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Abstract 

Purpose. Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuroprotective 

peptide that has been shown to exert protective effects in different models of 

neurodegenerative diseases, including retinal degenerations. Data obtained from PACAP-

deficient (PACAP KO) mice provide evidence that endogenous PACAP has neuroprotective 

role in different pathologies. PACAP KO mice show enhanced sensitivity to different insults, 

such as oxidative stress, hypoxia and inflammation. The aim of the present study was to 

investigate the protective effects of endogenous PACAP in retinal inflammation.  

Methods. Endotoxin-caused eye inflammation was induced by intraperitoneal injection of 

lipopolysaccharide (LPS) in PACAP KO and wild type (Wt) mice. After LPS treatment, 

retinas were processed for histological examination. To detect the alterations of different 

proteins and cytokines, immunohistochemical, western blot and cytokine array were used. We 

also performed dark-adapted electroretinography (ERG) to detect the functional differences.  

Results. The thickness of nearly all layers was significantly less in LPS-injected PACAP KO 

mice compared to Wt animals. Increased expression of glial fibrillary acidic protein (GFAP) 

was induced in Müller glial cells after LPS treatment, which was more intense in PACAP KO 

mice. The levels of pAkt and pGSK were decreased in PACAP KO group during 

inflammation. LPS treatment significantly increased cytokines (sICAM-1, JE, TIMP-1) in 

both treated groups, but it was more expressed in PACAP KO animals. Furthermore, ERG 

responses were disturbed after LPS injection in PACAP KO mice.  

Conclusion. Our results showed that endogenous PACAP has a protective role in LPS-caused 

retinal inflammation. 

 

 



3	
	

 

Text: 

Introduction 
 

Pituitary adenylate cyclase activating polypeptide (PACAP) is the most conserved member of 

the vasoactive intestinal peptide (VIP)/PACAP/glucagon superfamily [1–4]. Since its 

discovery in 1989 by Miyata and co-workers [5] in hypothalamus, numerous functions have 

been attributed to PACAP in addition to its adenylate cyclase activation in pituitary cells. Five 

years after the peptide isolation, Arimura and co-workers [6] published its neurotrophic and 

neuroprotective effects. PACAP is now considered to be a potent neuroprotective and 

cytoprotective peptide with potential therapeutic use in numerous diseases [7–13]. The 

neuroprotective effects of PACAP have been shown in several different cell types in vitro 

against various toxic agents, such as oxidative stress, glutamate or 6-hydroxydopamine [14–

16]. In vivo descriptions have also proven that PACAP is protective in global and focal 

cerebral ischemia [15, 17, 18], traumatic brain injury and neurodegenerative diseases [19, 20]. 

PACAP also has cytoprotective effects in different non-neuronal cells, such as endothelial 

cells, intestinal cells or pinealocytes [11, 16, 21, 22].  

The important role of PACAP as a modulator in immunity has long been recognized in acute 

and chronic inflammatory conditions [4, 23–25]. Kong and coworkers found that 

lipopolysaccharide (LPS)-induced release of nitric oxide and lactate dehydrogenase into the 

culture medium, indicative of cell injury, was decreased by PACAP and the protective effects 

were blocked by the potent PACAP antagonist, PACAP6-38 [26]. Using neuron-glia cultures, 

Yang and colleagues showed that PACAP38 and PACAP27 were neuroprotective against 

LPS-induced dopaminergic neurotoxicity [27]. Moreover, PACAP dose-dependently 

attenuated the LPS-caused inflammation in dopaminergic cells, reducing caspase activation 

and increasing BDNF expression as well as CREB phosphorylation [28]. Similarly, several 
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studies have shown	the neuroprotective roles of PACAP in the retina [29]. Protective actions 

of PACAP have been proven in different pathological conditions, such as excitotoxic retinal 

injury [30, 31], diabetic retinopathy [32–34], UV-A light-induced degeneration [35], ischemic 

damages [36, 37] and oxygen-induced retinopathy [38].	 PACAP is upregulated upon 

numerous harmful stimuli, supporting its endogenous protective effects in restorative 

processes [11]. As it has been shown in numerous models, PACAP knockout (KO) mice are 

more vulnerable to different types of injuries, from hypoxia to oxidative stress, compared to 

wild type (Wt) mice [39–41]. PACAP KO mice had significantly greater retinal damage in 

ischemia compared to Wt mice [42]. Furthermore, several degenerative changes were 

observed at an earlier age in PACAP KO mice retina [43]. 

All these above results indicate the function of endogenous PACAP as a stress-response 

peptide that is necessary for endogenous protection against different retinal insults, however, 

the possible protective role of endogenous PACAP in retinal inflammation is yet unclear. The 

aim of the present study, using morphological, immunological, biochemical and functional 

techniques, was to investigate the protective and anti-inflammatory effects of endogenous 

PACAP in PACAP KO- and Wt mice in LPS-induced retinal inflammation. 
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Methods 

 

Animals 

 

Adult male three-month-old (CD1 strain) Wt and PACAP KO mice (n=100 in 4 groups) were 

used in the experiments. Generation and maintenance of PACAP KO mice with a CD1 

background was previously described [44]. Animals were backcrossed for ten generations 

with the CD1 strain, all were genotyped with PCR and only homozygous knockouts were 

used to the experiments. Mice were maintained in a temperature- and humidity-controlled 

room under 12h light/dark cycle with free access to food and water. All animal protocols were 

approved by the institutional ethical guidelines (permission number: BA02/2000-38/2017). 

 

LPS treatment 

 

Mice received a single intraperitoneal injection of 6.0 mg/kg body weight of LPS from 

Escherichia coli (n=50) in phosphate-buffered saline (PBS). Control groups were injected 

PBS intraperitoneally (n=50). Mice were killed and investigated 24h after injections. This 

time point was chosen for immunohistochemical, cytokine array, western blot and ERG 

analyses, as most of the pathological changes in the retina were detectable at this time-point. 

The morphological changes of the retina were measured on the 14th day after injections.  

 

Histological analysis 

 

Mice were anesthetized with isoflurane and sacrificed 14 days after LPS treatment (n=6 

animals/ each conditions). Both eyes were removed and dissected in 0.1 M PBS and fixed in 
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4% paraformaldehyde (PFA) dissolved in 0.1 M phosphate buffer (PB) (Sigma, Hungary). 

Eye-cup tissues were embedded in resin (Durcupan ACM resin, Fluka, Switzerland). Retinas 

were cut at 2 µm and stained with toluidine blue (Sigma, Hungary). Sections mounted in DPX 

medium (Sigma, Hungary) and examined in a Nikon Eclipse 80i microscope, measured with 

Q-Capture Pro7 program (Q-Imaging, USA). Central retinal areas within 2 mm from the optic 

nerve were used for measurements (n=5 measurements from one tissue block and the blocks 

were compered). Images were further processed with Adobe Photoshop CS6 program. The 

following parameters were measured: (i) retinal cross section between the outer and inner 

limiting membranes (OLM-ILM), as well as (ii) the width of individual retinal layers (ONL, 

INL, OPL, IPL). 

 

Glial fibrillary acidic protein (GFAP) immunohistochemistry in Müller cells 

 

Animals were sacrificed 24h after LPS or vehicle (PBS) injections (n=5 animals/ each 

conditions). Immunohistochemistry was performed following the procedure described 

previously [36]. For measurement of glial fibrillary acidic protein (GFAP) activity in the 

Müller glial cells, eyes were dissected in ice-cold PBS and postfixed in 4%  PFA dissolved in 

0.1M PB (pH 7.4) for 4h at room temperature. Tissues were washed in 0.1M PB, followed by 

dehydration procedures with graded sucrose solutions (2 h in 10%, 20% and overnight in 

30%; Sigma, Budapest, Hungary) at 4°C. The eyecups were vertically sectioned in tissue 

freezing medium (Cryomatrix, Shandon, USA) at 16 µm thickness on a freezing microtome 

(Leica, Nussloch, Germany). Sections were collected on chrome–alum–gelatin coated slides 

and stored at −20 °C until use then samples were rinsed in PBS, permeabilized with 0.1% 

Triton X-100 (Sigma, Budapest, Hungary), and incubated in PBS containing 3% normal 

donkey serum and 0.1% Na-azide for 1 h to block the nonspecific binding sites. The samples 
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were incubated with polyclonal antibodies against anti-GFAP antibody at 4°C overnight. On 

the following day, the appropriate second fluorescent anti-rabbit antibody Alexa Fluor 488 

(donkey anti-rabbit, 1:200, Life Technologies, Budapest, Hungary) was added in a dark room 

for 2h. After washing, propidium iodide (PI, 1:500, Sigma, Budapest, Hungary) was used to 

detect the nuclear components. Preparations were mounted with Fluoroshield (Sigma, 

Budapest, Hungary) and detected by a fluorescent microscope (Nikon Eclipse 80i). Central 

retinal areas were used for immunohistochemical analysis. All images were further analyzed 

under masked conditions using Adobe Photoshop CS6 program and ImageJ software (NIH). 

Photographs were transferred into grayscale, the background was subtracted and upper and 

lower thresholds were set. The percentage of GFAP labeled area was measured in each picture 

using an ImageJ macro (NIH). 

	

Cytokine array analysis 

 

One day after the administration of LPS (n=4 animals/ each conditions), retinas were 

dissected and kept at -80 °C until tested. Proteome Profiler Mouse Cytokine Array Kit, Panel 

A from R&D System (Biomedica, Budapest, Hungary) was used for the analysis. The array is 

based on antibodies binding with nitrocellulose membranes and it was performed as described 

by the manufacturer. Samples were pooled and homogenized in PBS with protease inhibitors. 

After homogenization, Triton X-100 was added to a final concentration of 1%. The 

nitrocellulose membranes were blocked and incubated with reconstituted detection antibody 

cocktail. Membranes were incubated overnight with 400 µg protein containing homogenates. 

After washing and streptavidin-horseradish peroxidase addition to the membranes, plates were 

spread to a chemiluminescent detection reagent (Amersham Biosciences, Hungary). 
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Developed films were scanned and the mean intensities of the dot blots of the different 

cytokines were calculated by ImageJ software (NIH).  

 

Western blot measurements  

 

For western blot experiments retinas were removed 24h after LPS injection (n=4 animals/ 

each conditions) and stored at -80 C until analysis. Samples were processed for western blot 

as described earlier [45]. Frozen tissues were homogenized (50 mM TRIS, 50 mM EDTA, 50 

mM sodium metavanadate, 0.5% protease inhibitor cocktail, 0.5% phosphatase inhibitor 

cocktail, pH = 7.4) and 300 µg protein concentration was determined with a DC™ Protein 

Assay kit (Bio-Rad, Hercules, CA). Membranes were probed overnight at 4°C with the 

primary antibodies: phospho-specific anti-Akt-1 Ser473 (pAkt; 1:1000; R&D Systems, 

Hungary), phospho-specific glycogen synthase kinase-3β Ser9 (pGSK; 1:1000; Cell Signaling 

Technology, Beverly, USA). Non-phosphorylated total-Akt (tAkt; 1:1000) antibody was used 

as internal control as described by Pitre et al. [46]. Membranes were washed six times for 5 

min in Tris buffered saline (pH = 7.5) containing 0.2% Tween prior to addition of goat anti-

rabbit or anti-mouse horseradish peroxidase- conjugated secondary antibody (1:3000; BioRad, 

Hungary). The antibody–antigen complexes were visualized by means of enhanced 

chemiluminescence. For quantification of blots, band intensities were quantified by NIH 

ImageJ program.  

 

Electroretinography 

 

Scotopic ERGs were performed to assess retinal function in Wt- and PACAP KO groups. 

ERG flashes were recorded before LPS treatment and 24h after LPS-induced inflammation 
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(n=6 animals/ each conditions). Mice were dark adapted for at least 12h and prepared under 

dim red illumination (632 nm) [47], anesthetized with intraperitoneal injection of ketamine 

5% (w/v, Calypsol, Richter Gedeon, Hungary, 90 mg/ BW kg) and xylazine 20 % (w/v, 

Sedaxylan, Dechra, Netherlands, 10 mg/BW kg) [48]. Mice were placed on a heating pad 

throughout the experiment and pupils were dilated with one drop of 1 % homatropine (w/v, 

Humapent- Teva, Hungary). ERGs were recorded by surface electrodes from the center of the 

cornea [49, 50]. The reference electrode was placed subcutaneously between the eyes, and the 

ground electrode was used subcutaneously under the skin of the back. The light pulses 

intensity (5cd s/m2, 0.25 Hz, 503 nm green LED light) were preamplified, amplified (2.000×, 

Bioamp SbA4-V6, Supertech, Hungary) and recorded with an A/D converter (Ratsoft-Solar 

Electronic) [51, 52]. Responses (n=50/eye) were averaged with Ratsoft software. The graphs 

were analyzed with OriginPro 2016 (Macasoft, Hungary). The following parameters were 

measured: amplitude of the a-wave (from baseline to the trough of the a-wave), amplitude of 

the b-wave (from the trough of the a-wave to the peak of the b-wave). 

 

Data analysis 

 

Data are expressed as mean ± standard error (SEM). Data were analyzed using Kolmogorov-

Smirnov normality test followed by ANOVA test and Fisher LSD’s post hoc analysis 

(OriginPro 2016, Macasoft, Hungary). Significant differences were considered at p values 

below 0.05.  
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Results 

 

Effects of LPS treatment on histological changes of the retina 

 

No differences were observed between the control retinas of Wt (Fig. 1 A) and PACAP KO 

mice (Fig. 1 B). Wt retinas in the LPS-treated group (Fig. 1 C) did not show remarkable 

differences (except in INL layer; Fig. 2 B) compared to control groups (Fig. 1 A, B). Retinal 

layers in LPS-treated PACAP KO group (Fig. 1 D) showed signs of severe degeneration 

compared to PBS-treated controls (Fig. 1 A, B) and the LPS-treated Wt (Fig. 1 C) groups.  

In LPS-treated KO animals, all retinal layers were significantly thinner than in the control and 

LPS-treated Wt groups (Fig. 2 A, B). Marked reduction was observed in the ONL, but 

significant changes were also found in the INL, OPL and IPL. We found severe reduction of 

the whole retinal thickness between OLM-ILM in this group (Fig. 1 D, Fig. 2 A, B).  

 

Analysis of glial fibrillary acidic protein in Müller glial cells 

 

 Under control conditions the retinas did not show any remarkable immunofluorescent 

changes in either vehicle-treated Wt or PACAP KO groups (Fig. 3 A, B, E). GFAP was 

markedly upregulated following LPS treatment in the retinas of Wt and PACAP KO mice 

(Fig. 3 C, D, E). Expression was more intense in the entire cell from the OLM to ILM in LPS-

treated PACAP KO animals compared to the LPS-injected Wt mice (Fig. 3 C, D, E). 

 

Effects of LPS treatment on cytokine expression profile of the retina 
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The expression level of several cytokines was increased after LPS treatment (Fig. 4). The 

activation of sICAM-1 (soluble intercellular adhesion molecule-1), TIMP-1 (tissue inhibitor 

of metalloproteinase-1) and JE (monocyte chemoattractant protein-1) was increased in the 

retinas that underwent LPS inflammation compared to control groups (Fig. 4). The expression 

level of these three cytokines was significantly stronger in the LPS-treated PACAP KO group 

compared to the LPS-injected Wt group (Fig. 4). Other spots, where no significant changes 

were observed are (from upper left corner, without numbers): BCL, C5/C5a, G-CSF, GM-

CSF, I-309, Eotaxin, IFN-γ, IL-1α, IL-1β, IL-1ra, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-10, IL-

13, IL-12p70, IL-16, IL-17, IL-23, IL-27, IP-10, I-TAC, KC, M-CSF, MCP-5, MIG, MIP-1α, 

MIP-1β, MIP-2, RANTES, SDF-1, TARC, TNF-α, TERM-1. 

 

Western blot analysis 

 

No differences were detected between the control groups, however, marked alterations were 

observed in retinas 24h after LPS injection (Fig. 5). Inflammation itself induced a decreased 

pAkt expression, which was more severe in the LPS-treated PACAP KO group compared to 

the LPS-injected Wt group (Fig. 5 A, B). Similar changes were observed in the glycogen 

synthase kinase (GSK)-3, the downstream target of Akt (Fig. 5 A, C).  

	

Protective effect of endogenous PACAP on visual responses after retinal inflammation 

 

Representative ERG was recorded 12h after dark adaptation (Fig. 6 A, B). In control 

situations, ERG waveforms were similar in Wt and PACAP KO mice (Fig. 6 A). Luminance-

responses were reduced 24h after inflammation in both LPS-treated groups, but responses 

were more preserved in the Wt animals compared to the PACAP KO mice (Fig. 6 B). 
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Amplitudes of a-wave and b-wave were significantly decreased after inflammation, but those 

changes were more severe in the LPS-treated PACAP KO group (Fig. 6 C, D). The latency of 

a/b waves was significantly decreased in both treated groups compared to their controls, but 

no differences could be observed between the LPS-treated Wt and PACAP KO mice (data not 

shown).  

	

Discussion 

The neuropeptide PACAP exerts anti-inflammatory and protective effects in several organs, 

such as brain, immune system and eye. In the present study, we showed, for the first time, that 

endogenous PACAP is protective in LPS-induced ocular inflammation in the retina using 

PACAP KO mice. Based on our results, no major differences were found in the histological 

structure, cytokine expressions, or in visual function between the retinas of Wt and PACAP 

KO mice under normal conditions, whereas we detected several differences during 

inflammation. Earlier studies have proven that exogenously applied PACAP is 

retinoprotective in excitotoxic injury induced by glutamate [53, 54], N-methyl-D-aspartate 

(NMDA) [55], kainate [56], hypoperfusion-induced degeneration after carotid artery ligation 

[36, 37], UV-A light radiation [35], optic nerve transection [57], and streptozotocin-induced 

diabetic damages in the retina [33], as well as in retinopathy of prematurity [38]. 

Numerous studies have proven that endogenous PACAP plays an important role in several 

physiological functions such as regulation of body temperature [58] and fertility [59–61]. 

Furthermore, PACAP KO mice display behavioral abnormalities, altered pain and 

inflammatory reactions [44, 62–66]. Endogenous PACAP suppresses dry eye signs by 

regulation of tear secretion [67] and protects the retina during ischemia [42]. However, the 

role of endogenous PACAP in the LPS-induced retinal inflammation had not been tested yet.  
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In our present study, we detected dramatic changes of the retinal layers after LPS-induced 

inflammation in the PACAP KO groups compared to the Wt ones. These findings correlated 

with results of other research groups, where PACAP KO mice showed increased severe 

retinal abnormalities in aging or ischemia [42, 43]. 

We showed irregularity in Müller glial cells during LPS-induced inflammation, which was 

more intense in the PACAP KO group. The decreased uptake of GABA and glutamate results 

in accumulations of these proteins and causes abnormalities in the retinal neurons [68–72]. 

PACAP is retinoprotective on Müller glial cells, and stimulates the release of interleukin-6, 

which has been confirmed in ischemic and excitotoxic brain lesions [73–75]. 

In our study, retinal inflammation induced changes in several cytokines (TIMP-1, sICAM-1 

and JE regulatory proteins). Members of the TIMP family play an important role in cell 

proliferation and apoptosis and they also have an inhibitory effect on matrix 

metalloproteinases (MMPs), which are able to degrade the extracellular matrix [76]. During 

inflammatory events, the transcription of MMPs inhibitor TIMP-1 is induced by pro-

inflammatory mediators [77]. In our experiment, TIMP-1 level showed a strong activation 

24h after the LPS treatment in both treated groups, but was more severe in the PACAP KO 

mice. Our present findings are in accordance with earlier studies, where increased expression 

of TIMP-1 was associated with many pathological conditions, such as diabetic nephropathy 

[78], ischemia-induced kidney injury [79], mesenteric ischemia [77], glaucoma [80] or 

ischemic retinopathy [45]. Furthermore, exogenously administered PACAP attenuated the 

activation of TIMP-1 expression in diabetes-induced nephropathy [78], ischemia-induced 

kidney damage [79], small bowel [77, 81] and retinal injury [36]. In the present study, 

sICAM-1 activation was detectable in PACAP KO mice in inflammation. Upregulation of 

sICAM-1 is enhanced by inflammatory cytokines, including tumor necrosis factor alpha 

(TNFa) and it produces pro-inflammatory effects such as recruited leukocytes into the site of 
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the inflammation [82, 83]. High concentrations of sICAM-1 are described in patients in 

vitreoretinopathy [84, 85], in uveitis [86] or in sickle cell retinopathy [87]. Increased 

expression of sICAM-1 was also observed in ischemia/reperfusion (I/R)-induced injury in 

several organs, and PACAP treatment partially or totally blocked this cytokine [45, 77, 78, 

88].  

The monocyte chemoattractant protein-1 (MCP-1/CCL2) is a member of the C-C 

chemokine family and a potent chemotactic factor for monocytes [89]. MCP-1 is identical to 

JE in mice, where the upregulation of this cytokine has been implicated in a number of acute 

and chronic inflammatory diseases, such as atherosclerosis [90], glomerulonephritis [91], 

diabetic retinopathy [92], Eales' Disease [93], ischemic retinopathy [94] or LPS-induced 

uveitis [95]. Elevated level of this cytokine was observed in several models such as hypoxia-

induced injury in the kidney [88] or acute ileitis [96], where exogenous PACAP 

administration ameliorates acute inflammation in the above mentioned diseases. Akt is a 

kinase downstream phosphatidylinositol 3-kinase (PI3K), it is an important molecule that 

promotes cell survival in response to extracellular signals such as retinal ischemia [36, 45, 97, 

98]. GSK-3 acts downstream of PI3K pathway/Akt and is involved in regulation of 

inflammation [99]. Inhibition of Akt activation by harmful stimuli, such as LPS-induced 

inflammation, prevents the inhibitory phosphorylation of GSK-3, promotes its kinase activity 

and increases the degree of organic injury [100]. Consistent with results generated from other 

studies, our observation showed decreased level of phosphorylated Akt and GSK during LPS-

induced inflammation [101–103]. In the PACAP KO animals we detected slightly lower 

levels of pGSK. The reason for this phenomenon might be that exogenously applied PACAP 

induces pGSK [104] and thus the lack of endogenous PACAP results in lower baseline levels 

in untreated PACAP KO mice. The reduction of pAKT and pGSK was more severe in the 

LPS-treated PACAP KO group. This study tested the hypothesis that endogenous PACAP 
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plays an anti-inflammatory role in LPS-induced retinal damage through preservation of 

PI3K/Akt functional activity. Previous studies have shown the functional protective effects of 

exogenously applied PACAP in different kinds of retinal injuries, like excitotoxity [105] or 

ischemia [48]. Response of the retina to harmful stimuli is measured by ERG, where an a-

wave (initial negative deflection) followed by a b-wave (positive deflection) can be 

distinguished. The a-wave is produced by the photoreceptors, while the b-wave is produced 

mainly by ON-bipolar neurons, and also from amacrine, ganglion and Muller glial cells [106]. 

Similarly to earlier studies [68, 107] we demonstrated severe disturbance of visual function in 

the inflamed retinas by ERG. Endogenous PACAP successfully prevented pathologic 

changes, prevented the a-wave amplitude of ERG, thus protecting the photoreceptor cell 

function in LPS-induced retinal inflammation. The malfunction of Müller glial cells involved 

in the decreased responses of b-wave in ERG, which was also preserved in the presence of 

endogenous peptide. 

Our findings further suggest that endogenous PACAP represents an important part of the 

natural defense mechanism against retinal inflammation. 
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Figure legends 

FIGURE 1. (A–D) Light microphotographs showing toluidine blue-stained representative 

retinal sections (2 µm). The retinal damage is shown by the width of retinal layers and cell 

profiles. (A) Control Wt retina, treated with intraperitoneal PBS. (B) Control PACAP KO 

retina, treated with intraperitoneal PBS. (C) Wt + intraperitoneal LPS and (D) PACAP KO + 

intraperitoneal LPS treatment. LPS-induced retinal degeneration showed more apparent 

damage in PACAP KO group compared to the treated Wt and control groups. Abbreviations: 

Wt: wild type; PACAP KO: PACAP knock out; LPS: lipopolysaccharide; ONL: outer nuclear 

layer; OPL: outer plexiform layer; INL: inner nuclear layer; IPL: inner plexiform layer; GCL: 

ganglion cell layer. (scale bar: 30 µm) 

 

FIGURE 2. (A) Cross section of the retina from the outer limiting membrane to the inner 

limiting membrane (OLM-ILM) and (B) quantitative comparison of the different retinal 

layers. ONL: outer nuclear layer, OPL: outer plexiform layer, INL: inner nuclear layer, IPL: 

inner plexiform layer. Data are expressed as mean ± SEM. *p< 0.05 compared to the control 

Wt retinas; #p< 0.05 compared to LPS-treated retinas. Abbreviations: Wt: wild type; PACAP 

KO: PACAP knock out; LPS: lipopolysaccharide; OLM-ILM: whole retina thickness; ONL: 

outer nuclear layer; OPL: outer plexiform layer; INL: inner nuclear layer; IPL: inner 

plexiform layer. 

 

FIGURE 3. Representative vertical retinal sections stained by GFAP antibody showing the 

effect of LPS in control Wt (A), control PACAP KO (B) retina and LPS-treated Wt (C) and 

LPS-injected PACAP KO (D) sample. PI (red) was used to detect the nuclear components. 

GFAP-immunoreactivity (green) was restricted onlyto the GCL and nerve fiber layer in 

control conditions (A, B). Retinal degeneration induced by LPS showed strong upregulation 
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of immunoreactivity (C, D). GFAP immunopositivity was stretched into IPL, INL and OPL 

layers in LPS-treated PACAP KO retina (D). Quantitative comparison of GFAP 

immunoreactivity in control Wt, control PACAP KO retinas and LPS-treated Wt and LPS-

injected PACAP KO samples (E). Data are expressed as mean ± SEM. *p< 0.05 compared to 

the control Wt retinas; #p< 0.05 compared to LPS-treated Wt retinas; Abbreviations: Wt: wild 

type; PACAP KO: PACAP knock out; LPS: lipopolysaccharide; ONL: outer nuclear layer; 

OPL: outer plexiform layer; INL: inner nuclear layer; IPL: inner plexiform layer; GCL: 

ganglion cell layer; PI: propidium iodide; GFAP: glial fibrillary acidic protein. (scale bar: 

30 µm) 

 

FIGURE 4. (A) Representative panels	 show cytokine arrays from homogenates of control 

Wt, PACAP KO samples, LPS-treated Wt, and PACAP KO retinas. The panels show the 

examined cytokines in each box, highlighting changes after LPS-treatment. (B) The table 

indicates the examined cytokines in each box, highlighting changes after LPS-treatment. (C, 

D, E). Quantification of cytokine levels of control Wt, PACAP KO, LPS-injected Wt, and 

PACAP KO groups. Each cytokine was measured by Protein Array Analyzer for ImageJ. (C) 

TIMP-1, (D) sICAM-1 and (E) JE demonstrate the effects of LPS-induced retinal 

inflammation. Graph values are given as means ± SEM. *p< 0.05 compared to control Wt 

retinas; #p< 0.05 compared to LPS-treated Wt samples.	 Abbreviations: Wt: wild type; 

PACAP KO: PACAP knock out; LPS: lipopolysaccharide; TIMP-1: tissue inhibitor of 

metalloproteinase-1; sICAM-1: soluble intercellular adhesion molecule-1; JE: mouse 

monocyte chemoattractant protein-1. 

	

FIGURE 5. (A) Representative panels show the results of western blot analysis (1-Wt, 2-

PACAP KO, 3-LPS+Wt, 4-LPS+PACAP KO samples). (B) pAkt and (C) pGSK levels in 
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control Wt, PACAP KO and LPS+Wt, LPS+PACAP KO retinas. tAkt was used as control for 

pAkt and pGSK. Data are given as mean ± SEM. *p <0.05 compared to control Wt retinas; 

#p< 0.05 compared to LPS-treated Wt samples. Statistical analysis of protein levels was 

measured by ImageJ software. Abbreviations: Wt: wild type; PACAP KO: PACAP knock 

out; LPS: lipopolysaccharide; pAkt: phosphorylation of Akt; pGSK: phosphorylation of GSK; 

tAkt: total Akt. 

 

FIGURE 6. Representative panels show ERG responses after 24h of dark adaptation. (A) 

ERG response was similar in Wt and PACAP KO mice under healthy condition. (B) 

Abnormalities was detected during inflammation in both treated groups. ERG recording of 

LPS-injected PACAP KO mice was more reduced compared to the LPS+ Wt. (C) 

Comparative analysis of the average amplitudes of a-waves and (D) b-waves. The wave 

amplitudes were significantly altered during inflammation which were more severe in 

LPS+PACAP KO group. Data are given as mean ± SEM. *p <0.05 compared to control Wt 

retinas; #p< 0.05 compared to LPS-treated Wt samples. Abbreviations: Wt: wild type; 

PACAP KO: PACAP knock out; LPS: lipopolysaccharide. 


