider strict and flexible dependencies. Therefore, there are no score values

24

12 3

45 67 8

9 1011 1213

14 1516

(a) n11 2 (i2 = (m− 1)/(n− 1) = 0.2)

1

2

3

4

5 6

7 8

9

10

11

12

13 1415

16

(b) n16 1 (i2 = (m−1)/(n−1) = 0.267)

Figure 1: Selected logic network from PSPLIB MRCPSP - n1 dataset

linked to task completion or task dependencies.
The second problem is that the quality parameters are neglected and

usually the cost parameters are also missing from the project plans. Addi-
tionally, resources are either missing or specified in a discrete multi-mode
resource allocation problem, in which there are more than two modes. Nev-
ertheless, these project databases have been validated and applied in sev-
eral publications for testing and comparing algorithms; therefore, we de-
cided to use the logic network, and we extended the project plans with
cost, quality, resource and score parameters in the case of the simulation.
Fig. 1 shows the selected logic network from PSPLIB - Multi-Mode Re-
source Constrained Project Scheduling Problem (MRCPSP) n1 dataset:
(http://www.om-db.wi.tum.de/psplib/files/n1.mm.zip).

Ref. [27] is specified a real-life project database; however, this database
contains only five IT projects, and these projects did not follow the agile
approach. In addition, this database did not contain completion modes.
Therefore, project plans were selected from simulation database PSPLIB -
MRCPSP - n1 dataset, where the main features of IT projects can be found.

3.1. Simulation database

The aim of the selection and the specification of initial project plans are
to meet as much as possible the expectations for (IT) software project plans,
especially the features of agile projects:

1. Since Ref. [28] and Ref. [27] showed that software projects usually
contain more parallel tasks; therefore, according to the Ref. [28] and

25

http://www.om-db.wi.tum.de/psplib/files/n1.mm.zip

[27], the number of parallel tasks is greater than the number of serial
tasks7.

2. Projects are usually separated into smaller autonomous sub-projects
(sprints) [see, e.g., Ref. 29] that should completed within 2-6 weeks;
therefore, the number of tasks is limited and should not be greater
than 20.

3. Contains at least two types of renewable resources (e.g., programmer
or tester)

4. Contains two completion modes to apply continuous trade-off methods
and in this manner also tests the performance of the hybrid approaches.

The selected n11 2 (see Fig. 1(a)) and n16 1 (see Fig. 1(b)) project
plans satisfies criterion 1 (more parallel than serial completion) and criterion
2 (n < 20). After selecting logic network, 50-50 project plans are generated
for both logic plans n11 2 and n16 1. The minimal value of work hours are
set to tmin ∈ [20, 40] (in work hours) to keep the project duration to within
2-6 weeks. The minimal values of cost demands are cmin ∈ [1000, 3000] (in
$), which covers the direct costs. The minimal amounts of two types of
resources rmin ∈ [3, 5] (in terms of number of employees, either testers or
programmers) are also specified. At the end, the minimal value of quality
parameters qmin ∈ [0.70, 0.9] are generated between the specified intervals.
To simulate trade-offs, maximal values were between 110 − 120% of the
minimal values.

Known project databases (such as ProGen and RanGen I,II) do not dis-
tinguish mandatory and supplementary tasks and also do not distinguish
fixed and flexible dependencies between two tasks. Consequently, after gen-
erating time/cost/resource demands, in our database, the supplementary
and mandatory task completions or flexible and strict dependencies are not
distinguished. Therefore, in order to simulate flexible environments, two
types of datasets are specified. In both cases, first, the ratios of flexibil-
ity is specified as follows: rf1 ∈ {5%, 10%}, rf2 ∈ {25%, 30%}. This means
that in the case of first dataset, 5% and 10%, whereas in the case of dataset
2, 25% and 30% of tasks and dependencies are selected to became supple-
mentary tasks or flexible dependencies. In the case of both datasets, it is
assumed that the score of including is greater than the score of excluding;
therefore, the score values of supplementary tasks and flexible dependencies

7Following the simulations of Ref. [28], i2 = (m−1)/(n−1) ∈ [0.2, 0.3], where m is the
number stages in a topological ordered network and n is the number of tasks. i2 = 1 if all
tasks are completed in a serial manner, and i2 = 0 if all tasks are completed in parallel.

26

1

2

3

4

5 6

7 8

9

10

11

12

13 1415

16

(a) rf = 5%, n11 1

1

2

3

4

5 6

7 8

9

10

11

12

13 1415

16

(b) rf = 10%, n11 1

12 3

45 67 8

9 1011 1213

14 1516

(c) rf = 5%, n16 2

12 3

45 67 8

9 1011 1213

14 1516

(d) rf = 10%, n16 2

Figure 2: Stochastic logical networks (thin edges=flexible dependencies, cir-
cles=supplementary tasks).

were greater than 0.5 but less than 1.0. Dataset 1 specifies a less-flexible
environment, whereas dataset 2 specifies a more-flexible environment. Fig.
2 shows the logical networks of the hybrid project plan when rf = 5% and
rf = 10%.

In the case of dataset 1, the structure of the project is only slightly
changed, even if all flexible dependency and all supplementary tasks are
excluded from the project, whereas as Fig. 4 shows, when considering the
more flexible environment, parallel autonomous subprojects (i.e., sprints)
can be generated. It is an extreme case when all supplementary tasks are
postponed and all flexible dependency are excluded from the project network
(see Fig. 3).

Nevertheless, if we consider the minimal time or cost demands, Fig.
3 provides project plans when the total project time/total project cost is

27

1 2

3

4

56 7

8

9

10 11

13

14

15

16

(a) rf = 5%, n11 1

1 23

4

5

7 8 910

13

1415

16

(b) rf = 10%, n11 1

123

4 678

910 11 1213

141516

(c) rf = 5%, n16 2

1 23

4 56 78

910 11 13

14

15

16

(d) rf = 10%, n16 2

Figure 3: Logical networks if only fixed dependencies and mandatory tasks are considered
(dataset 1).

28

1

2

3

4

5 6

7 8

9

10

11

12

13 1415

16

(a) i2 = 0.2

1

2

3 4

57

8

12

14

15

(b) rf = 25%

12 3

45 67 8

9 1011 1213

14 1516

(c) i2 = 0.27

2 3

45 67 8

9 1011

14 15

(d) rf = 30%

Figure 4: Logic networks from dataset 2. Stochastic logic networks (a and c) from dataset 2
and the deterministic results (respectively b an d) if supplementary tasks and dependencies
are omitted.

minimal.

3.2. The calculation of constraints and the evaluation scheduling perfor-
mances

When calculating constraints, first, the minimal/maximal values of total
project time/cost/quality/scores and resources are determined (see Defini-
tion 11-14 and Example 7). TPX ∈ {TPT,TPC,TPQ,TPS,TPR}

The ratio of constraints is applied Cx% = Cx−TPXmin
TPXmax−TPXmin

. In this simu-
lation, all constraint ratios were 0.7 or 0.9,
(Cs%, Ct%, Cc%, Cq%, Cr1% = Cr2% ∈ {0.7, 0.9}). Owing to the possible
combination of constraints, 25 = 32 types of constraints are specified for all
project plans.

When comparing project management approaches, the ratio of feasible
projects and, according to Eqs. (65)–(69), the scheduling performances are
also calculated for all projects solved by three types of project management
approaches.

3.3. Simulated project management approach

The proposed method contains three phases, but different types of project
management approaches do not use all phases.

TPMa:. Traditional project management approaches (TPMa) do not allow
for flexible dependencies and supplementary task completion. Therefore, the
most-probable tasks and dependencies should be realized. In this case, the
matrix representation ([M]TPMa

i,j) of a traditional project plan (from matrix
representation (M) of the original hybrid project plan) can be specified for
every i, j as follows:

• [P]i,j ≥ 0.5⇒ [M]TPMa
i,j = “X”,

29

TPMa

432/3200
APMa

HPMa

2819/3200

2589/3200

Feasible
Infeasible

TPMa

APMa

HPMa

3139/3200

2963/3200

2589/3200

(a) dataset 1 (b) dataset 2

Figure 5: Feasibility results of project management approaches

• [P]i,j < 0.5⇒ [M]TPMa
i,j = “∅”.

Since [M]TPMa
i,j is a project structure, we go directly to phase three.

APMa:. Following the agile project management approach (APMa) allows
us to specify flexible dependencies and supplementary task completion. How-
ever, in this case, we do not consider time-cost trade-offs. Only one mode,
a normal planning mode (tmax, cmin, qmax, rmin), is specified for every task.
Thus, we cannot use any trade-off method to reduce the task duration.

HPMa:. The proposed algorithm assumes that project managers can con-
sider the trade-offs and they can also reorganize or restructure the project.
Therefore, the full PDMs are considered.

3.4. Number of simulations

2 × 100 types of PDM matrix, 25 = 32 possible constraints, and 3 pos-
sible (i.e., traditional (TPMa), agile (APMa), or hybrid (HPMa)) project
management approaches produced 19200 simulations.

To accelerate the computation of the time-cost and time-quality trade-off
functions, they were considered as linear functions because the time-quality-
cost trade-off problem can be treated as a cost flow problem, which can be
solved in strongly polynomial manner (see, e.g., [30]).

Fig. 5 shows that in both datasets, HPMa produces the most-feasible
solutions. However, if the flexibility ratio was low, the agile approach pro-
duces the least-feasible solutions. The agile approach can be more efficient if
managers have more freedom in their decisions. They can parallelize tasks,
or they can specify parallel sub-projects.

30

Fig. 6 shows performances schedules for different types of project man-
agement approaches. A larger covered area indicates better performance
in scheduling. The largest covered area is produced by the agile approach;
nevertheless, in a less-flexible project environment (dataset 1), APMa usu-
ally cannot find a feasible solution. The scheduling performances of TPMa
and HPMa are very similar in both datasets. Both methods can better re-
duce project durations; however, HPMa produces more-feasible solutions,
whereas TPMa keeps all tasks and therefore yields the highest quality and
score values.

TPT%

TPC%TPQ%

TPS%

TPR1% TPR2% 10-100%
TPMa
APMa
HPMa

(a) less-flexible project environment

TPT%

TPC%TPQ%

TPS%

TPR1% TPR2% 10-100%
TPMa
APMa
HPMa

(b) more-flexible project environment

Figure 6: Performance of schedules of different project management approaches for feasible
projects.

A schedule performance indicator can be treated as a dependent variable
in a regression model, in which independent variables are then applied in
a project management approach (implemented by the proposed algorithm)
and the constraints, the ratio of flexible dependencies (F%) and the ratio of
supplementary tasks (S%) are varied. Table 3 presents the significant oper-
ators. The significance level was α = 0.001. Table 3 reports the importance
values for the independent variables, which are ratios of R2 values from the
regression models. Table 3 indicates that in 4 cases (i.e., for TPT%, TPC%,
and TPR1%, TPR2%), the applied project management approach was the
most important variable. The next-most-important variable was the ade-
quate constraint, whereas in the case of considering the project scores and
the quality performances, the most-important value was the ratio of sup-
plementary tasks because ignoring or postponing supplementary tasks may
reduce both the quality and the scores of the projects.

The results show that there is no perfect project management approach.
Whereas the agile approach can reduce the cost and resources most signifi-

31

cantly (see Fig. 6), HPMa can find the most-feasible solutions (see Fig. 5).
The traditional approach can best maintain the score and quality.

Indeps. \Deps. TPT% TPC% TPS% TPQ% TPR1% TPR2%

XPMa 78.0198 74.7481 0.5642 10.6008 39.8360 31.6482
Ct% 8.3171 1.1846 5.8063 5.8990 5.0401 5.1696
Cc% 1.4316 18.2283 5.4056 4.3890 3.6417 4.1025
Cq% 1.1519 1.2292 5.3624 33.0476 3.6555 4.1239
Cr% 0.9802 1.4805 5.0361 4.0924 22.4144 18.2393
Cs% 1.2538 1.3601 25.3817 4.7369 3.5497 4.0147
F% 2.3892 1.2322 4.9610 3.8254 12.2962 18.1735
S% 6.4564 0.5371 47.4826 33.4090 9.5663 14.5283

Adj. R2 41.4300 50.8200 59.8000 43.1500 38.6500 42.5700

Table 3: Importance of the management approach and the constraints for schedule per-
formance (the most-important values are highlighted).

4. Summary and conclusion

The proposed hybrid time-quality-cost trade-off approach may bridge
the agile and traditional project management approaches. If there are no
flexible dependencies or supplementary tasks, the problem will be a tradi-
tional TCQTP problem. However, if there is no trade-off between time and
cost and/or time and quality demands, the task is to find a feasible project
scenario and a feasible project plan given a set of time/quality/cost/resource
constraints.

The hybrid project management (HPM) approach combines methods
(e.g., time-cost and time-quality-cost trade-off methods) from traditional
project management with structuring and scoring techniques from agile
project management.

In this paper, resource-constrained hybrid time-quality-cost trade-off
problems (RC-HTQCTPs) were examined to extend the traditional time-
quality-cost trade-off model by drawing on the agile approach.

In this paper, a new matrix-based project planning method was proposed
to model RC-HTQCTPs and find the most-desirable/least-time-consuming/lowest-
cost project scenarios and project structures within the specified constraints.

The proposed algorithm is a fast, efficient method that supports the
hybrid project management (HPM) approach. The algorithm is able find an
optimal solution according to predefined preferences regarding factors such
as time and cost.

32

The developed matrix-based method and proposed exact algorithm may
be important and essential components of a project expert system support-
ing strategic decision-making, particularly in cases of large, complex, flexible
projects.

4.1. Limitations and future works

The proposed model extends traditional resource-constrained time-quality-
cost trade-off methods; however, in this model, only renewable resources
(e.g., human resources) and one non-renewable resource (i.e., cost demand)
are considered. In project management, renewable, non-renewable, and
semi-renewable resources may also be important parameters. Therefore,
this extension will be considered in future research. The paper presented
a formal description of discrete and stochastic versions of hybrid trade-off
problems; however, the paper focused only on continuous cases. The other
extension is to address multi-mode resource constraint problems. However,
these extensions require heuristic or meta-heuristic solvers because both
discrete trade-off problems and multi-mode resource constraint resource al-
location problems are NP-hard problems (see [4]).

Another possible application of this method is risk management and
risk analysis. Supplementary task completion may model changes in man-
agement or client claims. Flexible task dependency may model technological
changes. In this case, a more appropriate matrix-based model could be spec-
ified, and the efficiencies of TPM (e.g., trade-off methods) and APM (e.g.,
scoring and (re)structuring methods) could be compared for different types
of project plans. This risk-management approach can be combined with
current risk evaluation and mitigation methods, such as [20].

Acknowledgement

This research is supported by a János Bolyai Fellowship, Hungarian
Academy of Science. We acknowledge the financial support of Széchenyi
2020 under the EFOP-3.6.1-16-2016-00015.

References

[1] D. R. Fulkerson, A network flow computation for project cost curves,
Management science 7 (1961) 167–178.

[2] S. E. Elmaghraby, Activity networks: Project planning and control by
network models, Wiley New York, 1977.

33

[3] J. J. Moder, C. R. Phillips, E. W. Davis, Project management with
cpm, pert and precedence diagramming., 1983.

[4] P. Brucker, A. Drexl, R. Mohring, K. Neumann, E. Pesch, Resource-
constrained project scheduling: Notation, classification, models, and
methods, European Journal of Operational Research 112 (1999) 3–41.

[5] P. De, E. J. Dunne, J. B. Ghosh, C. E. Wells, The discrete time-cost
tradeoff problem revisited, European Journal of Operational Research
81 (1995) 225–238.

[6] E. L. Demeulemeester, W. S. Herroelen, S. E. Elmaghraby, Optimal
procedures for the discrete time/cost trade-off problem in project net-
works, European Journal of Operational Research 88 (1996) 50–68.

[7] H. R. Tareghian, S. H. Taheri, On the discrete time, cost and quality
trade-off problem, Applied Mathematics and Computation 181 (2006)
1305–1312.

[8] A. Babu, N. Suresh, Project management with time, cost, and quality
considerations, European Journal of Operational Research 88 (1996)
320 – 327.

[9] A. Salmasnia, H. Mokhtari, I. Nakhai Kamal Abadi, A robust schedul-
ing of projects with time, cost, and quality considerations, The In-
ternational Journal of Advanced Manufacturing Technology 60 (2012)
631–642.

[10] C. Feng, L. Liu, S. Burns, Stochastic construction time-cost trade-off
analysis, Journal of Computing in Civil Engineering 14 (2000) 117–126.

[11] S. S. Said, M. Haouari, A hybrid simulation-optimization approach for
the robust discrete time/cost trade-off problem, Applied Mathematics
and Computation 259 (2015) 628 – 636.

[12] R. K. Wysocki, Effective Project Management: Traditional, Agile, Ex-
treme, John Wiley & Sons, 5. auflage edition, 2009.

[13] M. Kuhrmann, P. Diebold, J. Mnch, P. Tell, K. Trektere, F. M. Caf-
fery, G. Vahid, M. Felderer, O. Linssen, E. Hanser, C. Prause, Hybrid
software development approaches in practice: A european perspective,
IEEE Software PP (2018) 1–1.

34

[14] K. Schmitz, R. Mahapatra, S. Nerur, User engagement in the era of
hybrid agile methodology, IEEE Software (2018) 1–1.

[15] V. Rahimian, R. Ramsin, Designing an agile methodology for mo-
bile software development: A hybrid method engineering approach, in:
Research Challenges in Information Science, 2008. RCIS 2008. Second
International Conference on, pp. 337–342.

[16] M. Tyagi, S. Munisamy, L. Reddy, Traditional and hybrid software
project tracking technique formulation: state space approach with ini-
tial state uncertainty, CSI Transactions on ICT 2 (2014) 141–151.

[17] Z. T. Kosztyán, Exact algorithm for matrix-based project planning
problems, Expert Systems with Applications 42 (2015) 4460 – 4473.

[18] Z. T. Kosztyán, J. Kiss, Pem–a new matrix method for supporting
the logic planning of software development projects, in: DSM 2010:
Proceedings of the 12th International DSM Conference, Cambridge,
UK, 22.-23.07. 2010.

[19] D. Tang, R. Zhu, J. Tang, R. Xu, R. He, Product design knowledge
management based on design structure matrix, Advanced Engineering
Informatics 24 (2010) 159–166. Enabling Technologies for Collaborative
Design.

[20] C. Muriana, G. Vizzini, Project risk management: A deterministic
quantitative technique for assessment and mitigation, International
Journal of Project Management 35 (2017) 320 – 340.

[21] H.-l. Bi, X. Jia, F.-q. Lu, M. Huang, Schedule risk management of it
outsourcing project using negotiation mechanism, in: E. Qi, J. Shen,
R. Dou (Eds.), Proceedings of the 23rd International Conference on
Industrial Engineering and Engineering Management 2016, Atlantis
Press, Paris, 2017, pp. 29–33.

[22] J.-R. Sack, T. Strothotte, A characterization of heaps and its applica-
tions, Information and Computation 86 (1990) 69 – 86.

[23] R. Kolisch, A. Sprecher, {PSPLIB} - a project scheduling problem
library: {OR} software - {ORSEP} operations research software ex-
change program, European Journal of Operational Research 96 (1997)
205 – 216.

35

[24] E. Demeulemeester, M. Vanhoucke, W. Herroelen, Rangen: A ran-
dom network generator for activity-on-the-node networks, Journal of
Scheduling 6 (2003) 17–38.

[25] M. Vanhoucke, J. Coelho, D. Debels, B. Maenhout, L. V. Tavares, An
evaluation of the adequacy of project network generators with system-
atically sampled networks, European Journal of Operational Research
187 (2008) 511 – 524.

[26] V. V. Peteghem, M. Vanhoucke, An experimental investigation of meta-
heuristics for the multi-mode resource-constrained project scheduling
problem on new dataset instances, European Journal of Operational
Research 235 (2014) 62 – 72.

[27] M. Vanhoucke, Measuring the efficiency of project control using fic-
titious and empirical project data, International Journal of Project
Management 30 (2012) 252 – 263.

[28] L. V. Tavares, J. A. Ferreira, J. S. Coelho, The risk of delay of a
project in terms of the morphology of its network, European Journal
of Operational Research 119 (1999) 510 – 537.

[29] T. Dingsøyr, S. Nerur, V. Balijepally, N. B. Moe, A decade of agile
methodologies: Towards explaining agile software development, Jour-
nal of Systems and Software 85 (2012) 1213–1221. Special Issue: Agile
Development.

[30] R. K. Ahuja, T. L. Magnanti, J. B. Orlin, Some recent advances in
network flows, SIAM Review 33 (1991) 175–219.

36

	Introduction
	Solving hybrid time-quality-cost trade-off problems
	Definitions and problem statements
	Modeling flexible project plans
	The Algorithms
	Phase one
	Phase two
	Phase three
	Algorithmic complexity

	Simulation results
	Simulation database
	The calculation of constraints and the evaluation scheduling performances
	Simulated project management approach
	Number of simulations

	Summary and conclusion
	Limitations and future works

