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Abstract

The process damping effect is analyzed for regenerative machine tool chatter in milling via a velocity-dependent cutting force model. This model
takes into account that the effective cutting direction depends on the vibrations of the machine tool-workpiece system, which modifies the effective
rake angle, the chip thickness, and the cutting force. The model was originally introduced for turning operations where it results in a process
damping term that improves the stability of metal cutting at low cutting speeds. Now this model is extended to milling. It is shown that the
vibration-dependency of the cutting direction induces a time-periodic process damping term that is negative when the radial immersion is low.
This decreases the stability at low cutting speeds, thus the low-speed stability improvement phenomenon in low radial immersion milling can be
explained by extended process damping models only.
c© 2018 The Authors. Published by Elsevier Ltd.
Peer-review under the responsibility of the International Scientific Committee of the 8th CIRP Conference on High Performance Cutting
(HPC 2018).
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1. Introduction

This paper is devoted to the stability analysis of delay-
differential equations describing milling in order to predict
harmful vibrations (chatter) during metal cutting. Milling ex-
periments reported in the literature [1–6] have shown that the
maximum chatter-free axial depth of cut typically increases for
decreasing spindle speed. We call this low-speed stability im-
provement phenomenon. The phenomenon is often explained
by an additional damping – called process damping – which is
inversely proportional to the spindle speed [1–8]. Most papers
dedicate process damping to the interference between the tool’s
flank face and the wavy surface finish [1–7], while in other
models velocity-dependent chip thickness and cutting force ex-
pressions give rise to process damping [2,8]. Alternatively, the
low-speed stability improvement can be explained by the distri-
bution of the cutting force along the tool’s rake face [9–11].

In [2,8], process damping is explained for turning by taking
into account the fluctuation of the cutting direction due to the
vibrations of the tool. This effect results in velocity-dependent
chip thickness and cutting force expressions [12,13]. Now these
results are extended by recognizing that the cutting direction af-
fects the effective rake angle, which leads to velocity-dependent
cutting-force coefficients.

2. Mechanical model of milling

We investigate the single-degree-of-freedom model of
milling shown in Fig. 1a, where the tool is rigid and the work-
piece is compliant in the feed direction x. Using the modal
mass m, the undamped natural angular frequency ωn, and the
damping ratio ζ, the motion of the workpiece is described by

ẍ(t) + 2ζωn ẋ(t) + ω2
nx(t) = −

1
m

Fx(t) . (1)

Here, Fx(t) is the x-directional component of the cutting force
acting on the mill, which is associated with the cutting velocity
and the chip thickness at the cutting edges.

Consider an N-fluted tool of radius R rotating with angular
velocity Ω. The angular position of the jth tooth is ϕ̃ j(t) = Ωt +

( j−1)2π/N. If the feed velocity is negligible, ϕ̃ j(t) describes the
direction of the nominal cutting velocity ṽ j(t) of magnitude RΩ

(see Fig. 1b). This direction is the nominal tangential direction
t̃ j, the perpendicular one is the nominal radial direction r̃ j.

When machine tool vibrations occur, the vibration velocity
ẋ(t) modifies the velocity of the jth cutting edge and the cutting
(tangential) direction. The magnitude v j(t) and direction ϕ j(t)
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Fig. 1. The mechanical model of milling (a); the illustration of the cutting velocity, chip thickness, and rake angle (b).

of the actual cutting velocity are given by

v j(t) =

√(
RΩ cos ϕ̃ j(t) + ẋ(t)

)2
+

(
RΩ sin ϕ̃ j(t)

)2
,

cosϕ j(t) =
RΩ cos ϕ̃ j(t) + ẋ(t)

v j(t)
, sinϕ j(t) =

RΩ sin ϕ̃ j(t)
v j(t)

.

(2)

Note that quantities related to the nominal cutting velocity are
indicated by tilde, while those without tilde (such as directions
t j and r j in Fig. 1b) correspond to the actual cutting velocity.

Since the angle of the cutting direction changes from ϕ̃ j(t) to
ϕ j(t) during chatter, the rake angle is modified from the nominal
value α̃r to the actual value αr, j(t) = α̃r +ϕ̃ j(t)−ϕ j(t), cf. Fig. 1b.
The fluctuations of the cutting direction also affect the actual
chip thickness h j(t), which is the projection of the feed per tooth
to the actual radial direction. For prescribed feed per tooth fz
and tooth passing period τ = 2π/(NΩ), the instantaneous feed
per tooth becomes fz + x(t) − x(t − τ), and we can write

h j(t) = ( fz + x(t) − x(t − τ)) sinϕ j(t) , (3)

cf. Fig. 1b. Note that the actual chip thickness h j(t) is velocity
dependent, since ϕ j(t) depends on ẋ(t) as shown by Eq. (2).

3. Cutting Force Model

For reference, consider first orthogonal cutting with a linear
cutting force model: Fx(t) = Kxah(t), where a denotes the chip
width and Kx is the feed-directional cutting-force coefficient.
It is well-known that cutting-force coefficients strongly depend
on the rake angle α̃r. According to Eqs. (2.42) and (2.47) of [8],

Kx = τs
sin (βa − α̃r)

sin Φ cos (Φ + βa − α̃r)
, (4)

where βa is the average friction angle and τs is the shear stress
along the shear plane located at angle Φ = π/4 − (βa − α̃r)/2.
The cutting-force coefficient Kx is shown in Fig. 2 as a function
of the rake angle α̃r for various friction coefficients µ = tan βa.
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Fig. 2. The effect of the rake angle on the cutting-force coefficients [8].

The cutting-force coefficient becomes negative for large rake
angles, which has key importance in the subsequent analysis of
milling with vibration-induced fluctuation of the rake angle.

Now the cutting-force coefficients are derived for milling
following [8] via Merchant’s circle shown in Fig. 3. The cutting
force F j on the jth cutting edge is decomposed into four com-
ponent pairs: x and y-directional (F j,x, F j,y); actual tangential
and radial (F j,t, F j,r); parallel and normal to the rake face (F j,u,
F j,v); parallel and normal to the shear plane (F j,s, F j,n).

Following [8], the shear stress τs along the shear plane lo-
cated at shear angle Φ j(t) is assumed to be constant during cut-
ting. Therefore, the cutting force component F j,s(t) is the prod-
uct of the shear stress and the shear plane area:

F j,s(t) =g j(t)τsap
h j(t)

sin Φ j(t)
, (5)

g j(t) =

{
1 if ϕen < (ϕ̃ j(t) mod 2π) < ϕex ,
0 otherwise. (6)

Here, g j(t) is a screen function that indicates whether the jth
tooth is currently engaged in cutting, mod is the modulo func-
tion, while ϕen and ϕex are the enter and exit immersion angles.

The angle between the cutting force F j(t) and the rake face
normal is the average friction angle βa, which is assumed to be
constant. The cutting force magnitudes F j(t) and F j,x(t) can be
obtained from F j,s(t) by considering the rectangular triangles in
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Fig. 3. Merchant’s circle representing the components of the cutting force.

Fig. 3. Summing the forces on each tooth of the mill leads to

Fx(t) =

N∑
j=1

g j(t)K j,x(t)aph j(t) , (7)

K j,x(t) =
τs cos

(
ϕ̃ j(t) − (βa − α̃r)

)
sin Φ j(t) cos

(
Φ j(t) + ϕ j(t) − ϕ̃ j(t) + βa − α̃r

) . (8)

Note that the coefficient K j,x(t) depends on the vibration veloc-
ity ẋ(t) through the cutting direction ϕ j(t), which determines the
effective rake angle α̃r + ϕ̃ j(t) − ϕ j(t). If a single tooth is cut-
ting at position ϕ̃ j(t) = 90◦ and no machine tool vibrations arise
(ẋ(t) = 0, ϕ j(t) = ϕ̃ j(t)), we get Eq. (4) of orthogonal cutting.

As for the shear angle Φ j(t), one widely used model is the
minimum energy principle (MEP) [8]. The MEP calculates the
shear angle such that the power −F j,t(t)v j(t) of the cutting force
is minimal, which leads to

Φ j(t) +
ϕ j(t) − ϕ̃ j(t) + βa − α̃r

2
=
π

4
. (9)

Note that Eqs. (2) and (9) imply velocity-dependent shear angle.

4. Linearized equation of motion

Equations (1) and (7) define a nonlinear delay-differential
equation, since the relationship between ϕ j(t) and ẋ(t) is non-
linear (see Eq. (2)). The differential equation has a periodic
solution xp(t) = xp(t + τ) that corresponds to stationary cutting.
The instability of this solution determines the onset of chatter.

In order to analyze linear stability, let us linearize Eq. (1)

around the solution xp(t):

ξ̈(t)+2ζωnξ̇(t)+ω2
nξ(t)=−

1
m

(
∂Fx

∂x

∣∣∣∣∣
p
(ξ(t)−ξ(t − τ)) +

∂Fx

∂ẋ

∣∣∣∣∣
p
ξ̇(t)

)
,

(10)
where ξ(t) is a small perturbation added to the solution xp(t),
and subscript p stands for the substitution x(t) = xp(t).

Substitution of Eq. (7) into Eq. (10) leads to the form

ξ̈(t)+2ζωnξ̇(t)+ω2
nξ(t)=−HG1(t) (ξ(t)−ξ(t − τ))−

H fz
RΩ

G2(t)ξ̇(t).
(11)

Provided that the velocity ẋp(t) is negligible compared to the
nominal cutting speed RΩ, the specific cutting-force coefficient
is H = C0ap/m and the τ-periodic coefficients G1(t), G2(t) are

G1(t) =

N∑
j=1

g j(t)
(
C1 cos ϕ̃ j(t) + sin ϕ̃ j(t)

)
sin ϕ̃ j(t) ,

G2(t) = −

N∑
j=1

g j(t)
(
C1 cos ϕ̃ j(t) + sin ϕ̃ j(t)

)
sin ϕ̃ j(t)

×
(
cos ϕ̃ j(t) + C2 sin ϕ̃ j(t)

)
(12)

with the following constants for the MEP shear angle model

C0 =
2τs sin (βa − α̃r)
1 − sin (βa − α̃r)

, C1 = cot (βa − α̃r) , C2 =
C0C1

2τs
.

(13)
Note that in standard velocity-independent cutting force

models, H and G1(t) are given by C0 = Kr and C1 = Kt/Kr,
where Kt and Kr are the (nominal) tangential and radial cutting-
force coefficients [14]. The last term in Eq. (11) is absent
from standard models [14–16]. This term implies an additional
damping that is inversely proportional to the spindle speed,
known as process damping. Most models use constant process
damping [1–8], while now it is time-periodic through G2(t).
This affects the stability lobe diagrams of milling significantly.

5. Stability lobe diagrams and conclusions

Figure 4 shows an example with N = 2 flutes, damping ratio
ζ = 0.02, friction angle βa = 20◦, and rake angle α̃r = 0◦. Two
cases (A and B) are presented, where the enter and exit angles
are ϕA

en = 0◦, ϕA
ex = 30◦ (up-milling) and ϕB

en = 110◦, ϕB
ex = 145◦

(down-milling). The periodic coefficients GA
2 (t), GB

2 (t) given by
Eq. (12) are indicated by red and green lines in Fig. 4a. These
can be obtained from the one describing full-immersion milling
(ϕen = 0◦, ϕex = 180◦; see solid black line), by multiplying it
with the screen functions gA(t) and gB(t) shown at the bottom.

Figures 4b and 4c show the stability lobe diagrams of
cases A and B, which were obtained by the semi-discretization
method [14] for a 600 × 300 grid in the parameter plane with
150 intervals of delay resolution. Dashed lines show the sta-
bility boundaries of standard models without process damping
(G2(t) ≡ 0) whose lower envelope is a horizontal straight line.
Solid lines show the effect of the time-periodic process damping
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Fig. 4. The coefficients G1(t) of the delayed term and G2(t) of process damping (a); the corresponding stability charts for two different cutting conditions (b,c).

in Eq. (11) for dimensionless feed per tooth fzN/(2Rπ) = 0.01
and 0.05 in cases A and B, respectively. In case B, the pro-
cess damping coefficient G2(t) is always nonnegative, thus the
stability lobes shift upwards at low spindle speeds similarly to
the models of constant process damping [1–8]. In case A, G2(t)
takes negative values, and the stability lobes shift downwards
with a decrease in low-speed stability instead of improvement.

Note that for a two-fluted tool, a single tooth is engaged in
cutting at any time. In such cases, the process damping is nega-
tive (G2(t) < 0) at certain angular positions of the teeth accord-
ing to Eq. (12). Process damping is negative if cutting takes
place within angular positions 0◦ and π/2 + βa − α̃r = 110◦,
which involves up-milling processes; or within angular posi-
tions 3π/4 + (βa − α̃r)/2 = 145◦ and 180◦, which implies low
radial immersion down-milling. Process damping is negative
also for ϕ̃ j(t) ≡ 90◦, i.e., for orthogonal cutting. In these cases,
the chatter-free technological parameter region shrinks for low
cutting speeds. Note that the sign of process damping is also
affected by the modal direction (which was now assumed to be
the feed direction x) and the corresponding directional factor.

In conclusion, the vibration-induced fluctuations of the cut-
ting direction act against the low-speed stability improve-
ment phenomenon for orthogonal cutting and low-immersion
milling. In order to explain the phenomenon for any cutting
condition, one may introduce improved models for the shear
angle or the friction angle (see an example in [17]). An alter-
native explanation is the interference between the tool’s flank
face and the wavy surface of the workpiece [1–7]. Since the
flank contact is intermittent, this in fact yields complicated non-
smooth dynamics [7] that cannot be described by linear models
including constant process damping. A different approach is
considering the distribution of the cutting force along the tool’s
rake face [9,10], which improves low-speed stability both for
turning [9,10] and for milling with any radial immersion [11].

Our future research involves the experimental investigation
of process damping via chatter tests in milling and the measure-
ment of cutting forces during fluctuating the cutting direction in
orthogonal cutting.
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