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Abstract—Computerized tumor detection and segmentation
algorithms are developed to assist the work medical staff at the
diagnosis or therapy planning. This paper presents a procedure
trained to segment low-grade gliomas in multispectral volumetric
MRI records. The proposed solution employs a random forest
classifier based on 104 morphological and Gabor wavelet features.
A neighborhood-based post-processing was designed to regularize
the output of the classifier. The current version of our system was
trained and tested using all 54 low-grade tumor volumes from
the MICCAI BRATS 2016 database. The achieved accuracy is
characterized by an overall mean Dice score of 83.8%, sensitivity
> 85%, and specificity > 98%. The proposed method is likely to
detect all gliomas of 2 cm diameter.

Index Terms—Image segmentation, tumor detection, magnetic
resonance imaging, random forest, Gabor wavelet.

I. INTRODUCTION

Most tumors are diagnosed after its symptoms convince
the patients to go to the doctor. In this case the tumor is
detected in a certain advanced stage, when the chances of
survival are reduced. The development of imaging devices
and computers enable us to elaborate solutions that would
allow for regular screening of a larger population and tracing
most tumors in an earlier phase. In such conditions, automated
algorithms and procedures are needed, which can efficiently
and reliably detect and localize the tumor. Beside establishing
the diagnosis, the automatic segmentation and quantitative
analysis can assist therapy planning and evolution tracking of
the tumor. However, automatic tumor segmentation is not only
utmost important task, but also a very challenging one, because
of the high variety of anatomical structures and low contrast
of current imaging techniques, which make the difference
between normal regions and the tumor hardly recognizable
for the human eye [1].

Magnetic resonance imaging (MRI) is the preferred imaging
device in brain tumor screening, due to its better contrast and
relatively fine resolution. However, it also bears difficulties like
the possible presence of intensity inhomogeneity [2], and the
relative intensity values that vary from device to device and
from patient to patient. The MICCAI Brain Tumor Segmen-
tation Challenge, organized yearly since 2012, intensified the
research in this topic and led to several important solutions,
which are usually assisted by the use of prior information,
and employ various image processing and pattern recognition
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methodologies. Asman et al [3] applied a non-parametric
intensity analysis in combination with a segmentation based
on multiple atlases. Ghanavati et al [4] provided a solution
using the AdaBoost classifier to distinguish tumor voxels from
normal ones using features based on intensity, texture, and
symmetry. Hamamci et al [5] proposed a cellular automata
driven method that produces segmentation based on level sets.
Sachdeva et al [6] deployed a content based active contour
model relying on intensity and texture features extracted from
the histogram and co-occurrence matrix of the MRI data. Njeh
et al [7] introduced a graph cut based solution that performs
distribution matching, which is highly efficient because of
using rather global than pixelwise information. Zhang et al
[8] proposed a support vector machine based procedure to
follow the evolution of brain tumors over time. Tustison et al
[9] combined random forests with symmetry based features
to segment brain tumors. Szildgyi et al [10] provided a
semi-supervised framework for the fuzzy c-means clustering
algorithm to produce accurately segmented tumors. Kanas et al
[11] combined a clustering based preprocessing with a multi-
parametric random walker segmentation. Havaei et al [12]
developed an automatic brain tumor segmentation procedure
based on deep neural networks that exploits both local and
global contextual features simultaneously. Pereira et al [13]
proposed a convolutional neural network solution exploiting
small kernels and successfully applied it for brain tumor
segmentation. Menze et al [14] combined a Gaussian mixture
model with the expectation maximization (EM) algorithm to
achieve an accurate segmentation. Another Gaussian mixture
based accurate solution was given by Juan-Albarracin et al
[15]. Islam et al [16] employed multifractional Brownian mo-
tion features to provide patient-independent characterization of
tumor tissues and applied the AdaBoost algorithm for tissue
segmentation. Shin et al [17] proposed deep convolutional
neural networks and successfully combined it with transfer
learning. Huang et al [18] provided a brain tumor segmen-
tation framework employing local independent projection-
based classification. L& et al [19] proposed a brain tumor
segmentation procedure based on a tumor growth model. Pinto
et al [20] employed extremely random trees to provide a
hierarchical solution to the low-grade glioma segmentation
problem. Zaouche et al [21] provided a semi-supervised low-
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grade glioma segmentation based on specially designed spatial
edge filters and maximum likelihood optimization. For further
information on current brain tumor segmentation techniques,
there are available recent reviews [1], [22], [23], [24], [25].

In a previous paper [26] we have presented a preliminary
study on the use of random forests in the detection and
segmentation of high-grade gliomas. The feature vector char-
acterizing each voxel contained 16 values, including minimum,
maximum, and median values computed from the neighbor-
hood of the voxel. The procedure proposed in that study was
evaluated using the 220 high-grade tumor volumes from the
MICCAI BRATS 2016 data set. The best overall Dice Score
was found 81%. As a further development of our previous
algorithm, in this paper we propose a random forest solution
trained and tested using 104-element feature vectors that
include various computed morphological and Gabor wavelet
features. Our main goal in this paper is to accurately separate
the whole tumor from the normal tissues in each low-grade
tumor volume of the MICCAI BRATS 2016 database.

The rest of this paper is structured as follows: Section
IT gives details on the proposed methodology. Section III
exhibits and discusses the achieved results. Finally, Section
IV concludes the investigation.

II. MATERIALS AND METHODS

Our goal was to elaborate an accurate segmentation proce-
dure for low-grade brain tumors based on a machine learning
algorithm. This paper presents preliminary results obtained
using a random forest approach, combined with histogram
normalization, Gabor feature extraction for texture characteri-
zation, and a neighborhood-based post-processing. The trees of
the random forest are trained to separate the whole tumor from
normal tissues. The structure of the elaborated segmentation
procedure is presented in Fig. 1.

A. BRATS data sets

Multimodal MR image data involved in this study was
obtained from the MICCAI 2016 Challenge on Multimodal
Brain Tumor Segmentation [27]. This database contains fully
anonymized image volumes originating from four institutions.
The image database consists of multi-contrast MR scans of
274 glioma patients, out of which 220 having high-grade
and 54 having low-grade glioma lesions. For each patient,
multimodal (T1, T2, FLAIR, and post-Gadolinium T1) MR
images were recorded and linearly co-registered to the T1
contrast image. Additionally, all data volumes were skull
stripped, and interpolated to 1 mm isotropic resolution. Each
record contains approximately 1.5 millions of true tissue
voxels, out of which up to 20% can be positive. All voxels are
provided with manual annotation produced by human expert.
Although the four observed features of each voxel bear a lot
more information than any one of them, there is an acute need
to extend the feature vectors with further computed features.

B. Histogram normalization

A major drawback of MR imaging consists in the lack of
a standard scale of image intensities. This is why we need to

map the histogram of each data channel of BRATS volumes
onto a uniform scale. Although literature contains various
recommendation is this issue [28], [29], we opted to employ
a simple linear transform @ — ax + § to all intensities,
where parameters « and 3 were established separately for
each volume and each data channel such a way that the
25-percentile and 75-percentile values became 600 and 800,
respectively. Further on, a minimum and a maximum intensity
barrier was enforced at 200 and 1200, respectively.

C. Computed features

A total number of 100 computed features were added to
the feature vector describing each voxel, according to the
inventory given in Table I. For each of the four observed
intensities (T1, T2, TIC, FLAIR), six average, five median,
one minimum, one maximum, four gradient values, and further
8 Gabor features were extracted. All computed feature values
were linearly scaled into the [200, 1200] interval. This way, to-
gether with the four observed features, each voxel is described
by a 104-element feature vector. These feature vectors are
used by the classification stage of the proposed segmentation
procedure.

D. Missing data

We considered that the region of interest (ROI) in the
BRATS volumes includes all voxels that have at least one
nonzero value in any of the observed data channels. Zero in-
tensities within the observed features of any voxel belonging to
the ROI were considered missing values. Missing values were
replaced by the mean intensity value of existing neighbors
within the 26-element immediate spatial neighborhood, or the
grand mean of the given data channel whenever no neighbors
with correct intensity were found in the neighborhood.

E. Binary decision trees

Binary decision trees (BDT) of unlimited depth can describe
any hierarchy of crisp (non-fuzzy) two-way decisions [30].
Given an input data set of vectors X = {x1,X2,...,Xp},
where x; = [%;1,%;2,...,%im| ., a BDT can be employed
to learn the classification that corresponds to any set of labels
A ={\,Aa,..., \n}. The classification learned by the BDT
can be perfect if there are no identical training vectors with
different labels, that is, x; = x; implies A\; = Aj, Vi,j €
{1,2,...,n}. The BDT is built during the training process.
Initially the tree consists of a single node, the root, which has
to make a decision regarding all n train data vectors. If not
all n vectors have the same label, which is likely to be so,
then the set of data is not homogeneous, and there is a need
for a separation. The decision will compare a single chosen
feature, the one with index £ (1 < k£ < m), of the input
vectors with a certain threshold «, and the comparison will
separate the vectors into two subgroups: those with z; ;, < «
(1 = 1...n), and those with x; ;, > a (¢ = 1...n). The root
will then have two child nodes, each corresponding to one of
the possible outcomes of the above decision. The left child
will further classify those n; input vectors, which satisfied
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Fig. 1. Block diagram of the segmentation procedure.
TABLE I
INVENTORY OF COMPUTED FEATURES. ALL 4 DATA CHANNELS WERE INVOLVED EQUALLY.
Neighborhood | Average Maximum  Minimum  Median Gradient Gabor | Total
3x3x3 4 4 4 12
3x3 4 4 8
5x5 4 4 8
X7 4 4 16 24
9x9 4 4 8
11 x 11 4 4 32 40
Total 24 4 4 20 16 32 100

the former condition, while the right child those nsy ones that
satisfied the latter condition. Obviously, we have ny +n2 =n
with nq > 0 and ny > 0. For both child nodes, the procedure
is the same as it was for the root. When at a certain point of
the learning algorithm, all vectors being classified by a node
have the same label ), then the node is declared a leaf node,
which is attributed to the class with index p. Another case
when a node is declared leaf node is when all vectors to be
separated by the node are identical, so there is no possible
condition to separate the vectors. In this case, the label of the
node is decided by the majority of labels, or if there is no
majority, a label should be chosen from the present ones. In
our application, this kind of rare leaves are labeled as tumor.

The separation of a finite set of data vectors always termi-
nates in a finite number of steps. The maximum depth of the
tree highly depends on the way of establishing the separation
condition in each node. Our application uses an entropy based
criterion to choose the separation condition. Whenever a node
has to establish its separation criterion for a subset of vectors
X CcX containing n items with 1 < m < n, the following
algorithm is performed:

1) Find all those features which have at least 2 different
values in X.

2) Find all different values for each feature and sort them
in increasing order.

3) Set a threshold candidate at the middle of the distance
between each consecutive pair of values for each feature.

4) Choose that feature and that threshold, for which the
entropy-based criterion
E =m log 2 +7, log =2 (1)
i i
gives the minimum value, where ny (@ will be the
cardinality of the subset of vectors X; (X5), for which

the value of the tested feature is less than (greater or
equal than) the tested threshold value.

After having the BDT trained, it can be applied for the
classification of test data vectors. Any test vector is first fed
to the root node, which according to the stored condition and
the feature values of the vector, decides towards which child
node to forward the vector. This strategy is followed then by
the chosen child node, and the vector will be forwarded to
a further child. The classification of a vector terminates at
the moment when it is forwarded to a leaf node of the tree.
The test vector will be attributed to the class indicated by the
labeling of the reached leaf node.

F. The random forest

Binary decision trees were trained to separate tumor voxels
from negative ones. In case of the BRATS low-grade tumor
data set, we had a total number of 72.2 million negative and
5.46 million positive voxels. As a first step, randomly selected
88% of the negative voxels were eliminated and the remaining
12% kept for the training and testing process.
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Random forests were trained according to the following
parameters:

1) The number of trees in the forest denoted by nt. This
parameter was usually set to 255, but experiments were
performed with other values as well.

2) The number of data vectors used to train each tree of the
forest, denoted by np. Typical values of this parameter
ranged from 10 thousand to 500 thousand.

3) The rate (percentage) of negative labeled data within the
training set, denoted by p,,. It is likely to achieve best
performance around p,, = 93%, which is the true rate
of negatives within the BRATS LG volumes.

Ideal parameter settings were identified using the so-called
out-of-bag (OOB) data, as recommended by Breiman in [31].
Testing on OOB data allowed us to preselect those forests that
were likely to produce high accuracy, and discard those that
were prone to severe misclassifications. The best performing
trees achieved 93-94% accuracy, while the most accurate
forests scored 95-96% in labeling the OOB data.

At classification, all voxels from the test volumes receive a
vote (label) from each BDT of the random forest. The final
labeling of voxels is decided by the majority of votes.

G. Post-processing

A posterior relabeling scheme was implemented as follows.
The input data of the post-processing step consisted in the
labels provided by the random forest to all voxels in the
test volume. For each voxel, the number of tumor labeled
neighbors (v7) and the number of all neighbors (va5) were
extracted, using a predefined neighborhood. The final label of a
voxel was set to tumor if and only if v /vay > 6. The overall
optimal value of the threshold was established using the OOB
data and was found as @ = 0.34. The ideal neighborhood to
be employed in post-processing was identified as the cubic
11 x 11 x 11 sized one.

H. Evaluation of accuracy

We employed the Dice score (DS) as the main indicator of
accuracy, defined as

_ 2x TP
~ 2x TP +FP+FN

where TP, FP, and FN stand for the number of true positives,
false positives, and false negatives, respectively. Fine accuracy
is reflected by DS values close to 1, but in this brain tumor
segmentation problem, DS values around 0.94 are considered
ideal [27], due to inter-rater differences that are present in
the ground truth. Further on, sensitivity (or true positive rate,
TPR) defined as

DS

€0,1] , (2)

TP
TPR = ——— 3
TP +FN ’ )
and specificity (or true negative rate) defined as
TN
TNR = ——+= 4
TN+ FP @

Overall Dice Score vs. Training data size (nP) at various values of Negative data rate (p")
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Fig. 2. Overall Dice Score plotted against the number of voxels used to
train each decision tree of the random forest, at various values of the negative
train data rate p,,. These results were obtained using n = 255 trees in each
random forest.

Overall Dice Score vs. Negative data rate (pn) at various values of Training data size (nP)
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Fig. 3. Overall Dice Score plotted against the negative train data rate p,,, at
various values of the number of voxels np used to train each decision tree
of the random forest. These results were obtained using n = 255 trees in
each random forest.

were used as secondary accuracy indicators, where TN repre-
sents the number of true negatives.

If we denote by TP;, TN;, FP;, and TP;, the true/false
positives/negatives obtained at testing volume number ¢ (¢ =
1...p, where p = 54 is the number of volumes), then we
define average Dice Score as

p P
Lt e
= — i = - R
p = p = 2xTP;+ FP; + FN;
1= 1=
Effect of post-processing upon the average Dice Score at nP=500k and pn=94%
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Fig. 4. The effect of post-processing: the average Dice Score obtained at

np = 500k and p, = 94%, plotted against the neighborhood threshold
0. The horizontal dashed line indicates the average Dice Score before post-
processing. Post-processing can provide an up to 4% improvement of the
accuracy when using 6 € [30%, 35%].
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Fig. 6. The effect of post-processing upon the segmentation accuracy of
individual volumes: (left) sensitivity before and after post-processing, plotted
in increasing order; (right) sensitivity obtained for individual image volumes,
after post-processing vs. before post-processing.

and overall Dice Score as:

p
2 X Z TP;
na =1
S = P P P (6)
=1 1=1 =1

Similarly, we will compute overall and average values for
the sensitivity (TPR, TPR) and the specificity (TNR,TNR).

III. RESULTS AND DISCUSSION

All 54 low-grade tumor volumes from the BRATS 2016
data set were involved in the evaluation of the proposed
methodology. Volumes were randomly separated into two
equal groups. Random forests were trained with data from one
of the groups and tested on data from the other group. This
way all volumes were used as train and test data in turns.

The rate of positive voxels within the whole data set is
approximately 7%. All positive voxels of the train volumes,
and a randomly selected 12%-subset of negative voxels were
used as training data set. For the training of each random
tree, np voxels were randomly selected from the training data
set such a way, that p,, percent of them were negatives and
the rest of the voxels were positive. During the evaluation
of the proposed algorithm, np values ranged between 10k
and 500k, while the percentage of negative train voxels p,
varied between 85% and 95%. Ratios lower than 85% were

100 Dice Score vs. Tumor size before post-processing
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Fig. 7. The Dice Scores obtained for each volume before post-processing,

plotted against the actual size of the tumor. The dashed lines indicates the
trend extracted via linear regression.
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Fig. 8. The Dice Scores obtained for each volume after post-processing,
plotted against the actual size of the tumor. The dashed lines indicates the
trend extracted via linear regression.

also used, but they led to too many false positives in case of
any test volume. A number of np = 255 trees were trained for
each test case. This enabled us to analyze the relation between
the accuracy of the proposed algorithm and the number of
necessary trees in the random forest.

Figures 2 and 3 exhibit the obtained overall Dice Score DS
in case of various values of train data size np and percentage
of negative train data p,. The accuracy visibly improves as
the train data size grows, but this phenomenon slows down at
np > 200k voxels. Considering that bigger train data sets lead
to deeper decision trees and consequently to longer processing
time, there must be a compromise in the question of train data
size. On the other hand, the optimal percentage of negative
data is similar to the true rate of negative in all the image
volumes. At train data sizes up to np = 10k, p, = 92% was
found optimal. Train data sizes of np € {20k, 30k, 50k, 100k}
resulted in optimal negative data rate p,, = 93%, while larger
data sizes performed best at p, = 94%. In every setting, we
were able to achieve overall Dice Scores above 82%, while the
best accuracy of DS = 83.8% was achieved at np = 500k and
prn = 94%. Global accuracy indicators obtained at np = 255
trees in the random forest are presented in Table II.

Figure 4 presents the global effect of the post-processing
upon the average Dice Score, depending on the neighborhood
threshold 6. Accuracy reaches its maximum somewhere in the
interval 6 € [30%, 35%], but there is a wide range of 6 where
the effect of post-processing is beneficial.

Figure 5 presents the effect of the proposed post-processing.

1110



TABLE I
MAIN ACCURACY INDICATORS

Post-processing | Overall DS Average DS Median DS DS > 80% DS > 85% DS > 90%
Before 81.0% 77.0% 81.0% 30 of 54 16 of 54 6 of 54
After 83.8% 81.3% 84.6% 42 of 54 26 of 54 12 of 54
Post-processing | Overall TPR  Average TPR Median TPR  Overall TNR  Average TNR  Median TNR
Before 76.7% 77.0% 81.0% 99.03% 99.04% 99.33%
After 84.8% 81.3% 84.6% 98.64% 98.64% 98.84%

Fig. 9.
negatives, respectively. The Dice Score for this volume was above 94%.

Thirty-six consecutive slices from an identified tumor. Green pixels represent true positives, blue and red ones stand for false positives and false

Fig. 10. Thirty-six consecutive slices from an identified tumor. Green pixels represent true positives, blue and red ones stand for false positives and false

negatives, respectively. The Dice Score for this volume was 82.5%.

The left side exhibits the main accuracy indicator for each
individual volume, before and after post-processing. The indi-
cator values were sorted in increasing order for better visibility.
On the right side it plots the individual Dice scores for
each volume after post-processing vs. before post-processing,
indicating that post-processing had a significant beneficial
effect in a great majority of the cases, and only 10% of the
volumes were slightly pushed toward worse accuracy. Figure 6
presents the effect of post-processing upon sensitivity, using
the very same concept.

Figures 7 and 8 plot the individual Dice scores obtained for
each volume vs. the size of the tumor, without post-processing
and with post-processing, respectively. The identified linear
trends show that the strongest effect of post-processing occurs
in case of small tumors.

Figure 9 exhibits the segmentation result of 36 consecutive
slices from a low-grade tumor volume. Most tumor pixels were
accurately identified in this case, as we can only see a few
false negatives beside the true positives indicated by black
pixels. This is one of the cases that were segmented with high
accuracy. A worse, but still acceptable case is shown in Fig. 10.

The segmentation of a single volume ranges between 60 and
75 seconds, when executed on a single core of a PC with i7
processor running at 3.4 GHz frequency, which can be reduced
below 20 seconds when executed in parallelized version on
four cores. The largest computational burden represents the
extraction of the 100 extra features for the approximately 1.5
million voxels of the volume.

The overall Dice score of 83.8% allows us to detect the
presence of the tumor in a great majority of cases. However,
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the accuracy indicators can be further improved the following
ways:
1) Using further texture features extracted from the neigh-
borhood of each voxel.
2) Employing an effective feature selection scheme to
eliminate useless features.
3) Implementing a more complex post-processing that in-
vestigates the contiguous ensembles of detected tumor
voxels and discard small ones.

An objective comparison with existing methods enumerated
in Section I is not an easily accomplishable task, as not all
of them used the BRATS data set for evaluation, and even
those which did, they did not evaluate all the 54 available low-
grade tumor volumes. With respect to the methods involved
in the comparison in [20], our proposed methodology seems
competitive, and it will improve with the implementation of
the above listed ideas.

IV. CONCLUSION

This paper presented an automatic low-grade tumor detec-
tion and segmentation algorithm employing random forests
of binary decision trees, in its intermediate stage of imple-
mentation. The proposed methodology reliably detects low-
grade tumors of 2cm diameter. It is likely to obtain finer
segmentation accuracy in the future via implementing some of
the above mentioned further development ideas. We will also
concentrate on differentiating among the parts of the whole
tumor (edema, tumor core, necrosis, active tumor), according
to the grand truth provided by the BRATS database.
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