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Abstract

Background—Transplanting autologous patient-derived enteric neuronal stem/progenitor cells 

(ENSCs) is an innovative approach to replacing missing enteric neurons in patients with 

Hirschsprung disease (HSCR). Using autologous cells eliminates immunologic and ethical 

concerns raised by other cell sources. However, whether postnatal aganglionic bowel is permissive 

for transplanted ENSCs and whether ENSCs from HSCR patients can be successfully isolated, 

cultured, and transplanted in vivo remains unknown.

Methods—ENSCs isolated from the ganglionic intestine of Ednrb−/− mice (HSCR-ENSCs) were 

characterized immunohistochemically and evaluated for their capacity to proliferate and 

differentiate in vitro. Fluorescently-labeled ENSCs were co-cultured ex vivo with aganglionic 

Ednrb−/− colon. For in vivo transplantation, HSCR-ENSCs were labeled with lentivirus expressing 

GFP and implanted into aganglionic embryonic chick gut in ovo and postnatal aganglionic 

Ednrb−/− rectum in vivo.

Key Results—HSCR-ENSCs maintain normal capacity self-renewal and neuronal 

differentiation. Moreover, the Ednrb−/− aganglionic environment is permissive to engraftment by 

wild-type ENSCs ex vivo and supports migratrion and neuroglial differentiation of these cells 

following transplantation in vivo. Lentiviral-GFP-labeled HSCR-ENSCs populated embryonic 

chick hindgut and postnatal colon of Ednrb−/− HSCR, with cells populating the intermuscular 

layer and forming enteric neurons and glia.
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Conclusions & Inferences—ENSCs can be isolated and cultured from mice with HSCR, and 

transplanted into the aganglionic bowel of HSCR littermates to generate enteric neuronal 

networks. These results in an isogenic model establish the potential of using autologous-derived 

stem cells to treat HSCR and other intestinal neuropathies.
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Introduction

The enteric nervous system (ENS) is an extensive network of neurons and glial cells within 

the wall of the gastrointestinal tract critically important in regulating gut motility and other 

fundamental aspects of gut function1. As a result, enteric neuropathies, in which enteric 

neurons are abnormal or congenitally absent, can cause significant morbidity. Hirschsprung 

disease (HSCR) is characterized by absent ganglion cells in the distal bowel due to failure of 

neural crest-derived precursors to colonize the entire gut. The aganglionic region produces a 

functional obstruction, and current treatment requires surgical resection of this segment. 

While surgery is life-saving, over 50% of children have persistent problems, including 

severe constipation, fecal incontinence, and enterocolitis2,3. Cell-based therapy offers the 

potential to introduce new neurons into the aganglionic region as a novel therapy for this 

disease4–6.

Neuronal stem cells can be isolated from postnatal rodent and human intestine and are able 

to migrate and differentiate when transplanted into the embryonic gut7–11. More recently, it 

has been shown that enteric neuronal stem/progenitor cells (ENSCs) derived from neonatal 

rodent and human can be expanded in culture and transplanted into postnatal colon of mice 

in vivo, resulting in cell engraftment, migration and neuroglial differentiation12–14. These 

studies show that ENSC transplantation is achievable in postnatal recipient gut and offers 

the potential to replace missing neurons with neuronal stem cells for the treatment of enteric 

neuropathies. However, little research has been done to determine whether the postnatal 

aganglionic environment of HSCR is permissive to transplanted neuronal stem cells.

Several groups have demonstrated the isolation, expansion, and differentiation of ENSCs 

from the intestine of rodents and humans with HSCR9,11,14,15, raising the possibility of 

establishing patient-derived ENSCs as donor cells for cell therapy. The use of patient-

derived autologous ENSCs would have significant advantages over other cell sources by 

eliminating the risk of immunological rejection and minimizing ethical concerns16. 

However, whether ENSCs derived from HSCR patients have a similar capacity to form 

extensive neuroglial networks as cells derived from healthy individuals is unknown. Since 

nearly all patients with HSCR carry mutations that affect enteric neural crest-derived cells17, 

patient-derived ENSCs may not be able to generate adequate enteric neurons and glial cells 

following transplantation18.

In order to address these questions, we used Endothelin receptor type B (Ednrb)-null mice, 

which possess distal colorectal aganglionosis, as a model of HSCR in the current study. Our 

goal was to test whether the postnatal aganglionic colon is permissive for ENSCs and to 
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determine whether ENSCs isolated from Ednrb−/− mice could serve as a source of cells for 

isogenic transplantation into the aganglionic segment of recipient mice. Our results establish 

the feasibility of this approach and support the potential of autologous cell transplantation 

for neurointestinal diseases.

Materials and methods

Animals

Experiments were approved by the Massachusetts General Hospital Institutional Animal 

Care and Use Committee. Ednrbtm1Ywa mice on a hybrid C57BL/6J-129Sv background were 

purchased from Jackson Laboratory (JAX#003295). Homozygous pups (Ednrb−/−) were 

identified by white coat color and exhibit distal aganglionosis19. Genotyping was performed 

using a polymerase chain reaction-based assay to distinguish wild type (Ednrb+/+) from 

heterozygous (Ednrb+/−) littermates20. We also used Actb-DsRed mice (strain Tg(CAG-

DsRed*MST)1Nagy/J; Jackson Labs Stock #005441), in which all cells express red 

fluorescent protein21. Fertilized White Leghorn chicken (Gallus gallus) eggs were obtained 

from commercial breeders and maintained at 37°C in a humidified incubator. Embryos were 

staged by the number of embryonic days (E).

Tissue preparation and immunohistochemistry

Cells and tissues were fixed in 4% paraformaldehyde. For whole-mount preparations of 

mouse longitudinal muscle-myenteric plexus (LMMP), distal colon was opened along the 

mesenteric border, pinned on Sylgard-coated plates, and fixed. The mucosa and submucosa 

were removed. For cryosection, tissues were transferred to 15% sucrose overnight at 4°C. 

The medium was changed to 7.5% gelatin containing 15% sucrose at 37°C for 1 hour and 

rapidly frozen at −50°C in methylbutane (Sigma). Frozen sections were cut at 12 μm 

thickness.

Immunohistochemistry was performed as previously described 22. Cells or tissues were 

fixed, washed, and permeablized with 0.1% Triton X-100 for 30 minutes. Primary 

antibodies included mouse anti-Tuj1 (1:100, Covance, Dedham, MA), mouse anti-HuC/D 

(1:100, Life Technologies, Carlsbad, CA) mouse anti-CN (kind gift from Dr. Tanaka 23), 

rabbit anti-S-100 (1:100, NeoMarkers, Fremont, CA), rabbit anti-p75 (1:500, Promega, 

Madison, WI), rabbit anti-αSMA (1:100, Abcam, Cambridge, MA, USA), rabbit anti-nNOS 

(1:500, Santa Cruz Biotechnology), rabbit anti-calretinin (1:200, Life Technologies), rabbit 

anti-Nestin (1:200, Abcam), rabbit anti-synaptophysin (ab14692, 1:200, Abcam), goat anti-

GFAP (1:500, Abcam), goat anti-ChAT (1:50, Millipore, Billerica, MA), goat anti-Ret (1:20 

R&D Systems, Minneapolis, MN), goat anti-GFP (1:400, Rockland, Limerick, PA), and 

human antineuronal nuclear type 1 (Hu; 1:16,000 kind gift from Dr. Lennon). Secondary 

antibodies included goat anti-mouse IgG Alexa Fluor 546, goat anti-rabbit Alexa Fluor 488, 

donkey anti-goat Alexa Fluor 488, donkey anti-goat Alexa Fluor 546, donkey anti-mouse 

Alexa Fluor 546, and donkey anti-mouse Alexa Fluor 488 (Life Technologies; Carlsbad, 

CA). Cell nuclei were stained with DAPI (Vector Labs, Burlingame, CA). Images were 

captured with a Nikon 80i microscope or with a Nikon A1R laser-scanning confocal 

microscope
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Enteric neuronal stem/progenitor cell (ENSC) cultures

DsRed mice were sacrificed on postnatal day 14–21 (P14–21) and the gastrointestinal tract 

from duodenum to anus removed. Small intestine of P10–14 Ednrb−/− mice or Ednrb+/+ 

littermates were also used to obtain HSCR-ENSCs or non-HSCR-ENSCs. The LMMP was 

separated and dissociated with dispase (250 μg ml−1; StemCell Technologies, Vancouver, 

Canada) and collagenase XI (1 mg ml−1; Sigma Aldrich, St. Louis, MO) at 37°C for 1 hour 

with gentle pipetting. The cell suspension was passed through a 40 μm cell strainer and 

cultured at a density of 50,000 cells ml−1 in proliferation medium, consisting of Neurocult 

NSC Basal Medium (StemCell Technologies) supplemented with 20 ng ml−1 epidermal 

growth factor (EGF; StemCell Technologies) and 10 ng ml−1 basic fibroblast growth factor 

(bFGF; StemCell Technologies), 0.0002% Heparin (StemCell Technologies) and 100 U 

ml−1 Penicillin-Streptomycin (Life Technologies) for 7–10 days to form enteric 

neurospheres. Neurospheres were passaged every 7–10 days with gentle Accutase (StemCell 

Technologies) dissociation at 37°C for 20–30 minutes followed by re-plating.

To induce differentiation, neurospheres were dissociated with Accutase (StemCell 

Technologies) at 37°C for 30 minutes with gentle pipetting. The cell suspension was passed 

though a 40 μm cell strainer and plated at 50,000 cells ml−1 on glass-bottom chamber slides 

coated with 20 μg ml−1 fibronectin (Biomedical Technologies, Ward Hill, MA). Cells were 

cultured for 7 days in NeuroCult NSC Differentiation Medium (StemCell Technologies) and 

then processed for immunohistochemistry.

Differentiation assay

Neurospheres isolated from Ednrb−/− or Ednrb+/+ littermates were dissociated with Accutase 

and replated as above. Following 7 days in differentiation conditions, cells were fixed and 

processed for immunohistochemistry. Following staining with the neuronal marker, Tuj1, 

random images were taken from each culture condition and neuronal density measured 

quantitatively using ImageJ software.

Proliferation assay

10 nM 5-ethynyl-2′-deoxyuridine (EdU) was added to the culture medium 24 hours prior to 

fixation. Neurospheres were dissociated with Accutase and centrifuged (800 g for 2 minutes; 

Shandon Cytospin 3) onto a poly-L-lysine slide. Neural crest cells were visualized using p75 

immunoreactivity, with EdU incorporation detected using the ClickiT EdU Imaging Kit 

(Invitrogen). Ten random images were taken from each group and the number of p75+EdU− 

or p75+EdU+ cells counted using ImageJ software.

Preparation and transduction of lentiviral vector

The lentiviral plasmid (pLenti-GIII-CMV-GFP-2A-Puro) was purchased from Applied 

Biological Materials Inc and amplified using plasmid DNA Maxiprep Kit (Life 

Technologies) according to the manufacturer’s protocol. Lentiviral vector stocks were 

produced by co-transfection of 293T cells with the transfer vector, packaging plasmid and a 

plasmid coding for the VSV-G envelope glycoprotein24. The viral titer was determined by 

qPCR using a probe against the WPRE element; stocks were stored at −80°C until use.
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Enteric neurospheres from Ednrb−/− or Ednrb+/+ mice were gently triturated to single cell 

suspensions using Accutase at 750 cells μl−1 and plated in proliferation medium. Following 

2 hours at 37°C, lentivirus was added at multiplicity of infection (MOI) in the range of 3–6. 

After 48 hours, successful transduction was confirmed by green fluorescent protein (GFP) 

expression.

To determine transduction efficiency, enteric neurospheres were generated from lentiviral-

transduced ENSCs and then dissociated and plated on fibronectin-coated cover slips. 

Presence of GFP fluorescence was quantitatively measured using ImageJ software to 

evaluate lentiviral transduction efficiency.

Co-culture of LMMP and neurospheres

LMMP was obtained from mouse colon and a 5×5 mm segment suspended as a catenary 

culture using a piece of filter paper with a rectangular-shaped window. DsRed expressing 

neurospheres were placed onto the LMMP and covered with 10 μL Matrigel (BD 

biosciences, CA, USA) to secure the neurospheres in position. Co-cultures were maintained 

for 4 or 7 days in medium containing 10% fetal bovine serum (Life Technologies) and 100 

U ml−1 Penicillin-Streptomycin (Life Technologies), and then fixed overnight in 4% 

paraformaldehyde.

Measurement of ENSC migration on LMMP

Tile scans of wholemount preparations were taken with a Nikon AZ100 fluorescent 

microscope. Migration distance was measured by dividing the image into octants (Supp. Fig. 

1) and measuring the distance from the edge of the neurosphere to the distalmost DsRed+ 

cell in each octant. The average distance was calculated to represent the migration distance 

in each preparation.

Neurosphere transplantation to aganglionic chick hindgut

Chick aganglionic hindgut was dissected from E5 chicken embryos. Three GFP+ 

neurospheres were implanted into the proximal hindgut mesenchyme using fine forceps 

under microscopic visualization. The recombinants were transplanted onto the 

chorioallantoic membrane (CAM) of an E10 chick host for 7 days as described 

previously22,25.

In vivo transplantation of neurospheres to Ednrb−/− mice

Recipient 2-week-old Ednrb−/− or Ednrb+/+ mice were anesthetized by isoflurane (Henry 

Schein Animal Health, Dublin, OH) inhalation. A circum-anal skin incision was made and 

the distal rectum exposed. One or 2 DsRed+ or GFP+ neurospheres, labeled with 0.1% 

methylene blue, were transplanted into a pocket created between the two muscle layers of 

the rectal wall. The pocket was closed with 8–0 nylon suture. At 1–2 weeks following 

surgery, recipient mice were sacrificed and the rectum removed.

In vivo proliferation studies

Intraperitoneal injection with 50 mg kg−1 EdU was performed 1 and 2 days following 

transplantation. The distal colon was removed, processed as above, and EdU incorporation 
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detected using the ClickiT EdU Imaging Kit (Invitrogen) according to the manufacturer’s 

instructions.

Quantitative PCR

Total mRNA was extracted from proliferating neurospheres using the RNeasy Mini kit 

(Qiagen, Santa Clarita, CA, USA) and cDNA synthesized with the Superscript III Reverse 

Transcription Kit (Invitrogen). Ednrb expression levels were measured using quantitative 

PCR (qPCR) with Gapdh as the internal standard. The primers used were: EdnrB forward, 

GAACTCCACGCTGCTAAGAATCATCTAC and EdnrB reverse, 

CAGCTTACACATCTCAGCTCCAAATGG. Relative expression was calculated by 2−ΔCt.

Statistical analyses

Data were expressed as means ± SD. Paired t-tests were used to evaluate the statistical 

significance between two groups. When more than two groups were compared, means were 

statistically compared by one-way ANOVA with Tukey’s post hoc multiple-comparison 

tests of differences. Statistical significance was considered at p<0.05.

Results

DsRed+ enteric neurospheres engraft onto aganglionic colon ex vivo

Based on our previous isolation and propagation of postnatal mouse ENSCs12,22,26, we 

generated DsRed-expressing enteric neurospheres to allow cell tracking following 

transplantation. The gastrointestinal tract was removed from two-week-old Actb-DsRed 

mice. Following mechanical and enzymatic dissociation, cells were cultured in medium 

containing EGF and bFGF for 7–10 days to form DsRed+ enteric neurospheres (Fig. 1A). 

When cultured on fibronectin-coated cover slips in medium devoid of EGF and bFGF, 

DsRed+ neurospheres differentiate into enteric neurons and glia expressing Tuj1 (Fig. 1B) 

and GFAP (Fig. 1C), respectively.

Previous reports suggest that aneural gut, including embryonic gut of HSCR mice9, is more 

permissive for enteric neural crest cells than neural gut27,28. To test this in postnatal 

intestine, we co-cultured DsRed+ enteric neurospheres with LMMP colon explants isolated 

from postnatal day 7 (P7) Ednrb−/− mice or Ednrb+/+ littermates. Immunostaining with Tuj1 

shows extensive neuronal differentiation of cells migrating from the neurospheres (Fig. 1E). 

After 4 and 7 days of co-culturing, the extent of cell migration and fiber extension were 

quantitatively compared between neural and aneural environments (Fig. 1D,F) as described 

in Suppl. Fig. 1. Immunohistochemical analysis revealed that most of the DsRed-expressing 

cells migrate on the surface of the LMMP, with no difference in the location of the cells in 

the two different environments (data not shown). ENSCs migrate significantly further in an 

aganglionic environment compared to ganglionic recipient gut both at 4 days (394.3 ± 6.9 

μm vs 107.7 ± 16.1 μm, Fig 1F) and 7 days (670.7 ± 71.3 μm vs 227.7 ± 26.9 μm, Fig. 1F). 

In normal ganglionic intestine, there was no significant difference in the migration distance 

between 4 and 7 days. In contrast, in aganglionic gut, there was a significant increase in 

migration distance between day 4 and day 7 (Fig. 1F).

Hotta et al. Page 6

Neurogastroenterol Motil. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Aganglionic HSCR colon is permissive to transplanted ENSCs in vivo

Based on our ex vivo experiments, we tested if DsRed+ ENSCs are able to engraft, migrate, 

and differentiate in the aganglionic colon of HSCR mice in vivo. Two-week-old Ednrb−/− 

mice were anesthetized and the aganglionic distal colon exposed through a perianal skin 

incision. DsRed+ enteric neurospheres were microsurgically implanted into a pocket created 

in the muscular wall of the colon (Fig. 2A). At 1–2 weeks following surgery, recipient mice 

were sacrificed and the distal colon removed. Of the 8 Ednrb−/− mice that underwent 

transplantation, DsRed+ cells were found in 7 recipients (5 at 1 week and 2 at 2 weeks 

following surgery). Wholemount preparation from recipient Ednrb−/− mice 2 weeks 

following surgery showed the presence of surviving transplanted ENSCs in the host gut, 

confirming their successful engraftment (Fig. 2B), along with projections of DsRed+ fibers 

emanating from the neurospheres (Fig. 2C, arrowheads). S-100 immunostaining 

demonstrates the presence of endogenous glial cells in the myenteric plexus of the proximal, 

ganglionated colon (Fig. 2D, arrowheads). An isolated glial fiber with no associated cell 

body can be seen in the aganglionic region, possibly representing an extrinsic fiber (Fig. 

2D). Transplanted DsRed+ cells are located in the inter-myenteric layer of the aganglionic 

region (Fig. 2D,E; arrows), with fibers extending distally (Fig. 2E, arrowheads). The precise 

distance of longitudinal cell migration was difficult to determine in these preparations. 

DsRed+ ENSCs differentiate into neurons (Fig. 2F) and glia (Fig. 2G), suggesting that the 

aganglionic colon can support the survival, migration, and differentiation of transplanted 

ENSCs in vivo.

ENSCs can be isolated from ganglionic intestine of HSCR mice

While the successful isolation of ENSCs from postnatal intestine and their transplantation 

into aganglionic colon of HSCR mice represents an important step forward, clinical 

application of cell therapy will require autologous ENSCs transplantation. To determine if 

ENSCs can be isolated from mice with HSCR, we dissected the LMMP layer from the 

ganglionic small intestine of 1–2 week-old Ednrb−/− mice and formed neurospheres as 

described above (Fig. 3A–D). Immunohistochemistical characterization of sectioned 

neurospheres reveals the presence of neural crest-derived cells (Fig. 3A, p75), enteric neural 

crest cells (Fig. 3B, Ret), neurons (Fig. 3C, Tuj1), and glial cells (Fig. 3D, GFAP). The 

proportion of p75+ neural crest cells in HSCR-derived neurospheres was 46.9 ± 8.0 %, 

which is equivalent to that seen in control (non-HSCR) neurospheres (55.9 ± 13.8 %, n=3 in 

each group, p=NS). Upon differentiation, HSCR-derived ENSCs give rise to Tuj1+ neurons 

and S-100+ glial cells (Fig. 3E), as well as neuronal subtypes, including choline 

acetyltransferase (Fig. 3F, ChAT), neuronal nitric oxide synthase (Fig. 3G, nNOS), and 

calretinin (Fig. 3H).

Ednrb−/− ENSCs retain proliferation and neuronal differentiation potential

Although autologous stem cells have a number of advantages in regenerative medicine, the 

use of ENSCs from a patient with HSCR may be theoretically problematic18. We therefore 

tested whether HSCR-ENSCs from Ednrb−/− mice have an altered capacity for self-renewal 

or neuronal differentiation. Expression of Ednrb transcript in ENSCs isolated from Ednrb−/− 

mice and Ednrb+/+ littermates was quantified by qPCR, confirming a lack of Ednrb 
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expression in HSCR-ENSCs (Fig. 3I). To examine their capacity for self-renewal, EdU was 

added to the culture medium while growing neurospheres and the proportion of proliferating 

neural crest cells was quantified immunohistochemically. Despite the loss of Ednrb 

expression in HSCR-ENSCs, no significant alteration was seen in the percentage of dividing 

neural crest cells within neurospheres from HSCR mice compared to those from non-HSCR 

mice (10.5 ± 5.5 % vs 8.8 ± 3.3 %, Fig. 3J). Dissociated neurospheres were also plated on 

fibronectin-coated cover slips to determine their ability of undergo neuronal differentiation, 

as determined by Tuj1 immunoreactivity. Enteric neuronal density was equivalent between 

ENSCs derived from Ednrb−/− and Ednrb+/+ intestine (0.24 ± 0.07 mm2 vs 0.28 ± 0.07 mm2, 

Fig. 3K). These data suggest that the loss of Ednrb expression in HSCR-ENSCs does not 

alter their ability to proliferate or differentiate and supports their use for cell replacement 

therapy.

Lentiviral infection achieves long-term labeling of HSCR-ENSCs

In order to trace HSCR-ENSCs following transplantation, we generated a lentiviral vector 

expressing GFP, and transduced this construct into dissociated neurospheres. GFP 

fluorescence at 48 hours confirms a high efficiency of transduction, with 64.1 ± 3.8% of 

cells infected (Suppl. Fig 2A, Table 1). Lentivirus-mediated gene delivery results in stable 

and long-term transgene expression, even after neuronal or glial differentiation (Suppl. Fig. 

2B, C). Immunohistochemical characterization of lenti-GFP-transduced cells demonstrated 

that 27.3 ± 2.1% and 35.9 ± 0.1% of GFP+ cells are neurons and glia, respectively (Suppl. 

Fig. 2B, C, and Table 1). Conversely, 53.2 ± 0.8% of Tuj1+ cells are labeled by GFP and 

52.2 ± 5.9% of glial cells are GFP+.

We also transduced ENSCs isolated from Ednrb+/+ littermates and found the overall 

transduction efficiency (61.6 ± 6.3%) and the proportion of neurons in the GFP+ transduced 

cells (27.4 ± 6.6%) to be similar to that seen with mutant ENSC. Interestingly, the loss of 

Ednrb expression was associated with a higher percentage of glial differentiation (43.2 ± 

0.9%) as compared to Ednrb+/+ ENSCs (27.6 ± 1.7%). Similarly, the proportion of GFP+ 

cells that underwent glial differentiation was greater in the HSCR-ENSC (35.9 ± 0.1% vs 

24.3 ± 0.4%), suggesting that Ednrb−/−-derived ENSCs preferentially differentiate into glia 

(Table 1).

HSCR-ENSCs survive, migrate, and differentiate in aganglionic chick gut

To determine the capacity of HSCR-ENSC to survive and generate neurons within the 

aneural gut environment, we implanted GFP+ HSCR-ENSC into the aganglionic hindgut of 

an embryonic day 5 (E5) chick (n=9), a stage at which enteric neural crest cells have not yet 

colonized the hindgut. Following neurosphere transplantation (Fig. 4A), hindguts were 

cultured on the CAM of an E10 host chick embryo for 7 days. GFP+ cells migrated all the 

way down the length of the chick embryonic gut, representing a distance of approximately 

450 μm (Fig. 4B). Neuronal differentiation is shown by co-expression with Tuj1 (Fig. 4D) 

and Hu (Fig. 4E). The absence of staining with CN antibody, a chick-specific neuronal 

antibody23, confirms that these are not endogenous chick-derived enteric neurons (Fig. 4C). 

Co-expression of GFP and GFAP confirms the presence of glial differentiation (Fig. 4F). 
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These findings demonstrate that HSCR-ENSCs survive, migrate, and differentiate in the 

embryonic aganglionic environment.

HSCR-derived ENSCs engraft in the postnatal aganglionic colon of HSCR mice in vivo

To test whether autologous HSCR-derived ENSCs can be transplanted into postnatal mouse 

colon in vivo, GFP+ HSCR-ENSCs were microsurgically implanted into the distal colorectal 

wall of 2 week-old Ednrb−/− or Ednrb+/+ mice (n=9 Ednrb−/− and n=4 Ednrb+/+; Fig. 2A). 

All recipient mice survived the procedure and GFP+ cells were found in 11 of 13 recipients 

(4 of 5 recipients at 1 week and 7 of 8 recipients at 2 weeks following transplantation). GFP

+ HSCR-ENSCs were present in the aganglionic colon with cells seen differentiating into 

neurons (Fig. 5A, arrows). A proportion of Tuj1+ cells are noted to be GFP-negative (Fig. 

5A), likely representing neuronal differentiation of transplanted cells that lack lenti-GFP 

transduction, since the transduction efficiency is only about 60% (Table 1). Anti-αSMA 

staining of recipient colon shows HSCR-ENSCs in the submucosal area with few fibers 

projecting toward the muscular layer (Fig. 5B). Longitudinal cell migration was consistently 

observed and at 2 weeks following transplantation, HSCR-ENSCs migrated up to 940 μm in 

HSCR (Ednrb−/−) mice. In comparison, HSCR-ENSCs migrated up to 1000 μm in non-

HSCR (Ednrb+/+) mice. With regard to differentiation of transplanted cells, co-localization 

of αSMA and GFP was infrequently seen in the aganglionic recipient colon (Fig. 5B,C).

To determine if transplanted cells proliferate and differentiate into neurons following 

transplantation, EdU was injected into recipient mice intraperitoneally following 

transplantation. Incorporation of EdU is observed in GFP+ HSCR-ENSCs-derived neurons 

(Fig. 5D–G, closed arrows), suggesting transplanted HSCR-ENSCs are able to proliferate 

and give rise to neurons in vivo. Tuj1-expressing neurons that co-express GFP, but do not 

incorporate EdU, are also seen (Fig. 5D–G, open arrows), representing either neurons that 

were already present within the neurosphere prior to transplantation or cells that 

differentiated following the EdU pulse. GFP+ HSCR-ENSCs also give rise to glial cells 

(Fig. 5H and H′) and enteric neuronal subtypes, including nNOS- (Fig. 5I and I′) and 

calretinin-expressing neurons (CalR; Fig. 5J). Finally, synaptophysin-immunoreactive 

vesicles are seen on GFP+ HSCR-ENSC-derived cells (SYP; Fig. 5K, arrows) in recipient 

aganglionic colon 1 week after transplant, suggesting synaptic formation. More abundant 

and robust synaptophysin-positive vesicles are seen in the recipient colon of wild-type 

Ednrb+/+ mice 2 weeks following surgery (Fig. 5L and M).

Discussion

In the current study, we demonstrate that ENSCs can be isolated from the ganglionated 

intestine of mice with HSCR and have the capacity to generate neurons and glia both ex vivo 

and following transplantation into the aganglionic colon in vivo. These findings add to 

important previous work in this field and support the potential application of autologous 

cell-based therapy for treating enteric neuropathies.

ENSCs have been successfully isolated from embryonic8–10,12,15 and 

postnatal12,13,15,22,29–31 rodent gut and postnatal human intestine8,10,11,14,32,33. Identifying 

the optimal source of ENSCs for cell therapy applications is an important goal. We chose to 
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derive enteric neurospheres from unsorted cells dissociated from the gut wall. The cells in 

these spheres are heterogeneous, including both neural crest- and non-neural crest-derived 

cells34. We consistently find that approximately half of the cells within the neurosphere are 

neural crest-derived, and the absence of Ednrb expression did not alter this proportion. We 

find that our neurospheres gave rise to glia, neurons, and multiple neuronal subtypes in vivo, 

with proliferative potential, and little smooth muscle differentiation. It has been suggested 

that non-neural crest cells in the neurosphere may produce paracrine factors to support the 

neural crest cells, although this remains unknown34. Our observations support such a 

“bystander” effect and suggest that spontaneous (non-selected) neurospheres can be a 

therapeutic source for the treatment of enteric neuropathies.

To date, most studies have characterized ENSCs following transplantation into the 

preganglionated embryonic chick or mouse hindgut, i.e. prior to the arrival of migrating 

enteric neural crest-derived cells. The embryonic aganglionic colon of Ret- or Ednrb-

deficient mice has also been successfully transplanted with enteric neuronal progenitors in 

co-culture experiments7,9,28,35. Transplantation into postnatal intestine in vivo, either normal 

or aganglionic, has been infrequently reported12–14. This represents a potentially significant 

hurdle as the postnatal gut microenvironment may not be sufficiently permissive to allow 

extensive colonization by enteric neural crest-derived cells, possibly due to the presence of a 

hostile extracellular matrix in the mature gut28,36 or to the inhibitory effect of pre-existing 

neurons27,28. We found that transplanted cells are able to engraft in the postnatal ganglionic 

and aganglionic bowel. Interestingly, the extent of cell migration and neurofiber projection 

was significantly greater in the aganglionic environment in our ex vivo experiment. In ex 

vivo LMMP experiments, migration occurs almost exclusively on the surface of the LMMP 

rather than within the myenteric plexus, but this is due to the fact that cells are placed on top 

of the muscle surface ex vivo, rather than implanted into the gut wall as we do for in vivo 

transplantation. Surface migration on the LMMP is unlikely to contribute to functional 

integration of ENSCs. We use the LMMP explants to test the permissiveness of the 

environment and not as an indicator of how ENSCs will respond in vivo since the explanted 

LMMP offers a very different and artificial environment. Interestingly, our results suggest 

that the normal intestine may represent a less favorable milieu for ENSC migration, but the 

mechanisms underlying this are unknown. While transplanted cells were able to engraft 

effectively in the aganglionic colon in vivo, the area of engraftment and extent of neuronal 

differentiation were limited. Modifications of the transplanted cells or the recipient 

environment may be needed in order to enhance the success of ENSC transplantation.

The use of autologous ENSCs would be significantly advantageous for cell replacement 

therapy in order to minimize the risk of immune rejection, ethical concerns surrounding 

embryonic stem cells, and potential problems with clinical use of induced pluripotent stem 

cells16,37. The capacity of HSCR-derived ENSCs to proliferate, migrate, and differentiate 

following transplantation has not been previously explored. We found that ENSCs isolated 

from HSCR mice have an equivalent capacity for cell proliferation and neuronal 

differentiation in comparison to those isolated from wild-type littermates. This is consistent 

with previous work by Kruger et al35, who demonstrated that ENSCs derived from Ednrb-

deficient rats showed no alteration in their multipotency and proliferation. Furthermore, we 
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show that HSCR-ENSCs were able to replace missing enteric neurons and expressed 

synaptophysin-immunoreactive vesicles in the distal HSCR colon in vivo, suggesting 

functional connectivity. This is the first demonstration of successful engraftment and 

replacement of enteric neurons in HSCR colon using isogenic ENSCs. Anitha et al38 

injected an enteric neuronal cell line into the colon of Endrb−/− mice via laparotomy, with 

successful engraftment and differentiation into neurons and glial cells. However, this enteric 

neuronal cell line has a different genetic background from the Ednrb−/− recipient mice, 

raising the problem of immunological rejection, which plagues human solid organ and bone 

marrow allogeneic transplantation39. Successful isolation and culturing of ENSCs from 

postnatal Ednrb−/− mice enabled us to examine their in vivo behavior following 

transplantation into Ednrb-null mice from the same colony. Demonstrating the survival, 

proliferation, and appropriate differentiation of Ednrb−/− neuronal progenitors, and their 

transplantation into littermates, are important first steps toward achieving autologous cell 

transplantation.

Endothelin-3 (Et3) is produced by the mesenchyme of the developing gut40–42 and acts 

through its transmembrane receptor, Ednrb, which is expressed by enteric neural crest 

cells41,43. Et3 has been proposed to enhance the proliferation of enteric neural crest 

cells40,41 and to prevent the premature neuronal differentiation of multilineage progenitors, 

thereby maintaining enough progenitors to colonize the entire bowel44–46. Interestingly, we 

find that postnatal ENSCs can be cultured and expanded in the absence of Ednrb signaling 

and, furthermore, that these postnatal ENSCs can give rise to equivalent number of neurons 

despite the lack of Edrnb expression. These observations suggest that Ednrb is not required 

for postnatal ENSCs to proliferate and differentiate normally. During mouse embryogenesis, 

Ednrb signaling is temporally required specifically between E10 and E12.547,48, and its role 

postnatally is largely unknown. As inhibition of Et3 signaling failed to block colonization of 

the mouse hindgut by neural crest cells when applied after E1348, it is clear that the role of 

Ednrb signaling is different in the early embryonic gut versus the late embryonic or 

postnatal gut, an area that merits further research.

We consistently observed that Ednrb-null ENSCs give rise to more glial cells in culture than 

wild-type ENSCs did. Although Kruger et al35 demonstrated that Ednrb deficiency did not 

alter the potency of multilineage differentiation of embryonic gut NCSCs, including glial 

differentiation, a more recent study showed that Et3 decreased glial proliferation presumably 

by downregulating Sox10 expression, resulting in decreased glial cell numbers in cultured 

p75+ rat enteric neural crest cells49. Additionally, increased numbers and early appearance 

of S-100-expressing glial cells have been observed in developing peripheral nerves of 

Ednrb-null rats50. Our results are consistent with these observations and implicate a possible 

role for Ednrb signaling in balancing neuronal and glial cell numbers in the postnatal ENS.

A limitation of this study is that the recipient Ednrb−/− mice do not live longer than 4–5 

weeks due to bowel obstruction and enterocolitis51. We previously showed that functioning 

enteric neurons can be generated from ENSCs 3–5 weeks following transplantation into 

wild-type mice in vivo12. Since it is not feasible to follow our recipient Ednrb−/− mice for 

this long after transplantation, functional analysis of recipient animals could not be 

performed. Although Anitha et al38 showed improved colon motor function just one week 
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after transplantation of an enteric neuronal cell line into Ednrb−/− mice, further studies using 

other mouse models with longer survival, such as ENS injury caused by benzalkonium 

chloride (BAC)14, are needed to demonstrate functional improvement following ENSC 

transplantation using HSCR-derived cells.

Lentiviral transduction proved to be a useful method to label ENSCs fluorescently in order 

to permit their long-term tracking. Previous studies have used retrovirus or adenovirus 

vectors to label enteric or CNS-derived neural stem cells transplanted into the gut15,52,53. 

However, the use of lentivirus has advantages over those previous approaches by infecting 

both dividing and non-dividing cells, providing long-term, stable transgene expression, and 

generating low immunogenicity34,54,55. Moreover, we achieved a higher transduction 

efficiency (>60%) than previously reported52. While GFP expression is retained after cell 

differentiation in vivo, a few GFP−/Tuj1+ cells were seen in the transplant site, showing the 

limitations associated with not achieving 100% cell labeling in our system. Nonetheless, 

gene delivery using lentiviral vectors may allow for genetic engineering of neuronal stem 

cells prior to transplantation in order to achieve expression of desired transgenes, such as 

sustained release of neurotrophic factors52,53,56, or to optimize the host microenvironment. 

Similarly, lentiviral gene delivery could also be exploited to correct the genetic mutation 

present in patient-derived stem cells, such as RET or EDNRB mutations frequently found in 

human HSCR57–59.
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Refer to Web version on PubMed Central for supplementary material.
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Key Messages

• ENSCs can be isolated from wild-type (DsRed mouse) and HSCR (Ednrb−/−) 

mice with no significant difference in their capacity for cell proliferation and 

neuronal differentiation.

• Ex vivo co-cultures of wild-type ENSCs and aganglionic colon demonstrate that 

the aganglionic microenivronment is permissive for ENSC migration and 

proliferation.

• Wild-type ENSCs survive, migrate, and differentiate into neurons and glial cells 

following transplantation into the aganglionic colon of HSCR mice in vivo.

• HSCR-ENSCs can be transplanted in vivo into the aganglionic colon of mice 

with HSCR colon, where they are able to proliferate, migrate, and undergo 

neuroglial differentiation.
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Figure 1. Isolation and transplantation of ENSCs into Ednrb−/− aganglionic colon ex vivo
Enteric neurospheres derived from Actb-DsRed mouse colon express red fluorescent protein 

(A). Enteric neuronal stem/progenitor cells (ENSCs) within those neurospheres differentiate 

into neurons (Tuj1, B) and glial cells (GFAP, C) that retain DsRed expression. DsRed+ 

enteric neurospheres co-cultured with LMMP isolated from an aganglionic colon of 

Ednrb−/− mice exhibit significant cell migration and fiber projection at 7 days (D), with 

extensive neuronal differentiation (E). ENSC migration is significantly better in aganglionic 

LMMP as compared to control (F) *: p < 0.05, ***: p < 0.001. Scale bars: 100 μm (A), 50 

μm (B and C), 500 μm (D), and 200 μm (E).
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Figure 2. In vivo transplantation of ENSCs into aganglionic colon of Ednrb−/− mice
Methylene blue-labeled DsRed+ enteric neurospheres were microsurgically implanted into 

the rectal wall of Ednrb−/− mice via a trans-anal incision (A), and the colon fixed 1–2 weeks 

later. Wholemount immunostaining shows successful ENSCs engraftment (B) with 

migration of transplanted cells and prominent fiber projections (C, arrowheads). Recipient 

Ednrb−/− distal colon was sectioned longitudinally and examined immunohistochemically. 

Endogenous S100+ glial cells (D, arrowheads) are seen proximal to the transplanted DsRed

+ ENSCs (D, arrows), which are present in the inter-myenteric layer of the aganglionic 

region (E, arrows), with fibers extending distally (E, arrowheads). An isolated DsRed-

nergative glial fiber, possibly extrinsically derived, is seen in the aganglionic region (D). 

Transplanted ENSCs differentiate into neurons (F) and glia (G). Scale bars: 1cm (B), 500 

μm (C), 500 μm (D and E), and 50 μm (F and G).

Hotta et al. Page 18

Neurogastroenterol Motil. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Isolation, characterization, proliferation and differentiation of ENSCs derived from 
Ednrb−/− mice
Immunofluorescent staining was performed on enteric neurospheres generated from 

dissociated small intestinal LMMP of Ednrb−/− mice (A–D). HSCR gut-derived ENSCs 

(HSCR-ENSCs) contain neural crest (A, p75; B, ret), neuronal (C, Tuj1), and glial (D, 

GFAP) cells. HSCR-ENSCs exhibit neuroglial differentiation following dissociation (E). A 

subset of neurons exhibits immunoreactivity to choline acetyltransferase (F, ChAT), nitric 

oxide synthase (G, NOS), or calretinin (H). qRT-PCR shows decreased Ednrb expression in 

HSCR-ENSCs (I), but no significant change in the rate of p75+ neural crest cell proliferation 

(J) or neuronal differentiation (K) compared to ENSCs from wild-type littermates. *p < 

0.05. Scale bars: 100 μm (A–E), 50 μm (F–H).
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Figure 4. In ovo transplantation of ENSCs into embryonic aganglionic chicken hindgut
Aganglionic hindgut was removed from embryonic day 5 (E5) and GFP+ HSCR-ENSCs 

were transplanted into the cecal region (A, arrows). This transplanted tissue was grafted onto 

an E10 CAM. After 7 days, transplanted GFP+ HSCR-ENSCs migrate within the gut wall 

(B), project fibers (D) and differentiate into Tuj1+ (D) and Hu+ (E) neurons, and GFAP+ 

glial cells (F). GFP expressing cells show no CN staining (chick-specific neuron marker) in 

the gut (C), confirming they are not host-derived. Scale bars: 250 μm (A), 150 μm (B, C, D, 

and F), and 60 μm (E). ep, epithelium; hg, hindgut.
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Figure 5. In vivo transplantation of Ednrb−/− ENSCs into aganglionic colon of Ednrb−/− mice
Lentiviral GFP-expressing HSCR-ENSCs were transplanted into aganglionic distal colon of 

Ednrb−/− mice and the colon fixed 1–2 weeks later. Transplanted cells engraft within the gut 

(A, arrows), mainly in the submucosal layer (B), and differentiate into Tuj1+ neurons (A, 

arrows), rarely giving rise to αSMA-expressing smooth muscle cells (B and C, CM; circular 

muscle). The presence of Tuj1+/GFP− cells likely represents neuronal differentiation of 

transplanted cells that lack lenti-GFP transduction. Neuronal proliferation following 

transplantation is demonstrated by incorporation of EdU and colocalization with Tuj1 and 

GFP (D–G, arrows). Non-dividing neurons are GFP+Tuj1+Edu− cells (D–G, open arrows). 

Transplanted ENSCs differentiate into glia (H and H′, arrows), nNOS-expressing neurons (I 

and I′, arrows), and calretinin (CalR) positive neurons (J, arrows). Synaptophysin (SYP) 

expressing vesicles are identified on transplanted ENSCs-derived cells in aganglionic colon 

at 1 week following surgery (K, arrows). Synaptophysin expression is seen more 

prominently in ganglionic recipient colon at 2 weeks following surgery (L and M, arrows) 

where the endogenous myenteric plexus also labels with synaptophysin (L, arrowheads). 
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Panels A–J were captured with confocal microscopy. Scale bars: 200 μm (A), 100 μm (B 

and C), 20 μm (D–J), 10 μm (K and M), and 100 μm (L).
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Table 1

Characterization of lentiviral GFP (Lv-GFP) transduced cells

Ednrb−/− ENSCs Ednrb+/+ ENSCs

Lv-GFP transduction efficiency (%) 64.1 ± 3.8 61.6 ± 6.3

GFP+Tuj+/GFP+ (%) 27.3 ± 2.1 27.4 ± 6.6

GFP+S-100+/GFP+ (%) 35.9 ± 0.1 ** 24.3 ± 0.4

GFP+Tuj+/Tuj (%) 53.2 ± 0.8 * 41.0 ± 4.0

GFP+S-100+/S-100+ (%) 52.2 ± 5.9 59.0 ± 5.5

Tuj+/DAPI (%) 33.6 ±2.7 37.3 ±4.2

S-100+/DAPI (%) 43.2 ±0.9 *** 27.6 ±1.7

*
P<0.05,

**
p<0.01,

***
p<0.001
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