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A B S T R A C T

Ion irradiation is often used to simulate the effects of neutron irradiation due to reduced activation of materials
and vastly increased dose rates. However, the low penetration depth of ions requires the development of small-
scale mechanical testing techniques, such as nanoindentation and microcompression, in order to measure me-
chanical properties of the irradiated material. In this study, several candidate structural alloys for Gen-IV re-
actors (800H, T91, nanocrystalline T91 and 14YWT) were irradiated with 70 MeV Fe9+ ions at 452 °C to an
average damage of 20.68 dpa. Both the nanoindentation and microcompression techniques revealed significant
irradiation hardening and an increase in yield stress after irradiation in austenitic 800H and ferritic-martensitic
T91 alloys. Ion irradiation was observed to have minimal effect on the mechanical properties of nanocrystalline
T91 and oxide dispersion strengthened 14YWT. These observations are further supported by line broadening
analysis of X-ray diffraction measurements, which show a significantly smaller increase in dislocation density in
the 14YWT and nanocrystalline T91 alloys after irradiation. In addition, good agreement was observed between
cross-sectional nanoindentation and the damage profile from SRIM calculations.

1. Introduction

A major challenge in the deployment of Gen-IV nuclear reactor
systems is the requirement for performance and reliability improve-
ments of structural materials [1–7]. Gen-IV reactors are designed to
operate at higher temperatures, higher neutron doses and generally
more hostile environments than are experienced in current reactor
systems [1–8]. Desirable characteristics of Gen-IV structural materials
consist of exceptional stability against thermal creep, irradiation creep
and void swelling [1–7]. In addition, resistance to irradiation hard-
ening, embrittlement and irradiation assisted stress corrosion cracking
(IASCC) is required [1–7]. Candidate structural materials for these
advanced reactor designs include ferritic-martensitic steels, austenitic
stainless steels and oxide dispersion strengthened (ODS) steels
[7,9–11].

Ferritic-martensitic steels are being considered for Gen-IV designs

due to their superior mechanical performance such as improved creep
properties and irradiation resistance [12–16]. In addition, high chro-
mium (Cr) ferritic-martensitic steels, such as T91, have high resistance
to corrosion, oxidation, creep and void swelling [2,17]. However, long-
term creep rupture at higher temperatures, irradiation embrittlement
and radiation-induced segregation (RIS) remain a concern in ferritic-
martensitic steels [18–22]. Austenitic stainless steels undergo con-
siderable void swelling and radiation-induced segregation, limiting
their performance as nuclear structural materials. However, they ex-
hibit exceptional creep resistance and reasonable corrosion resistance
[23–27]. Compared to ferritic-martensitic and austenitic stainless
steels, ODS steels perform better at high temperatures due to their re-
sistance to hardening, embrittlement and swelling [28–32]. It has been
observed that small Y-rich nanoparticles impede dislocation motion and
act as effective sinks for radiation-induced defects, and therefore allow
better creep strength [2,33–37].
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In this study, austenitic 800H, ferritic-martensitic T91, nanocrys-
talline T91 (NCT91) and ferritic oxide dispersion strengthened (ODS)
14YWT are investigated. High Ni (>30 wt%) austenitic steels, such as
800H, have been shown to inhibit swelling and enhance void formation
resistance due to the presence of fine precipitates [38–39]. This alloy
also exhibits favorable high temperature creep properties and resistance
to oxidation and therefore shows promise as a candidate structural
material for Gen IV reactors. 800H alloy has a coarse-grained structure
with an average grain size of 204.4 μm with a standard deviation of
87.1 μm. The large grain characteristic leads to high creep resistance.
The T91 alloy was selected as a candidate material due to its promising
mechanical properties and resistance to stress corrosion cracking in a
super critical water environment in fossil plants [40–41]. T91 has been
cold rolled and have an average grain size of 6.1 μm with a standard
deviation of 4.4 μm. Since significant reduction of defect clusters was
shown to correlate with grain size [42–43], nanocrystalline T91
(NCT91) was also chosen to investigate grain size effects on the irra-
diation tolerance of T91. The NCT91 was obtained through the equal
channel angular pressing (ECAP) process. The grain size after the ECAP
process is approximately 320 nm [43]. Lastly, the nano-structured
characteristics and sub-micron grain size (approximately 560 nm with a
large standard deviation of 410 nm) of 14YWT makes it a candidate
ODS alloy for Gen-IV reactors [28–32,44]. 14YWT has excellent high
temperature creep properties and the Y-rich nanoparticles act as sinks
to irradiation-induced defects and transmutation gases, giving 14YWT a
high radiation resistance [34–38,45].

Studying the effect of neutron irradiation on potential candidate
materials for Gen-IV nuclear reactors requires significant infrastructure
and leads to costly PIE (post irradiation examination) due to high levels
of residual activity. Moreover, neutron irradiation experiments require
long timescales to simulate real world doses, where ion irradiations can
achieve the same dose in significantly less time. The use of ion irra-
diation therefore significantly reduces the time and cost required to
reach the high levels of damage required of Gen IV reactor materials.
Ion irradiation has previously been used to study radiation damage in
austenitic stainless steels [46–54] and may be used in the future as a
surrogate method. Although extremely careful control of experimental
conditions and understanding of damage-rate differences is required in
order to emulate the complex microstructural changes occurring under
neutron irradiation [55].

Due to the low penetration depth of ion irradiations, small-scale
mechanical testing is essential for examining the properties of ion-ir-
radiated materials [55–61]. The nanoindentation technique has been
widely used to assess hardness and elastic modulus utilizing the Oliver
Pharr method [62]. Nanoindentation is a very attractive method due to
relatively little sample preparation and high throughput. However, the
drawback of the method is the complicated data analysis due to the
triaxial stress state. In situ microcompression testing of micron-size
pillars requires extensive sample preparation using a dual beam scan-
ning electron microscope with focused ion beam (FIB-SEM). However,
in situ microcompression testing has made qualitative and quantitative
studies of mechanical properties possible [63]. The ability to produce
stress-strain curves and obtain direct observations of the deformation
mechanisms are key advantages of this small-scale testing method.

X-ray diffraction also provides a useful tool for analyzing the mi-
crostructural properties of ion-irradiated layers. Due to limited pene-
tration depth, the region from which X-rays are diffracted can be con-
fined to the irradiated surface layer. X-ray line broadening can be used
to probe the microstructure of materials non-destructively over statis-
tically significant volumes, and so naturally complements small-scale
mechanical testing techniques. The fitting of microstructural para-
meters to experimentally acquired profiles is achieved using the con-
volutional multiple whole profile fitting (CMWP) algorithm, developed
by Ungar et al. [64], and allows for the extraction of microstructural
parameters, such as dislocation density and crystallite size. Although
the code was originally developed for the investigation of deformed

microstructures [65–68], it has recently been successfully used to un-
derstand irradiation damage in materials [69–70].

In this study, in situ SEM uniaxial compression and nanoindentation
techniques are applied to measure the mechanical properties of T91,
NCT91, 800H, and 14 YWT before and after irradiation to assess the
effect of irradiation on mechanical properties. Microstructural para-
meters are extracted from X-ray diffraction profiles on T91, NCT91 and
14 YWT both before and after irradiation to link the observed changes
in mechanical properties to microstructural evolution during irradia-
tion.

2. Experimental

2.1. Ion beam irradiation

The alloy compositions are shown in Table 1. The alloys were sec-
tioned into 3.5− 4mm × 3.5− 4mm-sized samples using a linear
precision saw. Note that the cross section of the T91 sample is per-
pendicular to the rolling direction. They were subsequently ground and
polished using SiC grinding papers with water as a lubricant down to
1200 grit, followed by polishing with diamond solution down to
0.1 µm. The samples were then mounted onto the irradiation holder as
depicted in Fig. 1. The high energy ion irradiation was conducted at the
center for accelerator mass spectrometry (CAMS) at Lawrence Li-
vermore National Laboratory. The four alloys were irradiated with a
rastered beam of 70 MeV Fe9+ bombarding ions, at 452 °C to a total
dose of 20.68 displacement per atom (dpa). The dose was calculated at
the depth where 5% of the peak implantation occurred. The average
current was 19.47 nC/s. The irradiation process was completed in
15.55 h while the temperature was monitored using an IR camera and a
thermocouple mounted behind the sample. The beam current and
profile were measured using an array of micro Faraday cups. The da-
mage layer was predicted to extend approximately 6.2 µm into the
samples, according to the SRIM calculations shown in Fig. 2. The ver-
sion of the SRIM used was SRIM-2013 version in the modified Kinch-
in–Pease model. Ed of 40 eV was used and the ion flux was 1015 ions/
cm2. After the irradiation experiment, each sample was sectioned into
two half pieces using a low speed diamond saw. Surface nanoindenta-
tion and size effect studies were conducted on one half of the sample,
while the other half was used for cross sectional analyses, which en-
compassed cross-section nanoindentation and in situ micro-pillars
compression testing. Fig. 3 shows a schematic of the cross section of the
sample.

2.2. Nanoindentation

2.2.1. Surface nanoindentation
Nanoindentation was performed using a micro materials (MML)

indenter under depth control mode. The standard Berkovich tip was
calibrated using fused silica resulting in an area function for the par-
ticular tip used. The measured data (i.e. the hardness and the reduced
modulus) were analyzed using the Oliver Pharr method [62]. The

Table 1
Compositions of the four alloys of interest.

800H T91, NCT91 14YWT

Element G. O. Carlson (wt%) Element PNNL (wt%) Element ORNL (wt%)

Fe 45.53 Fe 89.52 Fe 82.5
Ni 31.59 Cr 8.6 Cr 14.3
Cr 20.42 Mo 0.89 W 2.32
Mn 0.76 Mn 0.37 Ti 0.27
Al 0.50 V 0.21 Y 0.19
Ti 0.57 Ni 0.09 O 0.177
Others 0.63 Others 0.32 Others 0.243
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indents were performed prior to ion irradiation and after irradiation,
covering the depth range from 10 nm to 1000 nm. A separation distance
of 5–10 μm was used between the indents ensuring no plastic zone in-
teractions. With the obtained nanoindentation data, indentation size
effect studies were performed on the surface samples before and after
irradiation.

The continuous stiffness measurement (CSM) technique for na-
noindentation was also used in this study. These experiments were
carried out using a Keysight (formerly Agilent) G200 nanoindenter. In
CSM indentation, an oscillating sinusoidal force is imposed on the
nominally increasing loading segment of the indentation cycle. This
allows the contact stiffness, and therefore the indentation hardness and
modulus, to be measured as a function of indenter displacement con-
tinuously throughout the loading segment of the indentation. Arrays
consisting of 25 indentations were made in both the irradiated and the

unirradiated regions of the sample; all indentations were conducted in
displacement control mode to a maximum displacement of 2 μm with a
displacement rate of 10 nm/sec. Indents were positioned 50 μm apart to
ensure that the plastic zones beneath the surface did not interact. The
CSM conditions used were a frequency of 45 Hz and an amplitude of
1 nm.

2.2.2. Cross-section nanoindentation
Each of the four irradiated samples was mounted next to stainless

steel thin foils to prevent edge rounding thereby ensuring symmetric
indents and a flat irradiated area. The same grinding and polishing
procedures mentioned previously were applied to achieve deformation-
free surfaces for nanoindentation. A series of indentation measurements

Fig. 1. Sample configuration for ion irradiation (a) in CAMS beamline (b) after irradiation (with cover) (c) after irradiation (without cover) (d) with scale bar.

Fig. 2. SRIM calculation of ion irradiation using 70 MeV Fe ions projectiles and
Fe as target.

Fig. 3. Schematic of the cross section of the sample showing variation of me-
chanical testing conditions (Figure not drawn to scale).
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were performed on the irradiated cross-section samples in order to
analyze the hardness change as a function of depth from the sample
surface. Indents on the non-irradiated edge were also conducted for a
direct comparison. All indents were performed under depth-controlled
mode at a depth of 200 nm. The indents were also spaced approxi-
mately 5–10 μm apart to prevent plastic zone interactions.

2.3. Micro-pillars fabrication and in situ microcompression testing

An FEI Quanta dual beam scanning electron microscope and focused
ion beam (FIB-SEM) was used to fabricate pillars with the dimensions of
either 3 μm × 3 μm × 6 μm (T91 and NCT91) or 2 μm × 2 μm × 4 μm
(14YWT and 800H). Six pillars were fabricated in each of the cross-
section samples with three pillars in the irradiated area and three pillars
in the non-irradiated area, as shown in Fig. 3. For the 800H alloy, with
relatively large grain size, electron backscattered diffraction (EBSD)
was used to identify large grains for pillar locations. A large grain
containing both the unirradiated and the irradiated material was se-
lected for pillar fabrication in order to allow direct comparisons be-
tween the control and the irradiated pillars within the same grain. In
situ uniaxial compression was performed utilizing a Hysitron PI-85 pico-
indenter on the FIB-SEM fabricated pillars in the depth-controlled mode
at the displacement rate of 10 nm/s using an indenter with a flat tip to
obtain stress-strain curves for yield stress calculations [55].

2.4. X-ray diffraction

X-ray diffraction measurements were carried out on the same irra-
diated samples used for the micro-mechanical tests using a special high-
resolution double-crystal diffractometer dedicated to line-profile-ana-
lysis [66]. The incident angle was fixed at 20° on a stationary specimen.
The detection depth of CoKα1 radiation at this angle is ∼4 μm, and so
the detected X-rays originate from the relatively flat region of the da-
mage profile in Fig. 3. The diffractometer was operated with a sealed Co
X-ray tube of 0.4× 8 mm2

fine line-focus running at 30 kV and 35mA
with a wavelength of λ=0.1789 nm. The primary beam was mono-
chromatised by a plane Ge monochromator using the (220) reflection. A
slit of ∼0.2 mm was inserted before the monochromator in order to
select the CoKα1 line and to remove the CoKα2 contribution. The in-
cident X-ray beam was positioned on the specimen surface using a low
depth-resolution microscope and was observed to illuminate an area of
∼ 0.2×1.0mm on the specimen surface. The scattered X-rays were
detected by two imaging plate (IP) detectors with a linear spatial re-
solution of 50 μm. The IPs were placed at the distance of 193mm from
the specimen covering an angular range of 25°< 2θ<170°. The dif-
fraction patterns were obtained by integrating the intensity distribu-
tions along the corresponding Debye–Scherrer arcs on the IPs and are
shown in Fig. 4. Due to the plane Ge monochromator equipped with a
0.2 mm slit at a distance of ∼150mm from the X-ray source, the in-
strumental broadening effect of this setup was negligible [66], and can
therefore be used for reliable line profile analysis.

In order to provide control samples free from surface deformation, a
∼2×1mm window was electropolished in specimens cut from in the
bulk non-irradiated material. An electrolyte of 5% perchloric acid and
95% methanol was used and the time was controlled in order to remove
∼100 μm from the surface. This type of sample preparation has the
advantage over mechanical polishing methods that it should not in-
troduce any additional deformation in the surface of the samples and so
provides a reliable reference value for the non-irradiated state. Due to a
lack of control of the electropolishing technique and the relatively thin
damage layer, it was not possible to electropolish the irradiated samples
after irradiation. However, the careful polishing of the samples prior to
irradiation would mean that any surface deformation would be minimal
and the relatively large penetration depth of the Co X-rays ensures that
the main contribution to the line broadening is from the irradiation-
induced damage.

The diffraction patterns were evaluated by the CMWP procedure
[64]. The method is based on physically well-established profile func-
tions theoretically calculated for different specific lattice defects, in
particular for the coherently scattering domain size and dislocations
[64–68]. The procedure is free from any empirical adjustment para-
meters and has been shown to provide excellent correlation with TEM
dislocation densities in a wide range of density values [67].

3. Results

3.1. Nanoindentation

3.1.1. Surface nanoindentation results and size effect study
Fig. 5a shows the hardness of the surface samples as a function of

indentation depth. Both the control and the irradiated hardness mea-
surements of each sample are displayed in the same plot for compar-
ison. Table 2 provides the average of hardness of all four alloys at a
penetration depth of 1000 nm before and after irradiation, along with
the increase in hardness in each of the alloy due to the ion irradiation.
Although significant irradiation hardening was observed in the 800H
and T91 alloys, a negligible hardening effect was observed in the
NCT91 and 14YWT alloys, which is within the error of the measure-
ments.

According to the hardness profiles, the 800H alloy appeared to be
strongly size affected while the other samples were not. “Indentation
size effect” is the phenomenon where hardness increases with de-
creasing penetration depth, making the measurements deviate from
macroscopic hardness values. The size effect was characterized using
the Nix and Gao model (Eq. (1)) [64]. H0, which is the hardness in the
limit of infinite depth, and h*, which is a characteristic length de-
pending of the shape of the indenter, are the main parameters de-
scribing the size effect behavior. H0 and h* can be calculated after
plotting H2 vs. 1/h. Typically, materials with a low size effect have a
low h*, and materials with a large size effect have a high h*. The cal-
culated h* values for all of the samples are tabulated in Table 3. The
negative h* values are due to the slight hardness increase as a function
of penetration depth, which is presumably due to small measurement
errors within the error bars. However, if the value of the negative h* is
below −50 nm, the opposite phenomenon is present i.e. indentation
size effect where hardness decreases with decreasing penetration depth.

= +
H
H

h
h

1 *
0 (1)

Fig. 5b shows the hardness measurements obtained using the CSM
technique. The average of 25 indentations is shown and error bars re-
present one standard deviation of the mean. Significant irradiation-in-
duced hardening can be observed in the 800H alloy and the T91,
however the NCT91 and the 14YWT show no significant irradiation
induced hardening. It should be noted that there is a slight hardening
effect in the 14YWT sample, which may be attributed to sample pre-
paration or carbon contamination as highlighted in [71] in the low
depth indents and microstructural heterogeneity beyond the surface
region. In all samples and conditions, an indentation size effect was
observed.

3.1.2. Cross-section nanoindentation
Fig. 6 shows hardness profiles from the cross-sectional samples,

providing post-irradiation hardness measurements as a function of
distance from the surface. A significant increase in hardness was ob-
served in the irradiated regions of the 800H and T91 alloys. The
hardness of 800H and T91 increased from 2.8 GPa to 4.2 GPa and from
3.8 GPa to 5.1 GPa, respectively. However, this characteristic was not
observed in the NCT91 and 14YWT alloys. According to the hardness
profiles, the hardness values did not deviate significantly from the
average of ∼4.5 GPa for NCT91 and ∼6.9 GPa for 14YWT. The distinct
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hardness drop shown corresponds to the transition of the irradiated to
the non-irradiated regions in the cross section of the sample. The 800H
cross-section hardness profile suggests that the irradiation depth is
approximately 6 μm. This agrees well with the SRIM predictions of
6.2 μm. The blue and the red lines in Fig. 6 correspond to the average
hardness at the same indentation depth (200 nm) in the control and the
irradiated regions of the sample surface, respectively. While the surface
hardness measurements reasonably match with the cross section hard-
ness measurements for 800H, T91 and NCT91, the agreement was not
observed in the case of 14YWT due to the anisotropic microstructure.

3.2. Microcompression

Engineering stress and strain curves were obtained from micro-
compression testing. By taking the surface interactions between the tip
and the pillars into account a 0.2% strain line parallel to the elastic
region was plotted to obtain the offset yield point. Images of pillars in
the non-irradiated and the irradiated area of the cross-sectional 800H
sample before and after compression are shown in Fig. 7. The corre-
sponding stress-strain curves obtained from the load-displacement data
and yield stresses are plotted next to each of the pillars for comparison.
The yield stresses of the successfully compressed pillars fabricated in
the non-irradiated and the irradiated area of the four samples are
provided in Table 4. Pillars with possible experimental errors such as
misalignment during the compression are excluded from the table.

3.3. X ray diffraction

Fig. 4 shows the measured XRD patterns from non-irradiated and
irradiated samples. Due to the large grain size of the 800H alloy, it was
not possible to get sufficient statistics for accurate CMWP analysis and
so the XRD investigation focused on the smaller grained BCC materials.
The calculated profiles from CMWP are overlayed on the measured
profiles in Fig. 4. Good agreement was observed between the measured
and calculated profiles for all the measured samples. The micro-
structural parameters from the CMWP analysis are shown in Table 5.
The strongest increase in the dislocation density was observed in the
T91 specimen, which showed a 5-fold increase in dislocation density
after irradiation. In contrast, the nanocrystalline T91 showed an almost
negligible increase in dislocation density after irradiation, considering
the error in the values. The dislocation density of the 14YWT alloy was
observed to double after irradiation, although the change in dislocation
density was significantly less than that observed in T91.

In order to qualitatively assess the diffraction patterns using the full
width at half maximum (FWHM) of the reflections, modified
Williamson-Hall (mWH) plots were created using the measured profiles
and are shown in Fig. 9 [65]. The figures show that for each in-
vestigated sample the slope of the mWH plot increases after irradiation;
the change is large for T91, and small for NCT91 and 14YWT. Quali-
tatively, the slope of a mWH plot increases a function of dislocation
density, as Eq. (5) in [65] demonstrates. Thus, the qualitative trends
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Fig. 4. Measured (open circles) and CMWP calculated (red lines) XRD patterns (a) non-irradiated T91, (b) irradiated T91, (c) non-irradiated NCT91, (d) irradiated
NCT91, (e) non-irradiated 14YWT and (f) irradiated 14YWT.
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shown by the mWH plots for the dislocation densities are in agreement
with the results of the quantitative CMWP analysis.

Some interesting trends were also observed in the other micro-
structural parameters determined from CMWP, see Table 5. The M
parameter shows the dipole character of the dislocations and can be
considered as a measure of the degree of dislocation arrangement
present in the sample. M is observed to decrease by approximately half
in all three specimens after irradiation, indicating an increase in the
ordering of irradiation-induced dislocations. The q parameter is a
measure of the hkl dependence of the line broadening and can be used
to determine the edge/screw nature of dislocations in cubic materials
[72]. In BCC steels, the average screw/edge character would give
q=∼1.8 with lower or higher values indicating a larger edge or screw
ratio respectively. Negligible changes in the q parameter are observed
after irradiation in all samples, however a lower average value is ob-
served in T91 and NCT91 alloys than in 14YWT indicating 14YWT has a
higher ratio of screw dislocations and the T91 alloy have a higher edge
ratio. The errors for all parameters are shown in Table 5, and are de-
termined by running the evaluation several times. CMWP was recently
extended to combine the Marquardt–Levenberg optimisation method
with a Monte-Carlo statistical procedure in order to find the global
minimum of the physical parameters. The errors, as indicated in
Table 5, are given by the Monte-Carlo procedure as the variations of the
physical parameters when the weighted sum of squared residuals be-
tween measured and calculated pattern data exceed 3.5%. This is the
confidence parameter set in the present application of CMWP and more
details will be given in Ref [73].

4. Discussion

Hardness saturates after a certain dose at a temperature in in-
dentation testing (typically around 10 dpa) as it has been shown by
others [61], which is the same way as yield stress saturates at a similar
dose on materials [51,74–75]. Hardness as well as yield stress cannot
increase indefinitely due to the fact that there are only a certain number
of defects that can be fit within a specific volume. From the current
results we can conclude that for the alloys of interest, hardness satu-
rates either at 20 dpa or lower (likely at 10 dpa) as has previously been
observed in other materials such as steels [51,61,74–75].

Comparing the size effect parameters of the different samples pro-
vides insight into the materials microstructure. It is found that the softer
FCC material, with a large grain size and low defect density, experi-
ences a large size effect while the BCC materials, with a fine micro-
structure and significant defect density, have a lower size effect. This is
in good agreement with Nix and Gao as well as others [76] and can be
explained by the fact that fully annealed, large-grained materials gen-
erally have less stored dislocations and dislocation pinning points. It is
also observed that the size effect is significantly reduced with the ad-
dition of radiation damage, in agreement with these observations. It
does raise the question, however, how macroscopic properties can be

Fig. 5a. Quasi-static indentation hardness as a function of indentation depth
including unirradiated and irradiated samples.

Table 2
Hardness measurements obtained by nanoindentation on the surface.

1000 nm depth Hardness (GPa) Hardness (GPa)

800H Irradiated 3.63 ± 0.07 1.31
Control 2.32 ± 0.08

T91 Irradiated 4.77 ± 0.16 1.76
Control 3.01 ± 0.02

NCT91 Irradiated 4.28 ± 0.18 0.15
Control 4.13 ± 0.11

14YWT Irradiated 7.04 ± 0.23 0.14
Control 6.90 ± 0.39

Table 3
Nix and Gao's h* values before and after irradiation.

Sample Before irradiation After irradiation
h* (nm) ISE h* (nm) ISE

800H 627 Strong 201 Moderate
T91 −2.97 None −28.4 None
NCT91 16 None 41.5 None
14YWT −8.06 None −20.4 None

|h*| (nm) ISE

>250 Strong
150–250 Moderate
50–150 Weak
<50 None
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derived from nanoscale tests if the size effect changes as a function of
irradiation damage. A simple ΔH value will not allow for the estimation
of macroscopic hardness values and therefore yield strength. It is
therefore a requirement that the size effect is known in order to esti-
mate macroscopic properties for a given material. However, there is
rarely sufficient ion-irradiated material available to perform a size ef-
fect study, which makes this approach difficult. However, the fact that
minimal size effect was observed in the irradiated material leads to the
assumption that the nanohardness is representative of the bulk mate-
rial. Therefore, it is possible to measure the hardness of the irradiated
material at the small scale with hardness measured at the larger scale
on bulk non-irradiated material in order to calculate the delta hardness.
A similar technique was outlined in [77].

The hardness measurements obtained using the CSM method, in the
surface of the sample agree reasonably well with the surface indenta-
tion results obtained from the quasi-static technique with the exception
of the 14YWT material. The microstructure of the 14YWT had a small

grain size with grains ranging from as small as 100 nm to 1 µm in size.
Due to the difference in the average grain sizes and precipitate dis-
tributions, it is possible to suggest that the QS experiments were made
in a region with a low precipitation density and/or a large average
grain size and the CSM experiments were made in a region of the
sample with a high density of precipitates and/or a small average grain
size. This would explain the difference in the hardness measured from
each technique.

A size effect is observed for all samples in both the irradiated and
unirradiated conditions. In this technique, the hardness is continuously
being measured whilst the indenter is penetrating deeper into the ma-
terial. As the displacement increases, the volume of material being
sampled beneath the indenter (i.e. the plastic zone) will evolve from
containing purely damaged material, to a combination of unirradiated
and irradiated until finally at large penetration depths the unirradiated
material will dominate the hardening response and the irradiated and
unirradiated hardness curves will converge. At the depth at which this

Fig. 5b. CSM indentation hardness measured from the surface of the sample.

A. Prasitthipayong et al. Nuclear Materials and Energy 16 (2018) 34–45

40



transition occurs (i.e changing from purely irradiated to a mixture), a
change in the hardness behavior can be observed. This is clearer for the
T91 and the 14YWT samples (see irradiated hardness curves of T91 and
14YWT in Fig. 5b) where a distinct ‘kink’ in the hardness curve can be
observed. A similar ‘kink’ can be observed in the unirradiated hardness
curve for the 14WYT sample. This can be explained from the geometry
of the irradiation set up. Indentations in the unirradiated region of the
sample were taken from the surface of the sample that was shielded
from the ion-beam (Fig. 1). In the case of the 14YWT sample, the uni-
rradiated portion of the sample was clamped down during the irra-
diation. This ‘clamping’ mechanism created mechanical damage to the
surface of the material which resulted in a distinct ‘kink’ in the uni-
rradiated nanoindentation hardness measurements. As a result, the CSM

non-irradiated hardness data for the 14YWT sample was not used for
comparison.

Microcompression testing revealed significantly higher yield
stresses in 800H and T91 in the irradiated area than the control area.
However, a much smaller difference in the yield stress values was ob-
tained in the control and the irradiated area of NCT91 and 14YWT. This
agrees well with the nanoindentation results, confirming irradiation
hardening in 800H and T91 but not in NCT91 and 14YWT. Although
the focus of this paper is not to compare the mechanical property
evolution resulting from ion irradiation to that resulting from neutron
irradiation, it is worth noting that, as an example, a considerable in-
crease in yield stress has also been observed in neutron irradiated T91
[78]. Along with the increase in yield stress, the increase in hardness

Fig. 6. Hardness and modulus profiles of cross-sectional samples as a function of distance from the edge (Penetration depth of 200 nm).
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due to irradiation hardening was observed in neutron irradiated T91
[79], thus confirming the similarities between ion irradiated and neu-
tron irradiated alloys in this aspect of mechanical property evolution.

In order to cross compare between nanoindentation and micro-
compression, and relate both small-scale mechanical testing methods,
yield stress can be obtained from nanoindentation by converting
Berkovich hardness (Hb) to Vickers hardness (Hv) (Eq. (2)) then to yield
stress (σy) (Eq. (3)) [80].

=H H94.5V (2)

= −σ H2.82 144y v (3)

Fig. 8 and Table 6 compares the difference in yield stresses of the
four alloys obtained from nanoindentation and microcompression be-
fore and after irradiation. The agreement between the two testing
methods results in the increase in confidence in the field of small-scale
mechanical testing. Discrepancies between the two testing methods
could be due to the different nature of the stress states for each method.
While nanoindentation is associated with triaxial stress state, micro-
compression is a uniaxial type of testing.

The initial dislocation density, as measured by CMWP, of the NCT91
alloy was the highest of all 3 BCC samples, and was in fact higher than
the dislocation density of the other alloys after irradiation (Table 5).
This is to be expected due to the severe plastic deformation technique
used to fabricate these nanocrystalline alloys [81]. The resulting na-
nocrystalline grain structure, with sub-micron grain size, is likely to be
responsible for the irradiation resistance of this alloy due to an

increased concentration of grain boundaries, which are know to be
effective neutral defect sinks [43]. This is reflected by the negligible
increase in dislocation density observed in NCT91 after irradiation,
which is within the error in the measurement and agrees with the
negligible change in hardness observed in this alloy during na-
noindentation tests. In comparison, the initial dislocation density of
coarse-grained T91 was significantly lower than NCT91 as would be
expected from a relatively large grained, annealed material. A previous
TEM investigation has shown an extremely large spatial variation of the
dislocation density in non-irradiated coarse-grained T91 [82]. In the
present study, XRD provides an average dislocation density for the
measured volume. This alloy experienced the largest increase in dis-
location density after irradiation, a 5-fold increase, which agrees with
the severe irradiation hardening observed during the small-scale me-
chanical tests.

Fig. 7. Microcompression testing of 800H pillars (a) non-irradiated area (b) irradiated area.

Table 4
Yield stresses obtained from microcompression testing in the control and the irradiated area.

Sample Yield stress (MPa)

Non-irradiated Irradiated

Pillar 1 Pillar 2 Pillar 3 Average Pillar 1 Pillar 2 Pillar 3 Average

800H 250 260 250 253 ± 6 625 580 575 593 ± 28
T91 945 730 660 778 ± 145 1,435 1,125 1,230 1,263 ± 158
NCT91 950 780 N/A 865 ± 120 920 860 N/A 890 ± 42
14YWT 2380 1658 1240 1759 ± 577 1751 1830 1865 1815 ± 58

Table 5
Microstructural parameters from CMWP evaluation of XRD profiles of control
and irradiated BCC alloys.

CMWP <x> area (nm) ρ (1014 m−2) M q

T91 Irradiated 87 (± 10) 14.8 (± 1) 5.3 (±0.7) 1.6 (± 0.1)
Control 114 (± 12) 2.7 (± 0.2) 11 (± 2) 1.2 (± 0.2)

NCT91 Irradiated 67 (± 8) 19.8 (± 1.2) 2.8 (± 0.4) 1.5 (± 0.1)
Control 70 (± 8) 17.8 (± 1.2) 5.7 (± 0.8) 1.3 (± 0.2)

14YWT Irradiated 67 (± 8) 16.3 (± 1.1) 2.6 (± 0.4) 2.0 (± 0.1)
Control 82 (± 8) 7.6 (± 0.6) 6.8 (± 1) 1.9 (± 0.1)
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The initial dislocation density of the 14YWT alloy sits between the
T91 and NCT91 control samples and agrees well with previous TEM
measurements on 14YWT [83]. It is well known that in ceramics the
electronic stopping power can amorphise the crystal [84]. It has pre-
viously been shown that the nanocrystalline oxide dispersions particles
(NCeODPs) are amorphised in heavy ion irradiated ferritic steels
[85–88]. The NCeODPs in the nanocrystalline-14YWT alloy, in-
vestigated here, are therefore most probably also amorphised. The X-
ray scattering of the amorphous nanocrystalline particles appears in the
low angle region of the diffraction pattern well below the angular range
where the first Bragg reflections of the crystalline matrix phase appear.
The diffraction patterns in Fig. 4e and f of the non-irradiated and ir-
radiated 14YWT specimens show only the well-developed Bragg re-
flections in the angular range of 2θ≥ 45°, with no hint of any scattering
effects from amorphous sample fractions. The scattering of the amor-
phous and crystalline parts of the sample are uncorrelated and in-
dependent from each other. Therefore, it is assumed that the dislocation
density obtained from the broadening of Bragg peaks is not affected by
any possible amorphous NCeODPs. A relatively small increase in dis-
location density after irradiation was observed compared to T91, which
is most likely due to the large number of density of these ultra-fine
nanoclusters present in the 14YWT microstructure. These nanoclusters
act as selective sinks for defects, encouraging self-healing of damage
through recombination with self-interstitial atoms [89].

The dislocation densities provided by line profile analysis are cor-
related with the hardness measurements using Taylor's equation
[90,91]. The flow stress, σ, can be written as:

= +σ σ aGbM ρT0 (4)

where σ0 is the flow stress before dislocations accumulate by work
hardening, sometimes called the friction stress. α is a constant between
zero and 1, G is the shear modulus, MT is the Taylor factor, and b is the
absolute value of the Burgers vector. In the T91 alloy σ0 and G were
taken as: σ0= 415MPa and G=72GPa [92]. In the 14YWT alloy σ0
and G were taken as: σ0= 1400MPa and G=62GPa [93]. The Taylor
factor was taken as: MT=3.

The evaluation for Eq. (4) gives α=0.37(± 0.05) for the T91,
α=0.21(± 0.03) for the NCT91 and α=0.2 (± 0.04) for the 14YWT
alloys, respectively. The irradiation induced flow stress increments,
calculated with these values according to Eq. (4), are shown as the
fourth (red) columns in Fig. 8.

The larger grained 14YWT microstructure is not as effective as
mitigating irradiation damage as the nanograined T91 microstructure,
probably due to the fact that nanoclusters are less efficient defect sinks
than grain boundaries. Although the scatter in the data is greater, most
likely due to a more heterogeneous microstructure, this is also reflected
in the nanoindentation data (Fig. 5a) that shows a larger increase in
hardness after irradiation in the 14YWT alloy than in NCT91. In addi-
tion, a similar trend is observed in the yield stress as determined from
the microcompression experiments (Fig. 8), although this is not ob-
served in the calculated yield stress obtained from the nanoindentation
measurements. This could be because of the different types of stress
state of each testing technique.

5. Conclusion

In this study, surface and cross-sectional nanoindentation mea-
surements and in situ micro-pillar compression testing were used to
investigate the mechanical properties of ion irradiated materials. The
two different mechanical testing methods demonstrated comparable
yield stress measurements and showed that the nano-grained NCT91
and 14YWT alloys are significantly more resistant to irradiation hard-
ening than T91 and 800H. The results are supported by bulk XRD
measurements, which showed a significantly larger increase in dis-
location density after irradiation in the coarse-grained T91 alloy than in
nanocrystalline NCT91 and 14YWT. The complementary techniques
demonstrated here will be vital in understanding the use of ion irra-
diation to simulate neutron irradiation and therefore reduce the
handling difficulty and complications associated with neutron irradia-
tion, which is essential for the high damage levels expected in Gen-IV
reactors.
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Quasi-static (QS) and continuous stiffness measurement (CSM) indentation data for four alloys of interest.

QS Hb (GPa) Hv (GPa) NI σy (MPa) NI Δσy (MPa) MPC σy (MPa) MPC Δσy (MPa)

800H Irradiated 3.63 ± 0.07 343 ± 6.62 853 ± 18.7 349 593 ± 28 340
Control 2.32 ± 0.08 219 ± 7.56 504 ± 21.3 253 ± 6

T91 Irradiated 4.77 ± 0.16 451 ± 15.1 1158 ± 42.6 471 1,263 ± 158 485
Control 3.01 ± 0.02 284 ± 1.89 687 ± 5.33 778 ± 145

NCT91 Irradiated 4.28 ± 0.18 404 ± 17.0 1025 ± 48.0 39 890 ± 42 25
Control 4.13 ± 0.11 390 ± 10.4 986 ± 29.3 865 ± 120

14YWT Irradiated 7.04 ± 0.23 665 ± 21.7 1761 ± 61.3 36 1,815 ± 58 56
Control 6.90 ± 0.39 652 ± 36.9 1725 ± 104 1,759 ± 577

CSM Hb (GPa) Hv (GPa) NI σy (MPa) NI Δσy (MPa) MPC σy (MPa) MPC Δσy (MPa)
800H Irradiated 4.12 ± 0.16 389 ± 15.12 984 ± 42.3 237 593 ± 28 340

Control 3.23 ± 0.08 305 ± 7.56 747 ± 21.3 253 ± 6
T91 Irradiated 5.06 ± 0.12 478 ± 11.34 1234 ± 32.0 490 1,263 ± 158 485

Control 3.22 ± 0.07 304 ± 6.62 744 ± 18.7 778 ± 145
NCT91 Irradiated 4.67 ± 0.11 441 ± 10.4 1131 ± 29.3 120 890 ± 42 25

Control 4.22 ± 0.14 399 ± 13.2 1011 ± 37.3 865 ± 120
14YWT Irradiated 7.09 ± 0.08 670 ± 7.56 1775 ± 21.3 2 1,815 ± 58 56

Control 7.08 ± 0.12 669 ± 11.3 1773 ± 11.3 1,759 ± 577
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