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T̂ırgu Mureş, Romania

Abstract. Detecting clusters of different sizes represents a serious diffi-
culty for all c-means clustering models. This study investigates the set of
various modified fuzzy c-means clustering algorithms within the bounds
of the probabilistic constraint, from the point of view of their sensitiv-
ity to cluster sizes. Two numerical frameworks are constructed, one of
them addressing clusters of different cardinalities but relatively similar
diameter, while the other manipulating with both cluster cardinality and
diameter. The numerical evaluations have shown the existence of algo-
rithms that can effectively handle both cases. However, these are difficult
to automatically adjust to the input data through their parameters.

Keywords: Fuzzy clustering · Cluster size sensitivity · Improved par-
tition · Suppressed partition

1 Introduction

Fuzzy clustering algorithms are unsupervised learning classification algorithms
that employ fuzzy membership functions to describe the partition. The fuzzy
c-means (FCM) algorithm introduced by Dunn [1] and generalized by Bezdek
[2] is probably the most popular fuzzy clustering technique, due to its simplicity
and the fine partition it usually produces. However, that fine property is relative
and conditioned by several aspects. The probabilistic constraint causes several
undesired phenomena, including the sensitivity to outlier data, and the multi-
modality of the fuzzy membership functions produced by FCM [3]. The latter
also causes difficulties when the cardinality of clusters differs strongly, or the
physical size (diameter) of the clusters is different. This is usually referred to as
cluster size sensitivity.
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Fig. 1. Limited accuracy of FCM when the input data consist of the IRIS data set
extended with synthetic versicolor items.

Problem Formulation. Figure 1 presents some accuracy benchmarks of the FCM
algorithm, using a modification of the IRIS data set [4]. The original IRIS data
set consists of 150 data vectors, each describing four different physical measures
of individual iris flowers. As ground truth, these 150 vectors are divided into three
clusters of 50 items each, named after the species of iris flowers: setosa, versicolor,
and virginica. The modification consisted in generating further versicolor data
vectors by averaging all possible couples of versicolor irises of the original data
set. This way we have obtained 50 × 49/2 = 1225 further data vectors that are
also supposed to belong to the versicolor class. These synthetic data vectors were
gradually added to the original set of 150 vectors and fed to FCM at various
settings of the fuzzy exponent m. Figure 1 shows us how the accuracy of FCM
evolved, plotted against the number of synthetic vectors included into the input
data. The formula of the employed benchmark indicator is given in Eq. (13).
Obviously, as the number if synthetic data grows, the size of the clusters gets
less and less balanced. For example at m = 3, 150 extra versicolor items are
enough to cause the crash of the algorithm, as it is not able to establish the
true boundary between the versicolor and virginica clusters. Further on, around
650 extra versicolor items, the boundary between setosa and versicolor is also
mistaken. At lower values of m the accuracy is somewhat better, but there is no
possible setting of the FCM algorithm which could accurately handle 400 extra
versicolor vectors.

This study intends to provide a comparison of several existing extensions of
the FCM algorithm that address the multimodality of the fuzzy membership
functions, from the point of view cluster size sensitivity. The literature contains
a wide spectrum of such algorithms including the suppressed FCM (s-FCM) [5],
and its generalization gs-FCM [6], the FCM algorithm with improved partition
(IFP-FCM) [7] and its generalized version GIFP-FCM [8], the FCMA algorithm
[9], and the penalized FCM algorithm [10]. Literature also contains two vari-
ants of so-called cluster size insensitive FCM algorithms [11,12], which were not
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included in the comparison, as in our consideration they have deviated far from
the alternative optimization algorithm of the FCM algorithm.

2 Employed Clustering Algorithms

All fuzzy c-means algorithm variants and derivations employed in this study
cluster a set of object data X = {x1,x2, . . . ,xn} into a predefined number of
clusters denoted by c, through minimizing a quadratic objective function. Most
of these algorithms derived their objective function from the one of FCM by
adding certain penalty terms that would modify the behavior of the algorithm.
In the following, we briefly present the repository of algorithms involved in this
study.

Fuzzy c-means. The FCM algorithm minimizes

JFCM =
c∑

i=1

n∑

k=1

um
ik||xk − vi||2 =

c∑

i=1

n∑

k=1

um
ikd2ik, (1)

constrained by the probabilistic condition
∑c

i=1 uik = 1, where vi (i = 1 . . . c)
represent the cluster prototypes, uik (i = 1 . . . c, k = 1 . . . n) are the fuzzy
membership functions that describe the degree to which vector xk belongs to
the cluster Ωi represented by vi, and m > 1 is the fuzzy exponent [2]. The
minimization of JFCM is achieved via alternately applying the following partition
and cluster prototype update formulas:

uik =
d

−2/(m−1)
ik∑c

j=1 d
−2/(m−1)
jk

∀i = 1 . . . c
∀k = 1 . . . n

, (2)

vi =
∑n

k=1 um
ikxk∑n

k=1 um
ik

∀i = 1 . . . c. (3)

Fuzzy c-means with Improved Partition. The fuzzy c-means algorithm with
improved partition were introduced by Höppner and Klawonn [7], and gener-
alized by Zhu et al. [8]. In its generalized form (GIFP-FCM), the algorithm
minimizes

JGIFP−FCM =
c∑

i=1

n∑

k=1

um
ikd2ik +

n∑

k=1

ak

c∑

i=1

uik(1 − um−1
ik ), (4)

subject to the probabilistic constraint, where ak (k = 1 . . . n) are penalty
terms. The optimization is achieved via alternately applying the partition update
formula

uik =
(d2ik − ak)−1/(m−1)

∑c
j=1(d

2
jk − ak)−1/(m−1)

∀i = 1 . . . c
∀k = 1 . . . n

, (5)

and the prototype update formula, which is identical with Eq. (3). The values
of ak terms are chosen at the beginning of each loop using the formula ak =
ω × min{d2ik, i = 1 . . . c}, with ω ∈ [0.9, 0.99].
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Suppressed Fuzzy c-means Algorithms. Suppressed FCM (s-FCM) [5] was not
introduced through the objective function it minimizes. Instead of that, s-FCM
by definition performs an extra step between the application of Eqs. (2) and (3)
that modifies the partition according to the formula:

uik ←
{

αuik if i �= wk

1 − α + αuik if i = wk

∀i = 1 . . . c
∀k = 1 . . . n

, (6)

where wk = arg minj{d2jk, j = 1 . . . c}, and α ∈ [0, 1] is the so-called sup-
pression rate. Suppressed FCM also received several generalization schemes
denoted by gs-FCM [6], which made the suppression rate context sensitive,
that is, dependent on k. Such algorithms also have a single extra parameter
varying in the interval [0, 1] which governs the choice of suppression rates αk

(k = 1 . . . n). Based on previous performance analysis, in this study we have
chosen to include the gs-FCM algorithm of type ξ, which defines the suppression
rate as: αk = [1 − (sinπuwk

2 )ξ][1 − uwk]−1, with parameter ξ ∈ [0, 1], where uwk

stands for the largest fuzzy membership function value of vector xk provided by
the FCM algorithm. Further details of the algorithm can be found in [6]. The
objective function optimized by all suppressed FCM algorithms is given in [13].

FCMA by Miyamoto and Kurosawa. The FCMA algorithm optimizes

JFCMA =
c∑

i=1

n∑

k=1

α1−m
i um

ikd2ik, (7)

subject to the probabilistic constraint of the fuzzy memberships, and of the extra
parameters αi (i . . . c):

∑c
i=1 αi = 1 [9]. The minimization of JFCMA is achieved

via alternately applying the partition updating formula:

uik =
αid

−2/(m−1)
ik∑c

j=1 αjd
−2/(m−1)
jk

∀i = 1 . . . c
∀k = 1 . . . n

, (8)

the prototype update formula given in Eq. (3), and the extra formula:

αi =
m
√∑n

k=1 um
ikd2ik

∑c
j=1

m

√∑n
k=1 um

jkd2jk

∀i = 1 . . . c. (9)

Penalized FCM by Yang. The Penalized FCM (PFCM) algorithm optimizes

JPFCMA =
c∑

i=1

n∑

k=1

um
ik[d2ik − λ log αi], (10)

subject to the probabilistic constraint of the fuzzy memberships, and of the extra
parameters αi (i . . . c):

∑c
i=1 αi = 1 [10]. The minimization of JPFCM is achieved

via alternately applying the partition updating formula:

uik =
[d2ik − λ log αi]−1/(m−1)

∑c
j=1[d

2
jk − λ log αj ]−1/(m−1)

∀i = 1 . . . c
∀k = 1 . . . n

, (11)



474 L. Szilágyi et al.

the prototype update formula given in Eq. (3), and the extra formula:

αi =
∑n

k=1 um
ik∑c

j=1

∑n
k=1 um

jk

∀i = 1 . . . c. (12)

3 Results and Discussion

The algorithms enumerated in Sect. 2 underwent thorough numerical evaluation
using two different scenarios. The first test employed the IRIS data set with syn-
thetic extension of a centrally located versicolor cluster, as described in Sect. 1.
Data vectors were initially normalized, namely the values in each dimension of
the feature vectors were linearly mapped upon the [0, 1] interval. In case of all
algorithms, we investigated the conditions of relatively good accuracy, meaning
that the majority of setosa, versicolor, and virginica irises are assigned to three
different clusters. In order to characterise the accuracy with a single numerical
value, we propose the accuracy benchmark index defined as:

ABM = max
p∈Pc

{
c∑

i=1

|Λi ∩ Ωp(i)|2
|Λi| × |Ωp(i)|

}
, (13)

where Λi stands for the class i according to the grand truth, Ωi represents
the cluster with index i, Pc is the set of all possible permutations of numbers
1, 2, . . . , c, and |Ψ| stands for the cardinality of set Ψ. ABM can range from 0
to 1: the maximum value indicates perfect separation of the ground true classes,
while any deviance from the perfect separation is penalized.

Figure 2 exhibits the obtained ABM characteristics for various algorithms
and settings, plotted against the number of synthetic versicolor irises added to
the input data. All FCM algorithms with improved or suppressed partition have
their limit around 350-400 synthetic vectors, above which they fail to distinguish
the three clusters. On the other hand, for FCMA and PFCM there exists such a
setting which can provide acceptable accuracy even in case of 1225 extra items.
However, finding automatically these settings is not a trivial job. Table 1 shows
some examples of confusion matrices obtained during the tests. The algorithms
are ranked according to their performance. The fact that FCMA can stand at
the top (m = 1.5) or the bottom (m = 2) of the ranking, clearly justifies the
importance of well chosen parameter values. PFCM has an optimal λ value for
both m = 1.5 and m = 2, but that is impossible to guess. There is no wide
interval for λ, where PFCM has the ideal behavior, see Table 2.

While the first test employed classes of different cardinality without signif-
icantly changing the diameter of expected clusters, in the second example we
have a different case. Let us define two collections of two-dimensional vectors,
centered in (−2, 0) and (2, 0). The first circular group has a fixed radius of r1 = 1
unit, and contains 100 randomly generated vectors distributed with uniform den-
sity. On the other hand, for the second circular group we will gradually change
the radius r2 from 1 to 3, while keeping the density of vectors constant.
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Fig. 2. Accuracy benchmark values obtained by various tested algorithm plotted
against the number of extra versicolor irises.

Table 1. Confusion matrices obtained by various algorithms on the IRIS data set with
50, 150, 350, and 850 extra versicolor irises. Zeros are omitted

Algorithm Ground IRIS + 50 IRIS + 150 IRIS + 350 IRIS + 850

and parameters truth Ω1 Ω2 Ω3 Ω1 Ω2 Ω3 Ω1 Ω2 Ω3 Ω1 Ω2 Ω3

FCMA setosa 50 50 50 50

m = 1.5 versicolor 100 200 400 900

virginica 17 33 20 30 18 32 18 32

PFCM setosa 50 50 50 50

m = 1.5 versicolor 100 200 400 900

λ = 0.05 virginica 18 32 20 30 20 30 20 30

PFCM setosa 50 50 50 50

m = 2.0 versicolor 100 200 400 899 1

λ = 0.07 virginica 18 32 23 27 22 28 45 5

s-FCM gs-FCM setosa 50 50 50 50

m = 2.0 m = 2.0 versicolor 100 200 396 4 488 412

α = 0.1 ξ = 0.5 virginica 14 36 14 36 14 36 2 48

GIFP-FCM setosa 50 50 50 50

m = 2.0 versicolor 99 1 200 395 5 474 426

ω = 0.99 virginica 14 36 14 36 14 36 2 48

FCM setosa 50 50 50 50

m = 1.2 versicolor 99 1 200 208 192 484 416

virginica 14 36 14 36 3 47 2 48

FCMA setosa 50 50 49 1 48 2

m = 2.0 versicolor 100 200 400 900 416

virginica 21 29 27 23 35 15 38 12
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Fig. 3. Case of two clusters of different sizes: at r2 = 1.5 even FCM can be accurate,
but a more significant difference in cluster sizes require more sophisticated solutions,
which are possible with FCMA and PFCM.

Table 2. Behavior of various tested algorithms in case of two clusters of different sizes

Algorithm Maximum r2 Misclassifications at

Parameters with perfect r2 = 2 r2 = 2.5 r2 = 2.9

m other accuracy out of 500 out of 725 out of 941

FCM 2.0 1.7 33 178 316

FCM 1.2 1.9 14 153 302

s-FCM 2.0 α = 0.1 1.9 6 141 304

gs-FCM 2.0 ξ = 0.8 1.9 10 137 289

GIFP-FCM 2.0 ω = 0.9 1.9 10 141 296

GIFP-FCM 1.5 ω = 0.9 1.9 7 146 305

FCMA 2.0 2.7 0 0 16

FCMA 1.5 2.6 0 0 150

PFCM 2.0 λ = 0.8 2.4 0 4 127

PFCM 2.0 λ = 0.9 2.6 0 0 36

PFCM 2.0 λ = 1.0 2.1 0 5 11

PFCM 1.5 λ = 0.8 2.7 0 0 23

PFCM 1.5 λ = 0.9 2.8 0 0 1

PFCM 1.5 λ = 1.0 2.4 0 2 12
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We will investigate, how the tested algorithms react to different sized clus-
ters, and what circumstances or settings are required to achieve best accuracy.
Figure 3 shows some examples of the clustering outcome, while Table 2 exhibits
numerical information of the best performance achieved by each algorithm. FCM
can provide two accurately separated clusters up to r2 = 1.7, while improved
and suppressed partitions can extend this behavior up to r2 = 1.9. To achieve
perfect separation of the two groups at r2 > 2, one needs to turn to PFCM or
FCMA. In the extreme case of r2 = 2.9, the best result is achieved by PFCM
with a single misclassification. Although the best outcome is provided by PFCM,
FCMA can also be useful because it has no extra parameter compared to FCM,
so it is much easier to tune than PFCM.

4 Conclusions

This study performed a comparative analysis of several modified and enhanced
fuzzy c-means clustering in terms of sensitivity to cluster sizes. Two numerical
tests were proposed, to assess the behavior of the algorithms both in case of
clusters with different cardinality but relatively similar diameter, and in case
of clusters that differ in both cardinality and diameter. The best performance
was achieved by FCMA and PFCM, but even these are difficult to automatically
tune to the input data. All other tested algorithms are significantly less effective.
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2013. LNCS, vol. 8234, pp. 192–203. Springer, Heidelberg (2013)

4. Anderson, E.: The irises of the Gaspe peninsula. Bull. Am. Iris Soc. 59, 2–5 (1935)
5. Fan, J.L., Zhen, W.Z., Xie, W.X.: Suppressed fuzzy c-means clustering algorithm.

Patt. Recogn. Lett. 24, 1607–1612 (2003)
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